Bifunctional Polymeric Carbon Nitride via Tuning Fabrication Conditions for Photocatalysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphology and Structure
2.2. Optical and Photoelectrical Properties
2.3. Photocatalytic Properties and their Relation to Structural and Physicochemial Properties of PCN
2.3.1. Hydrogen Evolution Reaction
2.3.2. RhB Degradation Reaction
3. Materials and Methods
3.1. Synthesis of Polymeric Carbon Nitride
3.2. Characterization
3.3. Photocatalytic Reactions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Müller, J.-O.; Schlögl, R.; Carlsson, J.M. Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 2008, 18, 4893–4908. [Google Scholar] [CrossRef] [Green Version]
- Liu, A.Y.; Cohen, M.L. Prediction of new low compressibility solids. Science 1989, 245, 841–842. [Google Scholar] [CrossRef] [Green Version]
- Yew, Y.T.; Lim, C.S.; Eng, A.Y.S.; Oh, J.; Park, S.; Pumera, M. Electrochemistry of layered graphitic carbon nitride synthesised from various precursors: Searching for catalytic effects. ChemPhysChem 2016, 17, 481–488. [Google Scholar] [CrossRef]
- Gracia, J.; Kroll, P. Corrugated layered heptazine-based carbon nitride: The lowest energy modifications of C3N4 ground state. J. Mater. Chem. 2009, 19, 3013–3019. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, J.; Liang, J.; Jaroniec, M.; Qiao, S.Z. Graphitic carbon nitride materials: Controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ. Sci. 2012, 5, 6717–6731. [Google Scholar] [CrossRef]
- Dai, X.; Han, Z.; Fan, H.; Ai, S. Sulfur doped carbon nitride quantum dots with efficient fluorescent property and their application for bioimaging. J. Nanoparticle Res. 2018, 20, 315. [Google Scholar] [CrossRef]
- Barrio, J.; Volokh, M.; Shalom, M. Polymeric carbon nitrides and related metal-free materials for energy and environmental applications. J. Mater. Chem. A 2020, 8, 11075–11116. [Google Scholar] [CrossRef]
- Reddy, K.; Reddy, C.; Nadagouda, M.; Shetti, N.; Joesool, S.; Aminabhavi, T. Polymeric graphitic carbon nitride (g-C3N4)-based semiconducting nanostructured materials: Synthesis methods, properties and photocatalytic applications. J. Environ. Manage. 2019, 238, 25–40. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Hu, X.; Zou, G.; Huang, Z.; Tang, Z.; Liu, Q.; Hu, G.; Geng, D. Advances in constructing polymeric carbon-nitride-based nanocomposites and their applications in energy chemistry. Sustain. Energy Fuels 2019, 3, 611–655. [Google Scholar] [CrossRef]
- Murugan, C.; Bhojanaa, K.B.; Ong, W.J.; Jothivenkatachalam, K.; Pandikumar, A. Improving hole mobility with the heterojunction of graphitic carbon nitride and titanium dioxide via soft template process in photoelectrocatalytic water splitting. Int. J. Hydrog. Energy 2019, 44, 30885–30898. [Google Scholar] [CrossRef]
- Gago, R.; Jiménez, I.; Caceres, D.; Agulló-Rueda, F.; Sajavaara, T.; Albella, J.M.; Climent-Font, A.; Vergara, I.; Räisänen, J.; Rauhala, E.; et al. Hardening mechanisms in graphitic carbon nitride films grown with N2/Ar ion assistance. Chem. Mater. 2001, 13, 129–135. [Google Scholar] [CrossRef]
- Chamorro-Posada, P.; Dante, R.C.; Vázquez-Cabo, J.; Dante, D.G.; Martín-Ramos, P.; Rubiños-López, Ó.; Sánchez-Arévalo, F.M. Experimental and theoretical investigations on a CVD grown thin film of polymeric carbon nitride and its structure. Diam. Relat. Mater. 2021, 111, 108169. [Google Scholar] [CrossRef]
- Lu, D.; Fang, P.; Wu, W.; Ding, J.; Jiang, L.; Zhao, X.; Li, C.; Yang, M.; Li, Y.; Wang, D. Solvothermal-assisted synthesis of self-assembling TiO2 nanorods on large graphitic carbon nitride sheets with their anti-recombination in the photocatalytic removal of Cr(vi) and rhodamine B under visible light irradiation. Nanoscale 2017, 9, 3231–3245. [Google Scholar] [CrossRef]
- Xu, J.; Li, Y.; Peng, S.; Lu, G.; Li, S. Eosin Y-sensitized graphitic carbon nitride fabricated by heating urea for visible light photocatalytic hydrogen evolution: The effect of the pyrolysis temperature of urea. Phys. Chem. Chem. Phys. 2013, 15, 7657–7665. [Google Scholar] [CrossRef]
- Paul, D.R.; Sharma, R.; Nehra, S.P.; Sharma, A. Effect of calcination temperature, pH and catalyst loading on photodegradation efficiency of urea derived graphitic carbon nitride towards methylene blue dye solution. RSC Adv. 2019, 9, 15381–15391. [Google Scholar] [CrossRef] [Green Version]
- Das, D.; Banerjee, D.; Das, B.; Das, N.; Chattopadhyay, K. Effect of cobalt doping into graphitic carbon nitride on photo induced removal of dye from water. Mater. Res. Bull. 2017, 89, 170–179. [Google Scholar] [CrossRef]
- Kim, J.H.; Ji, M.; Ryu, C.H.; Lee, Y.I. Effect of pyrolysis conditions on the physicochemical properties of graphitic carbon nitride for visible-light-driven photocatalytic degradation. Arch. Metall. Mater. 2020, 65. [Google Scholar]
- Madhurima, V.; Borse, P.H.; Kumari, K.; Rao, T.; Jain, P. Improved photocatalytic activity of carbon-based polymeric semiconductor for efficient decontamination of wastewater: Effect of reaction atmosphere and pyrolysis temperature. Opt. Mater. 2020, 110, 110523. [Google Scholar] [CrossRef]
- Alwin, E.; Kočí, K.; Wojcieszak, R.; Zieliński, M.; Edelmannová, M.; Pietrowski, M. Influence of high temperature synthesis on the structure of graphitic carbon nitride and its hydrogen generation ability. Materials 2020, 13, 2756. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Zhang, Z.; Li, C. A comparison of graphitic carbon nitrides synthesized from different precursors through pyrolysis. J. Photochem. Photobiol. A Chem. 2017, 332, 32–44. [Google Scholar] [CrossRef]
- Nabi, G.; Malik, N.; Tahir, M.B.; Raza, W.; Rizwan, M.; Maraj, M.; Siddiqa, A.; Ahmed, R.; Tanveer, M. Synthesis of graphitic carbon nitride and industrial applications as tensile strength reinforcement agent in red Acrylonitrile-Butadiene-Styrene (ABS). Phys. B Condens. Matter 2021, 602, 412556. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Wu, G.; Chen, W. Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production. Nanoscale 2012, 4, 5300–5303. [Google Scholar] [CrossRef] [PubMed]
- Su, Q.; Sun, J.; Wang, J.; Yang, Z.; Cheng, W.; Zhang, S. Urea-derived graphitic carbon nitride as an efficient heterogeneous catalyst for CO2 conversion into cyclic carbonates. Catal. Sci. Technol. 2014, 4, 1556–1562. [Google Scholar] [CrossRef]
- Niu, P.; Liu, G.; Cheng, H.-M. Nitrogen vacancy-promoted photocatalytic activity of graphitic carbon nitride. J. Phys. Chem. C 2012, 116, 11013–11018. [Google Scholar] [CrossRef]
- Xiang, Q.; Yu, J.; Jaroniec, M. Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites. J. Phys. Chem. C 2011, 115, 7355–7363. [Google Scholar] [CrossRef]
- Papailias, I.; Giannakopoulou, T.; Todorova, N.; Demotikali, D.; Vaimakis, T.; Trapalis, C. Effect of processing temperature on structure and photocatalytic properties of g-C3N4. Appl. Surf. Sci. 2015, 358, 278–286. [Google Scholar] [CrossRef]
- Dong, F.; Wu, L.; Sun, Y.; Fu, M.; Wu, Z.; Lee, S.C. Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts. J. Mater. Chem. 2011, 21, 15171–15174. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, T.; Wang, Z.; Dawson, G.; Chen, W. Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J. Mater. Chem. 2011, 21, 14398–14401. [Google Scholar] [CrossRef]
- Li, Y.; Lv, K.; Ho, W.; Zhao, Z.; Huang, Y. Enhanced visible-light photo-oxidation of nitric oxide using bismuth-coupled graphitic carbon nitride composite heterostructures. Chin. J. Catal. 2017, 38, 321–329. [Google Scholar]
- Mo, Z.; She, X.; Li, Y.; Liu, L.; Huang, L.; Chen, Z.; Zhang, Q.; Xu, H.; Li, H. Synthesis of g-C3N4 at different temperatures for superior visible/UV photocatalytic performance and photoelectrochemical sensing of MB solution. RSC Adv. 2015, 5, 101552–101562. [Google Scholar] [CrossRef]
- Martin, D.T.; Qiu, K.; Shevlin, S.A.; Handoko, A.D.; Chen, X.; Guo, Z.; Tang, J. Highly efficient photocatalytic H2 evolution 526 from water light and structure controlled graphitic carbon nitride using visible. Angew. Chem. Int. Ed. 2014, 126, 9394–9399. [Google Scholar] [CrossRef] [Green Version]
- Zimmerman, J.L.; Williams, R.; Khabashesku, A.V.N.; Margrave, J.L. Synthesis of spherical carbon nitride nanostructures. Nano Lett. 2001, 1, 731–734. [Google Scholar] [CrossRef]
- Wang, Y.; Qiao, M.; Lv, J.; Xu, G.; Zheng, Z.; Zhang, X.; Wu, Y. g-C3N4/g-C3N4 isotype heterojunction as an efficient platform for direct photodegradation of antibiotic. Fullerenes Nanotub. Carbon Nanostruct. 2018, 26, 210–217. [Google Scholar]
- Feng, W.; Fang, J.; Zhou, G.; Zhang, L.; Lu, S.; Wu, S.; Chen, Y.; Ling, Y.; Fang, Z. Rationally designed Bi@BiOCl/g-C3N4 heterostructure with exceptional solar-driven photocatalytic activity. Mol. Catal. 2017, 434, 69–79. [Google Scholar] [CrossRef]
- Sucasaire, W.; Matsuoka, M.; Lopes, K.C.; Mittani, J.C.R.; Avanci, L.H.; Chubaci, J.F.D.; Added, N.; Trava, V.; Corat, E.J. Raman and infrared spectroscopy studies of carbon nitride films prepared on Si (100) substrates by ion beam assisted deposition. J. Braz. Chem. Soc. 2006, 17, 1163–1169. [Google Scholar] [CrossRef] [Green Version]
- Lan, Y.; Li, Z.; Li, D.; Yan, G.; Yang, Z.; Guo, S. Graphitic carbon nitride synthesized at different temperatures for enhanced visible-light photodegradation of 2-naphthol. Appl. Surf. Sci. 2019, 467, 411–422. [Google Scholar] [CrossRef]
- Dementjev, A.; de Graaf, A.; van de Sanden, M.; Maslakov, K.; Naumkin, A.; Serov, A. X-Ray photoelectron spectroscopy reference data for identification of the C3N4 phase in carbon–nitrogen films. Diam. Relat. Mater. 2000, 9, 1904–1907. [Google Scholar] [CrossRef]
- Caudillo-Flores, U.; Rodriguez-Padron, D.; Muñoz-Batista, M.J.; Kubacka, A.; Luque, R.; Fernández-García, M. Facile synthesis of B/g-C3N4 composite materials for the continuous-flow selective photo-production of acetone. Green Chem. 2020, 22, 4975–4984. [Google Scholar] [CrossRef]
- Tan, L.; Xu, J.; Zhang, X.; Jia, Y.; Wang, S. Synthesis of g-C3N4/CeO2 nanocomposites with improved catalytic activity on the thermal decomposition of ammonium perchlorate. Appl. Surf. Sci. 2015, 356, 447–453. [Google Scholar] [CrossRef]
- Ghosh, M.; Lohrasbi, M.; Chuang, S.S.C.; Jana, S.C. Mesoporous titanium dioxide nanofibers with a significantly enhanced photocatalytic activity. ChemCatChem 2016, 8, 2525–2535. [Google Scholar] [CrossRef]
- Sun, S.; Liang, S. Recent advances in functional mesoporous graphitic carbon nitride (mpg-C3N4) polymers. Nanoscale 2017, 9, 10544–10578. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, J.; Zhang, M.; Wang, X. Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. J. Mater. Chem. 2012, 22, 8083–8091. [Google Scholar] [CrossRef]
- Gu, Q.; Gao, Z.; Zhao, H.; Lou, Z.; Liao, Y.; Xue, C. Temperature-controlled morphology evolution of graphitic carbon nitride nanostructures and their photocatalytic activities under visible light. RSC Adv. 2015, 5, 49317–49325. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, X.; Wang, H.; Zhang, J.; Pan, B.; Xie, Y. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 2013, 135, 18–21. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, X.; Antonietti, M. Polymeric Graphitic Carbon Nitride as a HeterogeneousOrganocatalyst: From Photochemistry to MultipurposeCatalysis to Sustainable Chemistry. Angew. Chem. Int. Ed. 2012, 51, 68–89. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Wu, X.-L.; Wang, Z.-M.; Aoki, H.; Kutsuna, S.; Jimura, K.; Hayashi, S. Anchoring titanium dioxide on carbon spheres for high-performance visible light photocatalysis. Appl. Catal. B Environ. 2017, 207, 255–266. [Google Scholar] [CrossRef]
- Baca, M.; Aleksandrzak, M.; Mijowska, E.; Kaleńczuk, R.J.; Zielińska, B. Core/shell structure of mesoporous carbon spheres and g-C3N4 for Acid Red 18 decolorization. Catalysts 2019, 9, 1007. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, C.G.; Faria, J.L. Photochemical and photocatalytic degradation of an azo dye in aqueous solution by UV irradiation. J. Photochem. Photobiol. A Chem. 2003, 155, 133–143. [Google Scholar] [CrossRef]
Sample | Size Range (mean, std. dev.)/nm | Thickness Range (mean, std. dev.)/nm |
---|---|---|
500-4 520-4 550-4 600-4 | 25–258 (43, 11.2) 28–396 (49, 13.6) 28–446 (48, 12.8) 27–339 (50, 14.4) | 1.8–13.3 (3.9, 1.4) 1.5–12.4 (3.5, 1.2) 1.2–8.5 (2.7, 0.8) 0.8–13.6 (2.4, 0.9) |
Sample | C (at.%) | N (at.%) | O (at.%) |
---|---|---|---|
500-4 520-4 550-4 600-4 | 36.58 33.9 34.11 36.31 | 63.23 65.92 65.79 63.19 | 0.18 0.18 0.1 0.5 |
Sample | N–C=N | C–NHx | C–C/C=C | N2C | N–Hx | N3C |
---|---|---|---|---|---|---|
500-4 520-4 550-4 600-4 | 77.00 67.02 71.31 63.76 | 16.41 24.43 22.00 24.96 | 6.58 8.55 6.69 11.29 | 87.73 85.68 86.27 87.96 | 9.69 9.91 9.15 7.22 | 2.59 4.41 4.58 4.82 |
Sample | 550-1 | 550-2 | 550-4 | 550-5 |
BET surface area [m2/g] | 87.11 ± 0.09 | 96.98 ± 0.02 | 116.83 ± 0.10 | 72.49 ± 0.14 |
Total pore volume [cm3/g] | 0.072 | 0.085 | 0.096 | 0.065 |
Sample | 500-4 | 520-4 | 550-4 | 600-4 |
BET surface area [m2/g] | 44.83 ± 0.13 | 81.62 ± 0.07 | 116.83 ± 0.10 | 94.43 ± 0.01 |
Total pore volume [cm3/g] | 0.034 | 0.069 | 0.096 | 0.083 |
Sample | k [1/min] | R2 |
---|---|---|
500-4 520-4 550-1 550-2 550-4 550-5 600-4 P25 | 0.13167 0.33779 0.42660 0.48417 0.54865 0.35724 0.24916 0.56510 | 0.99878 0.98535 0.99197 0.99289 0.98117 0.98510 0.99161 0.99664 |
Sample | Heating Rate [°C/min] | Temperature [°C] | Time [h] |
---|---|---|---|
500-4 520-4 550-1 550-2 550-3 550-4 550-5 600-4 | 4 4 1 2 3 4 5 4 | 500 520 550 550 550 550 550 600 | 4 4 4 4 4 4 4 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aleksandrzak, M.; Baranowska, D.; Kukulka, W.; Onyszko, M.; Zielinska, B.; Mijowska, E. Bifunctional Polymeric Carbon Nitride via Tuning Fabrication Conditions for Photocatalysis. Catalysts 2021, 11, 651. https://doi.org/10.3390/catal11060651
Aleksandrzak M, Baranowska D, Kukulka W, Onyszko M, Zielinska B, Mijowska E. Bifunctional Polymeric Carbon Nitride via Tuning Fabrication Conditions for Photocatalysis. Catalysts. 2021; 11(6):651. https://doi.org/10.3390/catal11060651
Chicago/Turabian StyleAleksandrzak, Malgorzata, Daria Baranowska, Wojciech Kukulka, Magdalena Onyszko, Beata Zielinska, and Ewa Mijowska. 2021. "Bifunctional Polymeric Carbon Nitride via Tuning Fabrication Conditions for Photocatalysis" Catalysts 11, no. 6: 651. https://doi.org/10.3390/catal11060651