A Novel and Efficient Method for the Synthesis of Methyl (R)-10-Hydroxystearate and FAMEs from Sewage Scum
Abstract
:1. Introduction
2. Analysis of Results
2.1. Characterization of the Lipid Component of Sewage Scum and Biodiesel Production
2.2. Optimization of Transesterification Conditions for the Conversion of ME into Me-10-HSA and FAMEs
2.3. Analysis of the Reaction Products
3. Materials and Methods
3.1. Reagents and Instruments
3.2. Sewage Scum
3.3. Experimental Procedure for Lipids Characterization
3.3.1. Determination of FFAs and Soaps
3.3.2. Determination of Fatty Acids Profile and Average Molecular Weight
3.4. Extraction of Lipid Fraction from Sewage Scum and Chemical Activation
3.5. Conversion of Activated Lipids into Methyl Esters of Recovery of Biodiesel Produced by Distillation Process
3.6. Transesterification Reaction of Methyl Estolides (or Stearyl Stearate) with Methanol
Optimization of Transesterification Conditions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Roman Letters | |
Ai | Gas-chromatographic area of fatty acids detected |
AlCl3·6H2O | Aluminum Chloride Hexahydrate |
Astd | Area of standard (methyl heptadecanoate) |
C | Amount of Methanol |
Cat | Amount of catalyst (AlCl3·6H2O or HCl) |
C2H5OH | Ethanol |
C18H36O2 | Methyl heptadecanoate |
CH3OH | Methanol |
(C2H5)2O | Diethyl ether |
C6H14 | Hexane |
C7H8 | Toluene |
FAMEs | Fatty Acid Methyl Esters |
FAs | Fatty Acids |
FFAs | Free Fatty Acids |
HCOOH | Formic acid |
HCl | Hydrochloric Acid |
HFAs | Hydroxy Fatty Acids |
10-HAS | 10-(R)-Hydroxystearic acid |
H2SO4 | Sulfuric acid |
KOH | Potassium hydroxide |
msample | Mass of sample analyzed |
mstd | Mass of standard (methyl heptadecanoate) |
ME | Methyl Estolides |
Me-10-HAS | Methyl 10-(R)-Hydroxystearate |
MWi | Molecular weight of fatty acids detected |
T | Temperature |
TS | Total Solids |
T | Time |
Xi, Xj | Independent variables |
Y | Dependent variable |
Greek Letters | |
β0 | Offset term |
βi, βij, βii | Linear, interaction, and quadratic parameters |
References
- Löwe, J.; Gröger, H. Fatty Acid Hydratases: Versatile Catalysts to Access Hydroxy Fatty Acids in Efficient Syntheses of Industrial Interest. Catalysts 2020, 8, 287. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Zhang, X. Production of long-chain hydroxy fatty acids by microbial conversion. Appl. Microbiol. Biotechnol. 2013, 97, 3323–3331. [Google Scholar] [CrossRef] [PubMed]
- Kolar, M.J.; Konduri, S.; Chang, T.; Wang, H.; McNerlin, C.; Ohlsson, L.; Härröd, M.; Siegel, D.; Saghatelian, A. Linoleic acid esters of hydroxy linoleic acids are anti-inflammatory lipids found in plants and mammals. J. Biol. Chem. 2019, 294, 10698–10707. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, J.P.; Guijas, C.; Astudillo, A.M.; Rubio, J.M.; Balboa, M.A.; Balsinde, J. Sequestration of 9-Hydroxystearic Acid in FAHFA (Fatty Acid Esters of Hydroxy Fatty Acids) as a Protective Mechanism for Colon Carcinoma Cells to Avoid Apoptotic Cell Death. Cancers 2019, 11, 524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suriyamongkol, P.; Weselake, R.; Narine, S.; Moloney, M.; Shah, S. Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants-A review. Biotechnol. Adv. 2007, 25, 148–175. [Google Scholar] [CrossRef]
- Verlinden, R.A.; Hill, D.J.; Kenward, M.A.; Williams, C.D.; Radecka, I. Bacterial synthesis of biodegradable polyhydroxyalkanoates. J. Appl. Microbiol. 2007, 102, 1437–1449. [Google Scholar] [CrossRef]
- Chen, Y.; Biresaw, G.; Cermak, S.C.; Isbell, T.A.; Ngo, H.L.; Chen, L.; Durham, A.L. Fatty Acid Estolides: A Review. J. Am. Oil Chem. Soc. 2020, 97, 231–241. [Google Scholar] [CrossRef]
- Cecilia, J.A.; Plata, D.B.; Maria, R.; Saboya, A.; Murilo, F.; De Luna, T.; Cavalcante, C.L.; Rodríguez-castellón, E. An Overview of the Biolubricant Production Process: Challenges and Future Perspectives. Processes 2020, 8, 257. [Google Scholar] [CrossRef] [Green Version]
- De Haro, J.C.; Garrido, M.D.P.; Ángel, P.; Carmona, M.; Rodríguez, J.F. Full conversion of oleic acid to estolides esters, biodiesel and choline carboxylates in three easy steps. J. Clean. Prod. 2018, 184, 579–585. [Google Scholar] [CrossRef]
- McNutt, J.; He, Q. (Sophia) Development of biolubricants from vegetable oils via chemical modification. J. Ind. Eng. Chem. 2016, 36, 1–12. [Google Scholar] [CrossRef]
- Boratyński, F.; Szczepańska, E.; De Simeis, D.; Serra, S.; Brenna, E. Bacterial Biotransformation of Oleic Acid: New Findings on the Formation of γ-Dodecalactone and 10-Ketostearic Acid in the Culture of Micrococcus Luteus. Molecules 2020, 25, 3024. [Google Scholar] [CrossRef] [PubMed]
- Kourist, R.; Hilterhaus, R. Microbial lactone synthesis based on renewable resources. In Microorganisms in Biorefineries; Springer: Berlin/Heidelberg, Germany, 2015; pp. 275–301. [Google Scholar]
- An, J.-U.; Joo, Y.-C.; Oh, D.-K. New Biotransformation Process for Production of the Fragrant Compound γ-Dodecalactone from 10-Hydroxystearate by Permeabilized Waltomyces lipofer Cells. Appl. Environ. Microbiol. 2013, 79, 2636–2641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soni, S.; Agarwal, M. Lubricants from renewable energy sources—A review. Green Chem. Lett. Rev. 2014, 7, 359–382. [Google Scholar] [CrossRef]
- Yao, L.; Hammond, E.G.; Wang, T.; Bhuyan, S.; Sundararajan, S. Synthesis and physical properties of potential biolubricants based on ricinoleic acid. J. Am. Oil Chem. Soc. 2010, 87, 937–945. [Google Scholar] [CrossRef]
- Hiseni, A.; Arends, I.W.C.E.; Otten, L.G. New Cofactor-Independent Hydration Biocatalysts: Structural, Biochemical, and Biocatalytic Characteristics of Carotenoid and Oleate Hydratases. ChemCatChem 2014, 7, 29–37. [Google Scholar] [CrossRef]
- Jenkins, T.C.; AbuGhazaleh, A.A.; Freeman, S.; Thies, E.J. The Production of 10-Hydroxystearic and 10-Ketostearic Acids Is an Alternative Route of Oleic Acid Transformation by the Ruminal Microbiota in Cattle. J. Nutr. 2006, 136, 926–931. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.Y.; Liang, N.Y.; Curtis, J.M.; Gänzle, M.G. Characterization of Linoleate 10-Hydratase of Lactobacillus plantarum and Novel Antifungal Metabolites. Front. Microbiol. 2016, 7, 1561. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.-N.; Joo, Y.-C.; Kim, Y.-S.; Kim, K.-R.; Oh, D.-K. Erratum to: Production of 10-hydroxystearic acid from oleic acid and olive oil hydrolyzate by an oleate hydratase from Lysinibacillus fusiformis. Appl. Microbiol. Biotechnol. 2012, 95, 1095–1096. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.-R.; Kang, W.-R.; Oh, D.-K. Complete genome sequence of Stenotrophomonas sp. KACC 91585, an efficient bacterium for unsaturated fatty acid hydration. J. Biotechnol. 2017, 241, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Hudson, J.A.; MacKenzie, C.A.M.; Joblin, K.N. Conversion of oleic acid to 10-hydroxystearic acid by two species of ruminal bacteria. Appl. Microbiol. Biotechnol. 1995, 44, 1–6. [Google Scholar] [CrossRef]
- Kang, W.-R.; Seo, M.-J.; Shin, K.-C.; Park, J.-B.; Oh, D.-K. Gene cloning of an efficiency oleate hydratase fromStenotrophomonas nitritireducensfor polyunsaturated fatty acids and its application in the conversion of plant oils to 10-hydroxy fatty acids. Biotechnol. Bioeng. 2017, 114, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Kang, W.R.; Seo, M.J.; Shin, K.C.; Park, J.B.; Oh, D.K. Comparison of biochemical properties of the original and newly identified oleate hydratases from Stenotrophomonas maltophilia. Appl. Environ. Microbiol. 2017, 83. [Google Scholar] [CrossRef] [Green Version]
- Kuo, T.M.; Lanser, A.C.; Nakamura, L.K.; Hou, C.T. Production of 10-ketostearic acid and 10-hydroxystearic acid by strains of Sphingobacterium thalpophilum isolated from composted manure. Curr. Microbiol. 2000, 40, 105–109. [Google Scholar] [CrossRef]
- Serra, S.; De Simeis, D.; Castagna, A.; Valentino, M. The Fatty-Acid Hydratase Activity of the Most Common Probiotic Microorganisms. Catalysts 2020, 10, 154. [Google Scholar] [CrossRef] [Green Version]
- Hou, C.T. Biotechnology for fats and oils: New oxygenated fatty acids. New Biotechnol. 2009, 26, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Pera, L.M.; Baigori, M.D.; Pandey, A.; Castro, G.R. Biocatalysis. In Industrial Biorefineries & White Biotechnology; Elsevier: Amsterdam, The Netherlands, 2015; pp. 391–408. [Google Scholar] [CrossRef]
- Di Bitonto, L.; Todisco, S.; Gallo, V.; Pastore, C. Urban sewage scum and primary sludge as profitable sources of biodiesel and biolubricants of new generation. Bioresour. Technol. Rep. 2020, 9, 100382. [Google Scholar] [CrossRef]
- Di Bitonto, L.; Lopez, A.; Mascolo, G.; Mininni, G.; Pastore, C. Efficient solvent-less separation of lipids from municipal wet sewage scum and their sustainable conversion into biodiesel. Renew. Energy 2016, 90, 55–61. [Google Scholar] [CrossRef]
- Di Bitonto, L.; Locaputo, V.; D’Ambrosio, V.; Pastore, C. Direct Lewis-Brønsted acid ethanolysis of sewage sludge for production of liquid fuels. Appl. Energy 2020, 259, 114163. [Google Scholar] [CrossRef]
- Casiello, M.; Catucci, L.; Fracassi, F.; Fusco, C.; Laurenza, A.G.; Di Bitonto, L.; Pastore, C.; D’Accolti, L.; Nacci, A. ZnO/Ionic Liquid Catalyzed Biodiesel Production from Renewable and Waste Lipids as Feedstocks. Catalysts 2019, 9, 71. [Google Scholar] [CrossRef] [Green Version]
- Urban Waste Grease Resource Assessment; NREL: Golden, CO, USA, 1998; NREL/SR-570-26141.
- Igoni, A.H.; Ayotamuno, M.; Eze, C.; Ogaji, S.; Probert, S. Designs of anaerobic digesters for producing biogas from municipal solid-waste. Appl. Energy 2008, 85, 430–438. [Google Scholar] [CrossRef]
- Bertanza, G.; Canato, M.; Laera, G.; Tomei, M.C. Methodology for technical and economic assessment of advanced routes for sludge processing and disposal. Environ. Sci. Pollut. Res. 2014, 22, 7190–7202. [Google Scholar] [CrossRef] [PubMed]
- Chipasa, K.B.; Mdrzycka, K. Characterization of the fate of lipids in activated sludge. J. Environ. Sci. 2008, 20, 536–542. [Google Scholar] [CrossRef]
- Di Bitonto, L.; Pastore, C. Up-grading of Waste Oil: A Key Step in the Future of Biofuel Production. In Process Systems Engineering for Biofuels Development; John Wiley & Sons: New York, NY, USA, 2020; pp. 121–147. [Google Scholar] [CrossRef]
- Huang, Y.; Li, Y.; Han, X.; Zhang, J.; Luo, K.; Yang, S.; Wang, J. Investigation on fuel properties and engine performance of the extraction phase liquid of bio-oil/biodiesel blends. Renew. Energy 2020, 147, 1990–2002. [Google Scholar] [CrossRef]
- Lawan, I.; Zhou, W.; Idris, A.L.; Jiang, Y.; Zhang, M.; Wang, L.; Yuan, Z. Synthesis, properties and effects of a multi-functional biodiesel fuel additive. Fuel Process. Technol. 2020, 198, 106228. [Google Scholar] [CrossRef]
- Tamilselvan, P.; Nallusamy, N.; Rajkumar, S. A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines. Renew. Sustain. Energy Rev. 2017, 79, 1134–1159. [Google Scholar] [CrossRef]
- Singh, D.; Sharma, D.; Soni, S.; Sharma, S.; Sharma, P.K.; Jhalani, A. A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel 2020, 262, 116553. [Google Scholar] [CrossRef]
- Tubino, M.; Junior, J.G.R.; Bauerfeldt, G.F. Biodiesel synthesis: A study of the triglyceride methanolysis reaction with alkaline catalysts. Catal. Commun. 2016, 75, 6–12. [Google Scholar] [CrossRef]
- Kwon, E.E.; Kim, S.; Jeon, Y.J.; Yi, H. Biodiesel Production from Sewage Sludge: New Paradigm for Mining Energy from Municipal Hazardous Material. Environ. Sci. Technol. 2012, 46, 10222–10228. [Google Scholar] [CrossRef]
- Mondala, A.; Liang, K.; Toghiani, H.; Hernandez, R.; French, T. Biodiesel production by in situ transesterification of municipal primary and secondary sludges. Bioresour. Technol. 2009, 100, 1203–1210. [Google Scholar] [CrossRef]
- Pastore, C.; Lopez, A.; Mascolo, G. Efficient conversion of brown grease produced by municipal wastewater treatment plant into biofuel using aluminium chloride hexahydrate under very mild conditions. Bioresour. Technol. 2014, 155, 91–97. [Google Scholar] [CrossRef]
- Pastore, C.; Barca, E.; Del Moro, G.; Lopez, A.; Mininni, G.; Mascolo, G. Recoverable and reusable aluminium solvated species used as a homogeneous catalyst for biodiesel production from brown grease. Appl. Catal. A Gen. 2015, 501, 48–55. [Google Scholar] [CrossRef]
- Matsumura, S. Enzyme-Catalyzed Synthesis and Chemical Recycling of Polyesters. Macromol. Biosci. 2002, 2, 105–126. [Google Scholar] [CrossRef]
- Ajith, B.; Math, M.; Gc, M.P.; Parappagoudar, M.B. Analysis and optimisation of transesterification parameters for high-yield Garcinia Gummi-Gutta biodiesel using RSM and TLBO. Aust. J. Mech. Eng. 2020, 1–16. [Google Scholar] [CrossRef]
- Ferella, F.; Di Celso, G.M.; De Michelis, I.; Stanisci, V.; Vegliò, F. Optimization of the transesterification reaction in biodiesel production. Fuel 2010, 89, 36–42. [Google Scholar] [CrossRef]
- Kansedo, J.; Lee, K.T.; Bhatia, S. Biodiesel production from palm oil via heterogeneous transesterification. Biomass Bioenergy 2009, 33, 271–276. [Google Scholar] [CrossRef]
- Silva, G.F.; Camargo, F.L.; Ferreira, A.L. Application of response surface methodology for optimization of biodiesel production by transesterification of soybean oil with ethanol. Fuel Process. Technol. 2011, 92, 407–413. [Google Scholar] [CrossRef] [Green Version]
- Demirbas, A. Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Convers. Manag. 2008, 49, 2106–2116. [Google Scholar] [CrossRef]
- Escobar, J.C.; Lora, E.S.; Venturini, O.J.; Yáñez, E.E.; Castillo, E.F.; Almazan, O. Biofuels: Environment, technology and food security. Renew. Sustain. Energy Rev. 2009, 13, 1275–1287. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, S.; Bai, X.; Zhao, J.; Xia, S. Scum sludge as a potential feedstock for biodiesel production from wastewater treatment plants. Waste Manag. 2016, 47, 91–97. [Google Scholar] [CrossRef]
- Kargbo, D.M. Biodiesel Production from Municipal Sewage Sludges. Energy Fuels 2010, 24, 2791–2794. [Google Scholar] [CrossRef]
- Bi, C.-H.; Min, M.; Nie, Y.; Xie, Q.-L.; Lu, Q.; Deng, X.-Y.; Anderson, E.; Li, N.; Chen, P.; Ruan, R. Process development for scum to biodiesel conversion. Bioresour. Technol. 2015, 185, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Capodaglio, A.G.; Callegari, A. Feedstock and process influence on biodiesel produced from waste sewage sludge. J. Environ. Manag. 2018, 216, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Olkiewicz, M.; Torres, C.M.; Jiménez, L.; Font, J.; Bengoa, C. Scale-up and economic analysis of biodiesel production from municipal primary sewage sludge. Bioresour. Technol. 2016, 214, 122–131. [Google Scholar] [CrossRef]
- Silva, J.F.L.; Grekin, R.; Mariano, A.P.; Filho, R.M. Making Levulinic Acid and Ethyl Levulinate Economically Viable: A Worldwide Technoeconomic and Environmental Assessment of Possible Routes. Energy Technol. 2018, 6, 613–639. [Google Scholar] [CrossRef]
- Serra, S.; De Simeis, D. New insights on the baker’s yeast-mediated hydration of oleic acid: The bacterial contaminants of yeast are responsible for the stereoselective formation of (R)-10-hydroxystearic acid. J. Appl. Microbiol. 2018, 124, 719–729. [Google Scholar] [CrossRef] [PubMed]
- Schwiderski, M.; Kruse, A. Process design and economics of an aluminium chloride catalysed organosolv process. Biomass Convers. Biorefinery 2016, 6, 335–345. [Google Scholar] [CrossRef]
- Fulmer, G.R.; Miller, A.J.M.; Sherden, N.H.; Gottlieb, H.E.; Nudelman, A.; Stoltz, B.M.; Bercaw, J.E.; Goldberg, K.I. NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. Organometallics 2010, 29, 2176–2179. [Google Scholar] [CrossRef] [Green Version]
- Pastore, C.; D’Ambrosio, V. Intensification of Processes for the Production of Ethyl Levulinate Using AlCl3·6H2O. Energies 2021, 14, 1273. [Google Scholar] [CrossRef]
E | Methanol (mL) | Catalyst (mmol) | Temperature (°C) | Time (h) | ME Conversion (%) | |||
---|---|---|---|---|---|---|---|---|
AlCl3·6H2O | HCl | |||||||
Pred. | Exp. | Pred. | Exp. | |||||
1 | 0 | 0 | −1 | −1 | 88.2 | 89.0 | 93.1 | 93.3 |
2 | 1 | 0 | −1 | 0 | 94.2 | 94.5 | 86.2 | 84.3 |
3 | 0 | 1 | −1 | 0 | 87.5 | 89.4 | 93.9 | 95.6 |
4 | −1 | 0 | −1 | 0 | 89.9 | 90.5 | 96.7 | 96.9 |
5 | 0 | −1 | −1 | 0 | 81.5 | 80.2 | 98.4 | 98.6 |
6 | 0 | 0 | −1 | 1 | 85.3 | 84.3 | 89.3 | 88.6 |
7 | 0 | 1 | 0 | −1 | 86.3 | 87.7 | 89.7 | 89.6 |
8 | 1 | 0 | 0 | −1 | 95.2 | 94.7 | 95.4 | 95.3 |
9 | 0 | −1 | 0 | −1 | 94.5 | 92.8 | 95.2 | 96.3 |
10 | −1 | 0 | 0 | −1 | 87.2 | 87.7 | 96.7 | 96.9 |
11 a | 0 | 0 | 0 | 0 | 92.9 | 93.4 | 95.3 | 95.5 |
12 | −1 | −1 | 0 | 0 | 87.7 | 86.6 | 99.9 | 98.1 |
13 | 1 | 1 | 0 | 0 | 97.1 | 97.9 | 94.8 | 93.3 |
14 a | 0 | 0 | 0 | 0 | 89.9 | 90.5 | 99.6 | 99.7 |
15 | 1 | −1 | 0 | 0 | 83.0 | 82.6 | 96.9 | 98.1 |
16 a | 0 | 0 | 0 | 0 | 94.2 | 93.9 | 96.7 | 96.4 |
17 | −1 | 1 | 0 | 0 | 89.3 | 89.2 | 98.7 | 98.5 |
18 | 0 | −1 | 0 | 1 | 77.3 | 76.6 | 98.8 | 98.5 |
19 | −1 | 0 | 0 | 1 | 80.7 | 82.7 | 98.3 | 98.1 |
20 | 0 | 1 | 0 | 1 | 97.2 | 97.5 | 94.8 | 93.3 |
21 | 1 | 0 | 0 | 1 | 86.7 | 85.3 | 97.0 | 96.2 |
22 | 0 | 0 | 1 | −1 | 94.2 | 94.1 | 96.8 | 98.7 |
23 | 0 | 1 | 1 | 0 | 87.0 | 87.8 | 97.2 | 97.6 |
24 | −1 | 0 | 1 | 0 | 94.3 | 95.4 | 99.3 | 99.0 |
25 | 0 | −1 | 1 | 0 | 83.6 | 83.5 | 98.9 | 98.2 |
26 | 1 | 0 | 1 | 0 | 97.2 | 97.5 | 95.3 | 95.5 |
27 | 0 | 0 | 1 | 1 | 78.5 | 79.9 | 92.9 | 92.8 |
Source | Sum of Squares | Df | Mean Square | F-Ratio | p-Value |
---|---|---|---|---|---|
Model | 731.455 | 14 | 182.864 | 14.02 | 0.0000 * |
C | 167.253 | 1 | 167.253 | 64.72 | 0.0000 ** |
cat | 181.741 | 1 | 181.741 | 70.33 | 0.0000 ** |
T | 272.653 | 1 | 272.653 | 105.51 | 0.0000 ** |
t | 109.808 | 1 | 109.808 | 42.49 | 0.0000 ** |
Ccat | 21.16 | 1 | 21.16 | 8.19 | 0.0143 ** |
CT | 6.0025 | 1 | 6.0025 | 2.32 | 0.1534 |
Ct | 11.2225 | 1 | 11.2225 | 4.34 | 0.0592 |
catT | 10.5625 | 1 | 10.5625 | 4.09 | 0.0661 |
catt | 0.81 | 1 | 0.81 | 0.31 | 0.5859 |
Tt | 0.49 | 1 | 0.49 | 0.19 | 0.6710 |
C2 | 87.3001 | 1 | 87.3001 | 33.78 | 0.0001 ** |
cat2 | 166.259 | 1 | 166.259 | 64.34 | 0.0000 ** |
T2 | 49.4779 | 1 | 49.4779 | 19.15 | 0.0009 ** |
t2 | 10.957 | 1 | 10.957 | 4.24 | 0.0619 |
Total error | 31.0092 | 12 | 2.5841 | ||
Total (corr.) | 1018.31 | 26 |
Source | Sum of Squares | Df | Mean Square | F-Ratio | p-Value |
---|---|---|---|---|---|
Model | 236.882 | 14 | 59.2204 | 11.79 | 0.0000 * |
C | 82.6875 | 1 | 82.6875 | 35.10 | 0.0001 ** |
cat | 86.4033 | 1 | 86.4033 | 36.67 | 0.0001 ** |
T | 36.75 | 1 | 36.75 | 15.60 | 0.0019 ** |
t | 31.0408 | 1 | 31.0408 | 13.17 | 0.0035 ** |
Ccat | 15.21 | 1 | 15.21 | 6.46 | 0.0259 ** |
CT | 18.9225 | 1 | 18.9225 | 8.03 | 0.0151 ** |
Ct | 0.04 | 1 | 0.04 | 0.02 | 0.8985 |
catT | 0.3025 | 1 | 0.3025 | 0.13 | 0.7263 |
catt | 3.4225 | 1 | 3.4225 | 1.45 | 0.2513 |
Tt | 5.29 | 1 | 5.29 | 2.25 | 0.1599 |
C2 | 13.9393 | 1 | 13.9393 | 5.92 | 0.0316 ** |
cat2 | 15.0379 | 1 | 15.0379 | 6.38 | 0.0266 ** |
T2 | 3.16898 | 1 | 3.16898 | 1.35 | 0.2687 |
t2 | 0.0725926 | 1 | 0.0725926 | 0.03 | 0.8636 |
Total error | 28.2725 | 12 | 2.35604 | ||
Total (corr.) | 347.365 | 26 |
Catalysts | Methanol (mL) | Amount (mmol) | Temperature (°C) | Time (h) | ME Conversion (%) | |
---|---|---|---|---|---|---|
Pred. | Exp. | |||||
AlCl3·6H2O | 3.9 | 0.76 | 115 | 30 | 99.4 | 99.6 |
HCl | 2.1 | 1 | 120 | 4 | 100 | 99.8 |
HCl | AlCl3∙6H2O | |||
---|---|---|---|---|
70 °C, 2 h | 100 °C, 24 h | 70 °C, 2 h | 100 °C, 24 h | |
Conversion (%) | 80 | 100 | 20 | 100 |
Chemical Species | Composition (%wt.) |
---|---|
Mineral oil | 2.7 |
Waxes | 1.8 |
FAMEs | 6.4 |
Me-10-HAS | 3.6 |
Methyl-10-ketostearate | 0.4 |
Methyl estolides | 50.3 |
Acids | 1.0 |
Other polar compounds | 33.8 |
Variables | Symbol | Range and Levels | |||
---|---|---|---|---|---|
Lower Level (−1) | Center Level (0) | Upper Level (+1) | ΔXi a | ||
Methanol (mL) | C | 1 | 3 | 5 | 2 |
Catalyst (mmol) | cat | 0.2 | 0.6 | 1 | 0.4 |
Temperature (°C) | T | 80 | 100 | 120 | 20 |
Time (h) | t | 4 | 17 | 30 | 13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
di Bitonto, L.; D’Ambrosio, V.; Pastore, C. A Novel and Efficient Method for the Synthesis of Methyl (R)-10-Hydroxystearate and FAMEs from Sewage Scum. Catalysts 2021, 11, 663. https://doi.org/10.3390/catal11060663
di Bitonto L, D’Ambrosio V, Pastore C. A Novel and Efficient Method for the Synthesis of Methyl (R)-10-Hydroxystearate and FAMEs from Sewage Scum. Catalysts. 2021; 11(6):663. https://doi.org/10.3390/catal11060663
Chicago/Turabian Styledi Bitonto, Luigi, Valeria D’Ambrosio, and Carlo Pastore. 2021. "A Novel and Efficient Method for the Synthesis of Methyl (R)-10-Hydroxystearate and FAMEs from Sewage Scum" Catalysts 11, no. 6: 663. https://doi.org/10.3390/catal11060663
APA Styledi Bitonto, L., D’Ambrosio, V., & Pastore, C. (2021). A Novel and Efficient Method for the Synthesis of Methyl (R)-10-Hydroxystearate and FAMEs from Sewage Scum. Catalysts, 11(6), 663. https://doi.org/10.3390/catal11060663