Strategies for the Immobilization of Eversa® Transform 2.0 Lipase and Application for Phospholipid Synthesis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Enzyme Fit to the Enzyme Activity Method
2.2. Immobilization of ET2 Lipase
2.3. Esterification of GPC in Anhydrous System
2.4. Stability Study in GPC Esterification
2.5. Successive Reuse Cycles for GPC Esterification
3. Materials and Methods
3.1. Materials
3.2. Lipase Immobilization
3.3. Determination of Enzyme Activity
3.4. Esterification of GPC in an Anhydrous System
3.5. Thin-Layer Chromatography and High-Performance Liquid Chromatography of the GPC Esterification Products
3.6. Stability of the Derivatives in the Presence of Butanone
3.7. Successive Reuse Cycles on the GPC Esterification
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xie, W.; Zang, X. Lipase Immobilized on Ionic Liquid-Functionalized Magnetic Silica Composites as a Magnetic Biocatalyst for Production of Trans -Free Plastic Fats. Food Chem. 2018, 257, 15–22. [Google Scholar] [CrossRef]
- Ortiz, C.; Ferreira, M.L.; Barbosa, O.; dos Santos, J.C.S.; Rodrigues, R.C.; Berenguer-Murcia, Á.; Briand, L.E.; Fernandez-Lafuente, R. Novozym 435: The “Perfect” Lipase Immobilized Biocatalyst? Catal. Sci. Technol. 2019, 9, 2380–2420. [Google Scholar] [CrossRef] [Green Version]
- Macrae, A.R. Lipase-Catalyzed Interesterification of Oils and Fats. J. Am. Oil Chem. Soc. 1983, 60, 291–294. [Google Scholar] [CrossRef]
- Shimada, Y.; Watanabe, Y.; Sugihara, A.; Tominaga, Y. Enzymatic Alcoholysis for Biodiesel Fuel Production and Application of the Reaction to Oil Processing. J. Mol. Catal. B Enzym. 2002, 17, 133–142. [Google Scholar] [CrossRef]
- Facin, B.R.; Valério, A.; de Oliveira, D.; Oliveira, J.V. Developing an Immobilized Low-Cost Biocatalyst for FAME Synthesis. Biocatal. Agric. Biotechnol. 2020, 29, 101752. [Google Scholar] [CrossRef]
- Wancura, J.H.C.; Rosset, D.V.; Mazutti, M.A.; Ugalde, G.A.; de Oliveira, J.V.; Tres, M.V.; Jahn, S.L. Improving the Soluble Lipase–Catalyzed Biodiesel Production through a Two-Step Hydroesterification Reaction System. Appl. Microbiol. Biotechnol. 2019, 103, 7805–7817. [Google Scholar] [CrossRef]
- Monteiro, R.R.C.; Arana-Peña, S.; da Rocha, T.N.; Miranda, L.P.; Berenguer-Murcia, Á.; Tardioli, P.W.; dos Santos, J.C.S.; Fernandez-Lafuente, R. Liquid Lipase Preparations Designed for Industrial Production of Biodiesel. Is It Really an Optimal Solution? Renew. Energy 2021, 164, 1566–1587. [Google Scholar] [CrossRef]
- Abreu Silveira, E.; Moreno-Perez, S.; Basso, A.; Serban, S.; Pestana-Mamede, R.; Tardioli, P.W.; Farinas, C.S.; Castejon, N.; Fernandez-Lorente, G.; Rocha-Martin, J.; et al. Biocatalyst Engineering of Thermomyces Lanuginosus Lipase Adsorbed on Hydrophobic Supports: Modulation of Enzyme Properties for Ethanolysis of Oil in Solvent-Free Systems. J. Biotechnol. 2019, 289, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Arana-Peña, S.; Lokha, Y.; Fernández-Lafuente, R. Immobilization of Eversa Lipase on Octyl Agarose Beads and Preliminary Characterization of Stability and Activity Features. Catalysts 2018, 8, 511. [Google Scholar] [CrossRef] [Green Version]
- Mnasri, T.; Ergan, F.; Herault, J.; Pencreac’h, G. Lipase-Catalyzed Synthesis of Oleoyl-Lysophosphatidylcholine by Direct Esterification in Solvent-Free Medium without Water Removal. J. Oleo Sci. 2017, 66, 1009–1016. [Google Scholar] [CrossRef] [Green Version]
- Urrutia, P.; Arrieta, R.; Alvarez, L.; Cardenas, C.; Mesa, M.; Wilson, L. Immobilization of Lipases in Hydrophobic Chitosan for Selective Hydrolysis of Fish Oil: The Impact of Support Functionalization on Lipase Activity, Selectivity and Stability. Int. J. Biol. Macromol. 2018, 108, 674–686. [Google Scholar] [CrossRef] [PubMed]
- Bastida, A.; Sabuquillo, P.; Armisen, P.; Fernandez-Lafuente, R.; Huguet, J.; Guisan, J. A Single Step Purification, Immobilization, and Hyperactivation of Lipases via Interfacial Adsorption on Strongly Hydrophobic Supports. Biotechnol. Bioeng. 1998, 58, 486–493. [Google Scholar] [CrossRef]
- Fernandez-Lorente, G.; Rocha-Martín, J.; Guisan, J.M. Immobilization of Lipases by Adsorption on Hydrophobic Supports: Modulation of Enzyme Properties in Biotransformations in Anhydrous Media. In Immobilization of Enzymes and Cells; Guisan, J.M., Bolivar, J.M., López-Gallego, F., Rocha-Martín, J., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2020; Volume 2100, pp. 143–158. ISBN 978-1-07-160214-0. [Google Scholar]
- Marty, A.; Dossat, V.; Condoret, J.-S. phane Continuous Operation of Lipase-Catalyzed Reactions in Nonaqueous Solvents: Influence of the Production of Hydrophilic Compounds. Biotechnol. Bioeng. 1997, 56, 6. [Google Scholar] [CrossRef]
- Martins, A.B.; Friedrich, J.L.R.; Cavalheiro, J.C.; Garcia-Galan, C.; Barbosa, O.; Ayub, M.A.Z.; Fernandez-Lafuente, R.; Rodrigues, R.C. Improved Production of Butyl Butyrate with Lipase from Thermomyces Lanuginosus Immobilized on Styrene–Divinylbenzene Beads. Bioresour. Technol. 2013, 134, 417–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, R.C.; Virgen-Ortíz, J.J.; dos Santos, J.C.S.; Berenguer-Murcia, Á.; Alcantara, A.R.; Barbosa, O.; Ortiz, C.; Fernandez-Lafuente, R. Immobilization of Lipases on Hydrophobic Supports: Immobilization Mechanism, Advantages, Problems and Solutions. Biotechnol. Adv. 2019, 37, 746–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamad, N.R.; Marzuki, N.H.C.; Buang, N.A.; Huyop, F.; Wahab, R.A. An Overview of Technologies for Immobilization of Enzymes and Surface Analysis Techniques for Immobilized Enzymes. Biotechnol. Biotechnol. Equip. 2015, 29, 205–220. [Google Scholar] [CrossRef]
- Mokhtar, N.F.; Abd. Rahman, R.N.Z.R.; Muhd Noor, N.D.; Mohd Shariff, F.; Mohamad Ali, M.S. The Immobilization of Lipases on Porous Support by Adsorption and Hydrophobic Interaction Method. Catalysts 2020, 10, 744. [Google Scholar] [CrossRef]
- Virto, C.; Svensson, I.; Adlercreutz, P. Enzymatic Synthesis of Lysophosphatidic Acid and Phosphatidic Acid. Enzyme Microb. Technol. 1999, 24, 651–658. [Google Scholar] [CrossRef]
- Boudrant, J.; Woodley, J.M.; Fernandez-Lafuente, R. Parameters Necessary to Define an Immobilized Enzyme Preparation. Process Biochem. 2020, 90, 66–80. [Google Scholar] [CrossRef]
- Guauque Torres, M.; Foresti, M.; Ferreira, M. Cross-Linked Enzyme Aggregates (CLEAs) of Selected Lipases: A Procedure for the Proper Calculation of Their Recovered Activity. AMB Express 2013, 3, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alnoch, R.C.; Alves dos Santos, L.; Marques de Almeida, J.; Krieger, N.; Mateo, C. Recent Trends in Biomaterials for Immobilization of Lipases for Application in Non-Conventional Media. Catalysts 2020, 10, 697. [Google Scholar] [CrossRef]
- Wilson, L.; Palomo, J.M.; Fernández-Lorente, G.; Illanes, A.; Guisán, J.M.; Fernández-Lafuente, R. Effect of Lipase–Lipase Interactions in the Activity, Stability and Specificity of a Lipase from Alcaligenes sp. Enzyme Microb. Technol. 2006, 39, 259–264. [Google Scholar] [CrossRef]
- Bresolin, D.; Estrella, A.S.; da Silva, J.R.P.; Valério, A.; Sayer, C.; de Araújo, P.H.H.; de Oliveira, D. Synthesis of a Green Polyurethane Foam from a Biopolyol Obtained by Enzymatic Glycerolysis and Its Use for Immobilization of Lipase NS-40116. Bioprocess Biosyst. Eng. 2019, 42, 213–222. [Google Scholar] [CrossRef]
- Shuai, W.; Das, R.K.; Naghdi, M.; Brar, S.K.; Verma, M. A Review on the Important Aspects of Lipase Immobilization on Nanomaterials: Lipase Immobilization on Nanomaterials. Biotechnol. Appl. Biochem. 2017, 64, 496–508. [Google Scholar] [CrossRef]
- Martínez-Sanchez, J.A.; Arana-Peña, S.; Carballares, D.; Yates, M.; Otero, C.; Fernandez-Lafuente, R. Immobilized Biocatalysts of Eversa® Transform 2.0 and Lipase from Thermomyces Lanuginosus: Comparison of Some Properties and Performance in Biodiesel Production. Catalysts 2020, 10, 738. [Google Scholar] [CrossRef]
- Tacias-Pascacio, V.G.; Peirce, S.; Torrestiana-Sanchez, B.; Yates, M.; Rosales-Quintero, A.; Virgen-Ortíz, J.J.; Fernandez-Lafuente, R. Evaluation of Different Commercial Hydrophobic Supports for the Immobilization of Lipases: Tuning Their Stability, Activity and Specificity. RSC Adv. 2016, 6, 100281–100294. [Google Scholar] [CrossRef]
- Anand, A.; Gnanasekaran, P.; Allgeier, A.M.; Weatherley, L.R. Study and Deployment of Methacrylate-Based Polymer Resins for Immobilized Lipase Catalyzed Triglyceride Hydrolysis. Food Bioprod. Process 2020, 123, 164–176. [Google Scholar] [CrossRef]
- Hanefeld, U.; Gardossi, L.; Magner, E. Understanding Enzyme Immobilisation. Chem. Soc. Rev. 2009, 38, 453–468. [Google Scholar] [CrossRef]
- Rehm, F.; Chen, S.; Rehm, B. Enzyme Engineering for In Situ Immobilization. Molecules 2016, 21, 1370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, R.C.; Ortiz, C.; Berenguer-Murcia, Á.; Torres, R.; Fernández-Lafuente, R. Modifying Enzyme Activity and Selectivity by Immobilization. Chem Soc Rev 2013, 42, 6290–6307. [Google Scholar] [CrossRef]
- Santiago, M.; Strobel, S. Thin Layer Chromatography. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 2013; Volume 533, pp. 303–324. ISBN 978-0-12-420067-8. [Google Scholar]
- Mangiagalli, M.; Carvalho, H.; Natalello, A.; Ferrario, V.; Pennati, M.L.; Barbiroli, A.; Lotti, M.; Pleiss, J.; Brocca, S. Diverse Effects of Aqueous Polar Co-Solvents on Candida Antarctica Lipase B. Int. J. Biol. Macromol. 2020, 150, 930–940. [Google Scholar] [CrossRef]
- Lotti, M.; Pleiss, J.; Valero, F.; Ferrer, P. Enzymatic Production of Biodiesel: Strategies to Overcome Methanol Inactivation. Biotechnol. J. 2018, 13, 1700155. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Moreno-Pérez, S.; Guisan, J.M.; Fernandez-Lorente, G. Selective Ethanolysis of Fish Oil Catalyzed by Immobilized Lipases. J. Am. Oil Chem. Soc. 2014, 91, 63–69. [Google Scholar] [CrossRef]
- Pereira, M.; Velasco-Lozano, S.; Moreno-Perez, S.; Polizeli, A.; Heinen, P.; Facchini, F.; Vici, A.; Cereia, M.; Pessela, B.; Fernandez-Lorente, G.; et al. Different Covalent Immobilizations Modulate Lipase Activities of Hypocrea Pseudokoningii. Molecules 2017, 22, 1448. [Google Scholar] [CrossRef] [PubMed]
Derivative Cod. | Support | Matrix | Group | Particle Size (μm) | Buffer | Enzyme Loading (mg/g Support) | Immob. Yield (%) |
---|---|---|---|---|---|---|---|
ADS3 | IB-ADS-3 | Methacrylate | Octadecyl | 150–300 | 100 mM sodium phosphate pH 7.0 | 160.80 | 80.40 |
Product | Initial Reaction Rate (v) (mg/mL.h) | |
---|---|---|
0% Butanone | 30% Butanone | |
Oleoyl-LPC | 3.30 | 4.11 |
Dioleoyl-PC | 0.26 | 0.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Facin, B.R.; Quinto, E.G.; Valerio, A.; Oliveira, D.d.; Oliveira, J.V.; Fernandez-Lorente, G. Strategies for the Immobilization of Eversa® Transform 2.0 Lipase and Application for Phospholipid Synthesis. Catalysts 2021, 11, 1236. https://doi.org/10.3390/catal11101236
Facin BR, Quinto EG, Valerio A, Oliveira Dd, Oliveira JV, Fernandez-Lorente G. Strategies for the Immobilization of Eversa® Transform 2.0 Lipase and Application for Phospholipid Synthesis. Catalysts. 2021; 11(10):1236. https://doi.org/10.3390/catal11101236
Chicago/Turabian StyleFacin, Bruno R., Ernestina G. Quinto, Alexsandra Valerio, Débora de Oliveira, Jose V. Oliveira, and Gloria Fernandez-Lorente. 2021. "Strategies for the Immobilization of Eversa® Transform 2.0 Lipase and Application for Phospholipid Synthesis" Catalysts 11, no. 10: 1236. https://doi.org/10.3390/catal11101236
APA StyleFacin, B. R., Quinto, E. G., Valerio, A., Oliveira, D. d., Oliveira, J. V., & Fernandez-Lorente, G. (2021). Strategies for the Immobilization of Eversa® Transform 2.0 Lipase and Application for Phospholipid Synthesis. Catalysts, 11(10), 1236. https://doi.org/10.3390/catal11101236