A Review of the Use of Semiconductors as Catalysts in the Photocatalytic Inactivation of Microorganisms
Abstract
:1. Introduction
- (i)
- The different water disinfection methods.
- (ii)
- Semiconductors photocatalytic mechanism.
- (iii)
- Photocatalytic mechanisms for inactivation of various microorganisms in water and the limitations facing the usage of TiO2 as photocatalyst.
- (iv)
- Recent strategies for enhancing the photocatalytic efficiency for water disinfection.
2. Fundamental Mechanism for Photocatalytic Processes
3. Photocatalytic Water Disinfection
4. Photocatalysts Used in Water Disinfection
5. Titanium Dioxide as a Photocatalyst
6. Strategies to Improve the Photocatalytic Activity of Titanium Dioxide
7. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davis, M.L. Water and Wastewater Engineering; McGraw-Hill: New York, NY, USA, 2003; ISBN 9780071713856. [Google Scholar]
- Alley, E.R. Water Quality Control Handbook; McGraw-Hill: New York, NY, USA, 2007; Volume 1, ISBN 0071508708. [Google Scholar]
- Bourkeb, K.; Baaloudj, O. Facile electrodeposition of ZnO on graphitic substrate for photocatalytic application: Degradation of antibiotic in a continuous stirred-tank reactor. J. Solid State Electrochem. 2021. [Google Scholar] [CrossRef]
- Asadi-Ghalhari, M.; Mostafaloo, R.; Ghafouri, N.; Kishipour, A.; Usei, S.; Baaloudj, O. Removal of Cefixime from aqueous solutions via proxy electrocoagulation: Modeling and optimization by response surface methodology. React. Kinet. Mech. Catal. 2021, 134, 459–471. [Google Scholar] [CrossRef]
- Baaloudj, O.; Nasrallah, N.; Kebir, M.; Khezami, L.; Amrane, A.; Assadi, A.A. A comparative study of ceramic nanoparticles synthesized for antibiotic removal: Catalysis characterization and photocatalytic performance modeling. Environ. Sci. Pollut. Res. 2020, 28, 13900–13912. [Google Scholar] [CrossRef]
- German Advisory Council on Global Change. The freshwater crisis: Basic elements. In Ways towards Sustainable Management of Freshwater Resources: Annual Report 1997; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Khan, S.T.; Malik, A. Engineered nanomaterials for water decontamination and purification: From lab to products. J. Hazard. Mater. 2019, 363, 295–308. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, M. Contesting Water Rights; Palgrave Macmillan: New York, NY, USA, 2018; ISBN 9783319746265. [Google Scholar]
- Benrighi, Y.; Nasrallah, N.; Chaabane, T.; Sivasankar, V.; Darchen, A.; Baaloudj, O. Photocatalytic performances of ZnCr2O4 nanoparticles for cephalosporins removal: Structural, optical and electrochemical properties. Opt. Mater. 2021, 115, 111035. [Google Scholar] [CrossRef]
- Baaloudj, O.; Nasrallah, N.; Kebir, M.; Guedioura, B.; Amrane, A.; Nguyen-Tri, P.; Nanda, S.; Assadi, A.A. Artificial neural network modeling of cefixime photodegradation by synthesized CoBi2O4 nanoparticles. Environ. Sci. Pollut. Res. 2020, 28, 15436–15452. [Google Scholar] [CrossRef]
- Landrigan, P.J.; Fuller, R.; Acosta, N.J.R.; Adeyi, O.; Arnold, R.; Basu, N.; Baldé, A.B.; Bertollini, R.; Bose-O’Reilly, S.; Boufford, J.I.; et al. The Lancet Commission on pollution and health. Lancet 2018, 391, 462–512. [Google Scholar] [CrossRef] [Green Version]
- Mecha, A.C.; Onyango, M.S.; Ochieng, A.; Momba, M.N.B. UV and solar photocatalytic disinfection of municipal wastewater: Inactivation, reactivation and regrowth of bacterial pathogens. Int. J. Environ. Sci. Technol. 2019, 16, 3687–3696. [Google Scholar] [CrossRef]
- Assadi, I.; Guesmi, A.; Baaloudj, O.; Zeghioud, H.; Elfalleh, W.; Benhammadi, N. Review on inactivation of airborne viruses using non—Thermal plasma technologies: From MS2 to coronavirus. Environ. Sci. Pollut. Res. 2021, 2021, 1–13. [Google Scholar] [CrossRef]
- Wang, J.; Shen, J.; Ye, D.; Yan, X.; Zhang, Y.; Yang, W.; Li, X.; Wang, J.; Zhang, L.; Pan, L. Disinfection technology of hospital wastes and wastewater: Suggestions for disinfection strategy during coronavirus Disease 2019 (COVID-19) pandemic in China. Environ. Pollut. 2020, 262, 114665. [Google Scholar] [CrossRef]
- Wang, X.W.; Li, J.S.; Jin, M.; Zhen, B.; Kong, Q.X.; Song, N.; Xiao, W.J.; Yin, J.; Wei, W.; Wang, G.J.; et al. Study on the resistance of severe acute respiratory syndrome-associated coronavirus. J. Virol. Methods 2005, 126, 171–177. [Google Scholar] [CrossRef]
- An, T.; Zhao, H.J.; Wong, P.K. Advances in Photocatalytic Disinfection; Springer: Berlin, Germany, 2017; ISBN 978-3-662-53494-6. [Google Scholar]
- Zhang, Z.; Gamage, J. Applications of photocatalytic disinfection. Int. J. Photoenergy 2010, 2010, 764870. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Li, Y.; Shuai, D.; Shen, Y.; Wang, D. Progress and challenges in photocatalytic disinfection of waterborne Viruses: A review to fill current knowledge gaps. Chem. Eng. J. 2019, 355, 399–415. [Google Scholar] [CrossRef]
- Akerdi, A.G.; Bahrami, S.H. Application of heterogeneous nano-semiconductors for photocatalytic advanced oxidation of organic compounds: A review. J. Environ. Chem. Eng. 2019, 7, 103283. [Google Scholar] [CrossRef]
- Matsunaga, T.; Tomoda, R.; Nakajima, T.; Wake, H. Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol. Lett. 1985, 29, 211–214. [Google Scholar] [CrossRef]
- Deng, Y.; Li, Z.; Tang, R.; Ouyang, K.; Liao, C.; Fang, Y.; Ding, C.; Yang, L.; Su, L.; Gong, D. What will happen when microorganisms “meet” photocatalysts and photocatalysis? Environ. Sci. Nano 2020, 7, 702–723. [Google Scholar] [CrossRef]
- Ibhadon, A.O.; Fitzpatrick, P. Heterogeneous photocatalysis: Recent advances and applications. Catalysts 2013, 3, 189–218. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.T.; Jing, H.; Yang, T.; Zubia, E.; Goos, A.G.; Bernal, R.A.; Botez, C.E.; Narayan, M.; Chan, C.K.; Noveron, J.C. Fullerene stabilized gold nanoparticles supported on titanium dioxide for enhanced photocatalytic degradation of methyl orange and catalytic reduction of 4-nitrophenol. J. Environ. Chem. Eng. 2018, 6, 3827–3836. [Google Scholar] [CrossRef]
- Taheri, F.; Amini, A.; Kouhsari, E.; Kiaei, M.R.; Movaseghi, R.; Niknejad, F. Photocatalytic inactivation of microorganisms in water under ultraviolet C irradiation and TiO2. Rev. Med. Microbiol. 2020, 31, 79–85. [Google Scholar] [CrossRef]
- Kenfoud, H.; Nasrallah, N.; Baaloudj, O.; Meziani, D.; Chaabane, T.; Trari, M. Photocatalytic reduction of Cr(VI) onto the spinel CaFe2O4 nanoparticles. Optik 2020, 223, 165610. [Google Scholar] [CrossRef]
- Kenfoud, H.; Baaloudj, O.; Nasrallah, N.; Bagtache, R. Structural and electrochemical characterizations of Bi 12 CoO 20 sillenite crystals: Degradation and reduction of organic and inorganic pollutants. J. Mater. Sci. Mater. Electron. 2021, 32, 16411–16420. [Google Scholar] [CrossRef]
- Baaloudj, O.; Nasrallah, N.; Kenfoud, H.; Algethami, F.; Modwi, A.; Guesmi, A.; Assadi, A.A.; Khezami, L. Application of Bi12ZnO20 Sillenite as an Efficient Photocatalyst for Wastewater Treatment: Removal of Both Organic and Inorganic Compounds. Materials 2021, 14, 5409. [Google Scholar] [CrossRef]
- Baaloudj, O.; Nasrallah, N.; Assadi, A.A. Facile synthesis, structural and optical characterizations of Bi12ZnO20 sillenite crystals: Application for Cefuroxime removal from wastewater. Mater. Lett. 2021, 304, 130658. [Google Scholar] [CrossRef]
- Kenfoud, H.; Nasrallah, N.; Baaloudj, O.; Derridj, F.; Trari, M. Enhanced photocatalytic reduction of Cr(VI) by the novel hetero-system BaFe2O4/SnO2. J. Phys. Chem. Solids 2022, 160, 110315. [Google Scholar] [CrossRef]
- Brahimi, B.; Mekatel, E.; Mellal, M.; Baaloudj, O.; Brahimi, R.; Hemmi, A.; Trari, M.; Belmedani, M. Enhanced photodegradation of acid orange 61 by the novel hetero-junction CoFe2O4/AgCl. Opt. Mater. 2021, 121, 111576. [Google Scholar] [CrossRef]
- Baaloudj, O.; Assadi, A.A.; Azizi, M.; Kenfoud, H.; Trari, M.; Amrane, A.; Assadi, A.A.; Nasrallah, N. Synthesis and Characterization of ZnBi2O4 Nanoparticles: Photocatalytic Performance for Antibiotic Removal under Different Light Sources. Appl. Sci. 2021, 11, 3975. [Google Scholar] [CrossRef]
- Byrne, C.; Subramanian, G.; Pillai, S.C. Recent advances in photocatalysis for environmental applications. J. Environ. Chem. Eng. 2018, 6, 3531–3555. [Google Scholar] [CrossRef]
- Chauhan, A.; Rastogi, M.; Scheier, P.; Bowen, C.; Kumar, R.V.; Vaish, R. Janus nanostructures for heterogeneous photocatalysis. Appl. Phys. Rev. 2018, 5, 041111. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Wang, K.; Lou, L. Photodegradation of dye pollutants on silica gel supported TiO2 particles under visible light irradiation. J. Photochem. Photobiol. A Chem. 2004, 163, 281–287. [Google Scholar] [CrossRef]
- Chiron, S.; Fernandez-Alba, A.; Rodriguez, A.; Garcia-Calvo, E. Pesticide chemical oxidation: State-of-the-art. Water Res. 2000, 34, 366–377. [Google Scholar] [CrossRef]
- Muniandy, L.; Adam, F.; Mohamed, A.R.; Ng, E.P.; Rahman, N.R.A. Carbon modified anatase TiO2 for the rapid photo degradation of methylene blue: A comparative study. Surf. Interfaces 2016, 5, 19–29. [Google Scholar] [CrossRef]
- Ren, H.; Koshy, P.; Chen, W.F.; Qi, S.; Sorrell, C.C. Photocatalytic materials and technologies for air purification. J. Hazard. Mater. 2017, 325, 340–366. [Google Scholar] [CrossRef]
- Ray, S.K.; Dhakal, D.; Regmi, C.; Yamaguchui, T.; Lee, S.W. Inactivation of Staphylococcus aureus in visible light by morphology tuned α-NiMoO4. J. Photochem. Photobiol. A Chem. 2018, 350, 59–68. [Google Scholar] [CrossRef]
- Thandu, M.; Comuzzi, C.; Goi, D. Phototreatment of water by organic photosensitizers and comparison with inorganic semiconductors. Int. J. Photoenergy 2015, 2015, 10–12. [Google Scholar] [CrossRef] [Green Version]
- Baaloudj, O.; Assadi, I.; Nasrallah, N.; El, A.; Khezami, L. Simultaneous removal of antibiotics and inactivation of antibiotic-resistant bacteria by photocatalysis: A review. J. Water Process Eng. 2021, 42, 102089. [Google Scholar] [CrossRef]
- Bono, N.; Ponti, F.; Punta, C.; Candiani, G. Effect of UV irradiation and TiO2-photocatalysis on airborne bacteria and viruses: An overview. Materials 2021, 14, 1075. [Google Scholar] [CrossRef] [PubMed]
- De Vietro, N.; Tursi, A.; Beneduci, A.; Chidichimo, F.; Milella, A.; Fracassi, F.; Chatzisymeon, E.; Chidichimo, G. Photocatalytic inactivation of Escherichia coli bacteria in water using low pressure plasma deposited TiO2 cellulose fabric. Photochem. Photobiol. Sci. 2019, 18, 2248–2258. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Wu, L.C.; Chen, H.Y.; Chung, Y.C. Inactivation of staphylococcus aureus and escherichia coli in water using photocatalysis with fixed TiO2. Water. Air. Soil Pollut. 2010, 212, 231–238. [Google Scholar] [CrossRef]
- Fiorentino, A.; Rizzo, L.; Guilloteau, H.; Bellanger, X.; Merlin, C. Comparing TiO2 photocatalysis and UV-C radiation for inactivation and mutant formation of Salmonella typhimurium TA102. Environ. Sci. Pollut. Res. 2017, 24, 1871–1879. [Google Scholar] [CrossRef]
- Kőrösi, L.; Pertics, B.; Schneider, G.; Bognár, B.; Kovács, J.; Meynen, V.; Scarpellini, A.; Pasquale, L.; Prato, M. Photocatalytic inactivation of plant pathogenic bacteria using TiO2 nanoparticles prepared hydrothermally. Nanomaterials 2020, 10, 1730. [Google Scholar] [CrossRef]
- Hwangbo, M.; Claycomb, E.C.; Liu, Y.; Alivio, T.E.G.; Banerjee, S.; Chu, K.H. Effectiveness of zinc oxide-assisted photocatalysis for concerned constituents in reclaimed wastewater: 1,4-Dioxane, trihalomethanes, antibiotics, antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs). Sci. Total Environ. 2019, 649, 1189–1197. [Google Scholar] [CrossRef] [PubMed]
- Yazdanbakhsh, A.; Rahmani, K.; Rahmani, H.; Sarafraz, M.; Tahmasebizadeh, M.; Rahmani, A. Inactivation of Fecal coliforms during solar and photocatalytic disinfection by zinc oxide (ZnO) nanoparticles in compound parabolic concentrators (CPCs). Asian J. Chem. 2016, 27, 4120–4124. [Google Scholar] [CrossRef]
- Seven, O.; Dindar, B.; Aydemir, S.; Metin, D.; Ozinel, M.A.; Icli, S. Solar photocalytic disinfection of a group of bacteria and fungi aqueous suspensions with TiO2, ZnO and sahara desert dust. J. Photochem. Photobiol. A Chem. 2004, 165, 103–107. [Google Scholar] [CrossRef]
- Das, S.; Misra, A.J.; Habeeb Rahman, A.P.; Das, B.; Jayabalan, R.; Tamhankar, A.J.; Mishra, A.; Lundborg, C.S.; Tripathy, S.K. Ag@SnO2@ZnO core-shell nanocomposites assisted solar-photocatalysis downregulates multidrug resistance in Bacillus sp.: A catalytic approach to impede antibiotic resistance. Appl. Catal. B Environ. 2019, 259, 118065. [Google Scholar] [CrossRef]
- Karbasi, M.; Karimzadeh, F.; Raeissi, K.; Rtimi, S.; Kiwi, J.; Giannakis, S.; Pulgarin, C. Insights into the photocatalytic bacterial inactivation by flower-like Bi2WO6 under solar or visible light, through in situ monitoring and determination of reactive oxygen species (ROS). Water 2020, 12, 1099. [Google Scholar] [CrossRef]
- Mallikarjuna, K.; Nasif, O.; Alharbi, S.A.; Chinni, S.V.; Reddy, L.V.; Reddy, M.R.V.; Sreeramanan, S. Phytogenic synthesis of Pd-Ag/rGO nanostructures using stevia leaf extract for photocatalytic H2 production and antibacterial studies. Biomolecules 2021, 11, 190. [Google Scholar] [CrossRef]
- Jaffari, Z.H.; Lam, S.M.; Sin, J.C.; Zeng, H.; Mohamed, A.R. Magnetically recoverable Pd-loaded BiFeO3 microcomposite with enhanced visible light photocatalytic performance for pollutant, bacterial and fungal elimination. Sep. Purif. Technol. 2020, 236, 116195. [Google Scholar] [CrossRef]
- Sjogren, J.C.; Sierka, R.A. Inactivation of phage MS2 by iron-aided titanium dioxide photocatalysis. Appl. Environ. Microbiol. 1994, 60, 344–347. [Google Scholar] [CrossRef] [Green Version]
- Nakano, R.; Ishiguro, H.; Yao, Y.; Kajioka, J.; Fujishima, A.; Sunada, K. Photocatalytic inactivation of in fluenza virus by titanium dioxide thin film. Photochem. Photobiol. Sci. 2012, 11, 1293–1298. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, Q.; Chen, L.; Wang, J.; Cheng, R. Photocatalytic membrane reactor (PMR) for virus removal in water: Performance and mechanisms Photocatalytic membrane reactor (PMR) for virus removal in water: Performance and mechanisms. Chem. Eng. J. 2015, 277, 124–129. [Google Scholar] [CrossRef]
- Gerrity, D.; Ryu, H.; Crittenden, J.; Abbaszadegan, M. Photocatalytic inactivation of viruses using titanium dioxide nanoparticles and low-pressure UV light. J. Environ. Sci. Heal.-Part A Toxic/Hazardous Subst. Environ. Eng. 2008, 43, 1261–1270. [Google Scholar] [CrossRef] [PubMed]
- Zan, L. Photocatalysis effect of nanometer TiO2 and TiO2 -coated ceramic plate on Hepatitis B virus. J. Photochem. Photobiol. B Biol. 2007, 86, 165–169. [Google Scholar] [CrossRef]
- Kim, S.; Shahbaz, H.M.; Park, D.; Chun, S.; Lee, W.; Oh, J.; Lee, D.; Park, J. A combined treatment of UV-assisted TiO2 photocatalysis and high hydrostatic pressure to inactivate internalized murine norovirus. Innov. Food Sci. Emerg. Technol. 2017, 39, 188–196. [Google Scholar] [CrossRef]
- Maneekarn, N. Photocatalytic Inactivation of Diarrheal Viruses by Visible-Light-Catalytic Titanium Dioxide. Clin. Lab. 2007, 53, 2007–2008. [Google Scholar]
- Ghezzi, S.; Pagani, I.; Poli, G.; Perboni, S.; Vicenzi, E. Rapid Inactivation of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by Tungsten Trioxide-Based (WO3) Photocatalysis. bioRxiv 2020, 2, 1–12. [Google Scholar]
- Takehara, K.; Yamazaki, K.; Miyazaki, M.; Yamada, Y.; Ruenphet, S.; Jahangir, A.; Shoham, D.; Okamura, M.; Nakamura, M. Inactivation of avian influenza virus H1N1 by photocatalyst under visible light irradiation. Virus Res. 2010, 151, 102–103. [Google Scholar] [CrossRef]
- Hu, X.; Hu, C.; Peng, T.; Zhou, X.; Qu, J. Plasmon-induced inactivation of enteric pathogenic microorganisms with Ag-AgI/Al2O3 under visible-light irradiation. Environ. Sci. Technol. 2010, 44, 7058–7062. [Google Scholar] [CrossRef]
- Ornstein, A.J.; Ozdemir, R.O.K.; Boehme, A.; Nouar, F. SARS-CoV-2 Inactivation Potential of Metal Organic Framework Induced Photocatalysis. medRxiv 2020, 1–8. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, M.; Li, Y.; Shuai, D. Visible-light-driven Photocatalytic Disinfection of Human Adenovirus by a Novel Heterostructure of Oxygen-doped Graphitic Carbon Nitride and Hydrothermal Carbonation Carbon Applied Catalysis B: Environmental Visible-light-driven photocatalytic disinfecti. Appl. Catal. B Environ. 2019, 248, 11–21. [Google Scholar] [CrossRef]
- Lee, K.; Yoon, H.; Ahn, C.; Park, J.; Jeon, S. Strategies to improve the photocatalytic activity of TiO2: 3D nanostructuring and heterostructuring with graphitic carbon nanomaterials. Nanoscale 2019, 11, 7025–7040. [Google Scholar] [CrossRef]
- Patil, S.B.; Basavarajappa, P.S.; Ganganagappa, N.; Jyothi, M.S.; Raghu, A.V.; Reddy, K.R. Recent advances in non-metals-doped TiO2 nanostructured photocatalysts for visible-light driven hydrogen production, CO2 reduction and air purification. Int. J. Hydrogen Energy 2019, 44, 13022–13039. [Google Scholar] [CrossRef]
- Cao, S.; Low, J.; Yu, J.; Jaroniec, M. Polymeric Photocatalysts Based on Graphitic Carbon Nitride. Adv. Mater. 2015, 27, 2150–2176. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-González, V.; Obregón, S.; Patrón-Soberano, O.A.; Terashima, C.; Fujishima, A. An approach to the photocatalytic mechanism in the TiO2-nanomaterials microorganism interface for the control of infectious processes. Appl. Catal. B Environ. 2020, 270, 118853. [Google Scholar] [CrossRef]
- Nouri, L.; Hemidouche, S.; Boudjemaa, A.; Kaouah, F.; Sadaoui, Z.; Bachari, K. Elaboration and characterization of photobiocomposite beads, based on titanium (IV) oxide and sodium alginate biopolymer, for basic blue 41 adsorption/photocatalytic degradation. Int. J. Biol. Macromol. 2020, 151, 66–84. [Google Scholar] [CrossRef] [PubMed]
- Khataee, A.; Mansoori, G. Properties of Titanium Dioxide and Its Nanoparticles. In Nanostructured Titanium Dioxide Materials; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2011; pp. 5–11. [Google Scholar]
- Alotaibi, A.; Sathasivam, S.; Williamson, B.; Kafizas, A.; Sotelo-Vazquez, C.; Taylor, A.; Scanlon, D.; Parkin, I. Chemical Vapor Deposition of Photocatalytically Active Pure Brookite TiO2 Thin Films. Chem. Mater. 2018, 30, 1353–1361. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.M.; Tripathi, M. A review of TiO2 nanoparticles. Chin. Sci. Bull. 2011, 56, 1639–1657. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhou, P.; Liu, J.; Yu, J. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys. Chem. Chem. Phys. 2014, 16, 20382–20386. [Google Scholar] [CrossRef]
- El Nazer, H.A.; Salman, S.A.; Elnazer, A.A. Irrigation water quality assessment and a new approach to its treatment using photocatalytic technique: Case study yaakob village, sw sohag, Egypt. J. Mater. Environ. Sci. 2017, 8, 310–317. [Google Scholar]
- Petroff, J.T.; Nguyen, A.H.; Porter, A.J.; Morales, F.D.; Kennedy, M.P.; Weinstein, D.; El Nazer, H.; McCulla, R.D. Enhanced photocatalytic dehalogenation of aryl halides by combined poly-p-phenylene (PPP) and TiO2 photocatalysts. J. Photochem. Photobiol. A Chem. 2017, 335, 149–154. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Pelaez, M.; Duan, X.; Deng, H.; O’Shea, K.; Fatta-Kassinos, D.; Dionysiou, D.D. Role of pH on photolytic and photocatalytic degradation of antibiotic oxytetracycline in aqueous solution under visible/solar light: Kinetics and mechanism studies. Appl. Catal. B Environ. 2013, 134–135, 83–92. [Google Scholar] [CrossRef]
- Liu, Y.; Ao, Y.; Wang, C.; Wang, P. Enhanced photoelectrocatalytic performance of TiO2 nanorod array under visible light irradiation: Synergistic effect of doping, heterojunction construction and cocatalyst deposition. Inorg. Chem. Commun. 2019, 108, 107521. [Google Scholar] [CrossRef]
- Fagan, R.; McCormack, D.E.; Dionysiou, D.D.; Pillai, S.C. A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern. Mater. Sci. Semicond. Process. 2016, 42, 2–14. [Google Scholar] [CrossRef] [Green Version]
- Ito, Y.; Matsuda, K.; Kanemitsu, Y. Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surfaces. Phys. Rev. B-Condens. Matter Mater. Phys. 2007, 75, 033309. [Google Scholar] [CrossRef] [Green Version]
- Nazir, M.; Aziz, M.I.; Ali, I.; Basit, M.A. Revealing antimicrobial and contrasting photocatalytic behavior of metal chalcogenide deposited P25-TiO2 nanoparticles. Photonics Nanostructures-Fundam. Appl. 2019, 36, 100721. [Google Scholar] [CrossRef]
- Yang, H.; Long, Y.; Li, H.; Pan, S.; Liu, H.; Yang, J.; Hu, X. Carbon dots synthesized by hydrothermal process via sodium citrate and NH4HCO3 for sensitive detection of temperature and sunset yellow. J. Colloid Interface Sci. 2018, 516, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Aguedach, A.; Brosillon, S.; Morvan, J.; Lhadi, E.K. Photocatalytic degradation of azo-dyes reactive black 5 and reactive yellow 145 in water over a newly deposited titanium dioxide. Appl. Catal. B Environ. 2005, 57, 55–62. [Google Scholar] [CrossRef]
- Monga, D.; Basu, S. Enhanced photocatalytic degradation of industrial dye by g-C3N4/TiO2 nanocomposite: Role of shape of TiO2. Adv. Powder Technol. 2019, 30, 1089–1098. [Google Scholar] [CrossRef]
- Omidvar, H.; Sajjadnejad, M.; Mirzaei, K.; Sadeghian, Z.; Shirazi, S.; Mozafari, A.; Azadmehr, A. Characterisation of CNTs/TiO2 nano composites and investigation of composite’s photo reactivity. Int. J. Mater. Prod. Technol. 2016, 52, 333–346. [Google Scholar] [CrossRef]
- Yang, H.M.; Park, S.J. Effect of incorporation of multiwalled carbon nanotubes on photodegradation efficiency of mesoporous anatase TiO2 spheres. Mater. Chem. Phys. 2017, 186, 261–270. [Google Scholar] [CrossRef]
- Alsharaeh, E.; Ahmed, F.; Arshi, N.; Alturki, M. Metal oxide nanophotocatalysts for water purification. In Renewable Energy Technologies for Water Desalination, 1st ed.; CRC Press: London, UK, 2017; pp. 57–72. [Google Scholar]
- Arun Vargees, J.; FelixMarudai, J.; Monica, K.; Panchamoorthy, G. Application of Nano-Photocatalysts for Degradation and Disinfection of Wastewater. J. Colloid Interface Sci. 2012, 366, 135–140. [Google Scholar] [CrossRef]
- Belver, C.; Bedia, J.; Gómez-Avilés, A.; Peñas-Garzón, M.; Rodriguez, J.J. Semiconductor Photocatalysis for Water Purification. Elsevier: New York, NY, USA, 2018; ISBN 9780128139271. [Google Scholar]
- Weiss, C.; Carriere, M.; Fusco, L.; Fusco, L.; Capua, I.; Regla-Nava, J.A.; Pasquali, M.; Pasquali, M.; Pasquali, M.; Scott, J.A.; et al. Toward Nanotechnology-Enabled Approaches against the COVID-19 Pandemic. ACS Nano 2020, 14, 6383–6406. [Google Scholar] [CrossRef] [PubMed]
- Sökmen, M.; Deǧerli, S.; Aslan, A. Photocatalytic disinfection of Giardia intestinalis and Acanthamoeba castellani cysts in water. Exp. Parasitol. 2008, 119, 44–48. [Google Scholar] [CrossRef]
- Zheng, X.; Shen, Z.-P.; Cheng, C.; Shi, L.; Cheng, R.; Yuan, D. hai Photocatalytic disinfection performance in virus and virus/bacteria system by Cu-TiO2 nanofibers under visible light. Environ. Pollut. 2018, 237, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Wadhwa, S.; Mathur, A.; Pendurthi, R.; Singhal, U.; Khanuja, M.; Roy, S.S. Titania-based porous nanocomposites for potential environmental applications. Bull. Mater. Sci. 2020, 43, 47. [Google Scholar] [CrossRef]
- Cheng, Y.W.; Chan, R.C.Y.; Wong, P.K. Disinfection of Legionella pneumophila by photocatalytic oxidation. Water Res. 2007, 41, 842–852. [Google Scholar] [CrossRef] [PubMed]
- Etacheri, V.; Michlits, G.; Seery, M.K.; Hinder, S.J.; Pillai, S.C. A highly efficient TiO2-xCx nano-heterojunction photocatalyst for visible light induced antibacterial applications. ACS Appl. Mater. Interfaces 2013, 5, 1663–1672. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Banhe, Z.; Wuchun, C.; Dongling, Y.; ARAI, J.; Xiyun, Y. The inactivation effect of photocatalytic titanium apatite filter on SARS virus. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Jin Zhan 2004, 31, 982–985. [Google Scholar]
- Brugnera, M.F.; Miyata, M.; Zocolo, G.J.; Fujimura Leite, C.Q.; Boldrin Zanoni, M.V. A photoelectrocatalytic process that disinfects water contaminated with Mycobacterium kansasii and Mycobacterium avium. Water Res. 2013, 47, 6596–6605. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Wang, Y.; Wu, S.; Chen, Y.; Zheng, X.; Zhang, N. One-pot synthesis of nitrogen-doped TiO2 with supported copper nanocrystalline for photocatalytic environment purification under household white led lamp. Molecules 2021, 26, 6221. [Google Scholar] [CrossRef]
- Riaz, N.; Fen, D.A.C.S.; Khan, M.S.; Naz, S.; Sarwar, R.; Farooq, U.; Bustam, M.A.; Batiha, G.E.S.; El Azab, I.H.; Uddin, J.; et al. Iron-zinc co-doped titania nanocomposite: Photocatalytic and photobiocidal potential in combination with molecular docking studies. Catalysts 2021, 11, 1112. [Google Scholar] [CrossRef]
- Koli, V.B.; Ke, S.-C.; Dodamani, A.G.; Deshmukh, S.P.; Kim, J.-S. Boron-Doped TiO2-CNT Nanocomposites with Improved Photocatalytic Efficiency toward Photodegradation of Toluene Gas and Photo-Inactivation of Escherichia coli. Catalysts 2020, 10, 632. [Google Scholar] [CrossRef]
- Schneider, G.; Schweitzer, B.; Steinbach, A.; Pertics, B.Z.; Cox, A.; Kőrösi, L. Antimicrobial Efficacy and Spectrum of Phosphorous-Fluorine Co-Doped TiO2 Nanoparticles on the Foodborne Pathogenic Bacteria Campylobacter jejuni, Salmonella Typhimurium, Enterohaemorrhagic E. coli, Yersinia enterocolitica, Shewanella putrefaciens, Listeria monocytogenes and Staphylococcus aureus. Foods 2021, 10, 1786. [Google Scholar] [CrossRef] [PubMed]
- Varnagiris, S.; Urbonavicius, M.; Sakalauskaite, S.; Demikyte, E.; Tuckute, S.; Lelis, M. Photocatalytic inactivation of salmonella typhimurium by floating carbon-doped TiO2 photocatalyst. Materials 2021, 14, 5681. [Google Scholar] [CrossRef]
- Sikong, L.; Kongreong, B.; Kantachote, D.; Sutthisripok, W. Inactivation of salmonella typhi using Fe3+ doped TiO2/3SnO2 photocatalytic powders and films. J. Nano Res. 2010, 12, 89–97. [Google Scholar] [CrossRef]
- Horovitz, I.; Avisar, D.; Luster, E.; Lozzi, L.; Luxbacher, T. MS2 bacteriophage inactivation using a N-doped TiO2-coated photocatalytic membrane reactor: Influence of water-quality parameters MS2 bacteriophage inactivation using a N-doped TiO2 -coated photocatalytic membrane reactor: Influence of water-quality. Chem. Eng. J. 2018, 354, 995–1006. [Google Scholar] [CrossRef]
- Daikoku, T.; Takemoto, M.; Yoshida, Y.; Okuda, T.; Takahashi, Y.; Ota, K.; Tokuoka, F.; Kawaguchi, A.T.; Shiraki, K. Decomposition of Organic Chemicals in the Air and Inactivation of Aerosol- Associated Influenza Infectivity by Photocatalysis. Aerosol Air Qual. Res. 2015, 15, 1469–1484. [Google Scholar] [CrossRef] [Green Version]
- Woo, E.; Lee, H.; Hee, J.; Ha, J. Science of the Total Environment Photocatalytic inactivation of viral particles of human norovirus by Cu-doped TiO2 non-woven fabric under UVA-LED wavelengths. Sci. Total Environ. 2020, 749, 141574. [Google Scholar] [CrossRef]
Catalyst | Target Bacteria | Operating Conditions | Inactivation Rate | Ref. |
---|---|---|---|---|
TiO2 | Escherichia coli | Catalyst dosage: 1.5 g/L; pH: 10; reaction time: 60 min; Initial bacterial cells:108 CFU/mL; Temperature: 32 °C; Irradiation: ultraviolet (UV) irradiation at 254 (UV254) | 100% | [42] |
Methicillin-resistant Staphylococcus aureus | Fixed TiO2; Reaction time: 10 min; Initial bacterial cells:107 CFU/mL; Temperature: 37 °C; Irradiation: ultraviolet (UV) | 98.0% | [43] | |
Salmonella typhimurium | Catalyst dosage: 100 mg/L; Reaction time: 45 min; Initial bacterial cells:109 CFU/mL; Temperature: 30 °C; Irradiation: ultraviolet (UV) | 100% | [44] | |
Erwinia amylovora, Xanthomonas arboricola pv. juglandis, Pseudomonas syringae pv. tomato and Allorhizobium vitis. | Catalyst dosage: 0.5 g/L; Reaction time: 30 min; Initial bacterial cells:108 CFU/mL; Temperature: 30 °C; Irradiation: ultraviolet (UV 15 W), | −5 log10, −4 log10, 100%, 100%, respectively | [45] | |
ZnO | Escherichia coli | Catalyst dosage: 1.5 g/L; pH: 5; reaction time: 180 min; Optical density: 1 | 94% | [46] |
Coliforms | ZnO film 12.2 mJ/cm2; Reaction time: 35 min; Initial bacterial cells:107 CFU/mL; Temperature: 82 °C; Turbidity 100 NTU; Irradiation: ultraviolet (UV) | 100% | [47] | |
TiO2 and ZnO | Saccharomyces cerevisiae, Candida albicans and Aspergillius niger | Catalyst Dose: 0.01 g/L, Reaction time: 120 min for strains of fungi, 40 min for other strains, Initial bacterial cells:105 CFU/mL, Temperature: 37 °C, Irradiation: ultraviolet (UV) | 100% | [48] |
Ag/SnO2/ZnO | Bacillus species | Catalyst dosage: 500 mg/L; Reaction time: 210 min; Initial bacterial cells:107 CFU/mL; Temperature: 37 °C | 100% | [49] |
Bi2WO6 | Escherichia coli | Catalyst dosage: 0.2 g/L; Initial bacterial cells: 2 × 106 CFU/mL and light intensity: 48 mW/cm2; Reaction time: 4 h; Irradiation: visible light. | 100% | [50] |
Pd-Ag/rGO | Escherichia coli | Catalyst dosage: 1 g/L; Initial bacterial cells:106 CFU/mL; Reaction time: 120 min; Irradiation: artificial solar simulator (light intensity of ~120,000 Lux) | 96% | [51] |
NiMoO4 | Methicillin-resistant Staphylococcus aureus | Catalyst dosage: 5 mg/mL, Reaction time: 360 min, Initial bacterial cells: 107 CFU/mL | 100% | [38] |
Pd-BiFeO3 | Enterococcus faecalis | Catalyst: 2 wt % Pd/BiFeO3, Dose: 1 g/L, Reaction time: 240 min, Initial bacterial cells: 107 CFU/mL Temperature: 37 °C | 98%–100% | [52] |
Catalyst | Target Viruses | Operating Conditions | Inactivation Rate | Ref. |
---|---|---|---|---|
TiO2 | A/H1N1 Influenza virus | Reaction time: 8 h; Initial viral cells: 1 × 108 TCID50/mL; Irradiation: ultraviolet light | 4-log10 (99%) | [54] |
Bacteriophage f2 | Catalyst dose of 25 mg/L; Reaction time: 1 h; Initial viral cells: 5.22 log PFU/g, Irradiation: ultraviolet light | 95.79% | [55] | |
Bacteriophages (MS2, PRD1, phi-X174, and fr) | Catalyst dosage: 1 g/L; UV dose of 8 mJ/cm2; pH: 7; initial concentration: 4 log PFU/g | 85%, 81%, 94%, and 100% | [56] | |
Hepatitis B virus(HBsAg) | Catalyst dosage: 0.5 g/L; pH: 7.2; Reaction time: 4 h, Irradiation: ultraviolet light | 97% | [57] | |
Norovirus (HuNoV) | Reaction time: 20 min; Initial viral cells: 6.1 log PFU/g, Irradiation: ultraviolet light | 2,9 log10 99% | [58] | |
Rotavirus (Odelia, SA11), Astrovirus, and Feline calicivirus (FCV) | Reaction time: 24 h; pH: 6, T: 30 °C; Initial viral cells: 3.4–5.19 log TCID50; Irradiation: ultraviolet light | 1.5–3 log10 | [59] | |
Tungsten Trioxide-Based (WO3) | Coronavirus 2 (SARS-CoV-2) | Reaction time: 30 min; Initial viral cells:1.7 × 104 PFU/mL | 1.5 log10 100% | [60] |
Pt-WO3 | Influenza virus H1N1 | The catalyst was used as glass plate; Initial viral cells: 107.0 TCID50/mL; Temperature (25 °C); Reaction time: 6 h; Irradiation: ultraviolet light | >3.0 log10 99.9% | [61] |
Ag−AgI/Al2O3 | human rotavirus (and Shigella dysenteriae and Escherichia coli) | pH 4.5; Initial viral cells: 108 CFU/mL; catalyst dose (0.2 g/L); Temperature (25 °C); Reaction time: less than 1 h | 100% | [62] |
MIL-125 (Ti)-NH2 | Coronavirus 2 (SARS-CoV-2) | pH: 6; Reaction time: 30 min; Initial viral cells: 1 × 105 TCID50/mL | 100 TCID50/mL 99% | [63] |
O-g-C3N4/HTCC-2 | Adenovirus (HAdV-2) | Photocatalyst dose of 0.15 g/L; pH: 5, Temperature: 37 °CReaction time: 120 min; Initial viral cells: 105 MPN/mL | 100% | [64] |
Catalyst | Target Bacteria | Operating Conditions | Inactivation Rate | Ref. |
---|---|---|---|---|
TiO2-Ag | Mycobacterium kansasii and Mycobacterium avium | Catalyst: Ti/TiO2eAg nanotube electrode (5 cm × 5 cm); Reaction time: 240 min; initial bacterial cells: 5 × 108 CFU/mL; Temperature: 35 °C; Irradiation: ultraviolet (UV) | 99.9% | [96] |
1%Cu-N-TiO2 | Escherichia coli | Catalyst dosage: 100 mg/L; Initial cell concentration of 1 × 107 CFU/mL; Irradiation time: 100 min; Irradiation: LED light | 100% | [97] |
0.1Fe-0.4Zn- TiO2 | Staphylococcus aureus and Escherichia coli | Catalyst dosage: 1 mg/L; Reaction time: 90 min; Initial bacterial cells:104 CFU/mL; Temperature: 37 °C | 100% | [98] |
B-Doped TiO2-CNT | Escherichia coli | Catalyst Dose: 2 g/L; Reaction time: 240 min; Initial bacterial cells:106 CFU/mL; Irradiation: ultraviolet (UV) | 100% | [99] |
Co-doped TiO2 | Campylobacter jejuni, Salmonella Typhimurium, E. coli, Yersinia enterocolitica, Shewanella putrefaciens, Listeria monocytogenes and Staphylococcus aureus | Catalyst dosage: 500 µg/mL; Initial bacterial cells: 106 CFU/mL; Reaction time: 3–6 h; Irradiation: UVA irradiation | 100%,100%, ~4 log10, ~3 log10,~5 log10, ~2.5 log10, respectively | [100] |
C-doped TiO2 | Salmonella typhimurium | Catalyst dosage: 1 g/10 mL; Initial bacterial cells: 3 × 109 CFU/mL; pH 7.4; temperature: 37 °C; Reaction time: 1 h; Irradiation: UV-B lamp 5 mW/cm2 | 100% | [101] |
Fe3+ Doped TiO2/3SnO2 | Salmonella typhimurium | Catalyst dosage: 250 mg/L, reaction time: 60 min, Initial bacterial cells:106 CFU/mL, Temperature: 37 °C | 100% | [102] |
Catalyst | Target Viruses | Operating Conditions | Inactivation Rate | Ref. |
N-doped TiO2-coated Al2O3 | MS2 bacteriophage | In the presence of 120 mg L−1 Ca2+; Reaction time: 120 min; pH: 6; Initial viral cells: 1011 PFU/mL | 4.9 log10 (99.99%) | [103] |
TiO2-coated ceramic | Aerosol-Associated Influenza | Reaction time: 30 min; Initial viral cells: 105 PFU/mL | 99% | [104] |
Cu-doped TiO2 | Norovirus (HuNoV) | UVA-LED wavelength: 365 nm; Cu:TiO2 ratio: 5.5; Reaction time: 60 min; Initial viral cells: 6.7 log PFU/g | 2.89 log10 99% | [105] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elgohary, E.A.; Mohamed, Y.M.A.; El Nazer, H.A.; Baaloudj, O.; Alyami, M.S.S.; El Jery, A.; Assadi, A.A.; Amrane, A. A Review of the Use of Semiconductors as Catalysts in the Photocatalytic Inactivation of Microorganisms. Catalysts 2021, 11, 1498. https://doi.org/10.3390/catal11121498
Elgohary EA, Mohamed YMA, El Nazer HA, Baaloudj O, Alyami MSS, El Jery A, Assadi AA, Amrane A. A Review of the Use of Semiconductors as Catalysts in the Photocatalytic Inactivation of Microorganisms. Catalysts. 2021; 11(12):1498. https://doi.org/10.3390/catal11121498
Chicago/Turabian StyleElgohary, Elzahraa A., Yasser Mahmoud A. Mohamed, Hossam A. El Nazer, Oussama Baaloudj, Mohammed S. S. Alyami, Atef El Jery, Aymen Amine Assadi, and Abdeltif Amrane. 2021. "A Review of the Use of Semiconductors as Catalysts in the Photocatalytic Inactivation of Microorganisms" Catalysts 11, no. 12: 1498. https://doi.org/10.3390/catal11121498
APA StyleElgohary, E. A., Mohamed, Y. M. A., El Nazer, H. A., Baaloudj, O., Alyami, M. S. S., El Jery, A., Assadi, A. A., & Amrane, A. (2021). A Review of the Use of Semiconductors as Catalysts in the Photocatalytic Inactivation of Microorganisms. Catalysts, 11(12), 1498. https://doi.org/10.3390/catal11121498