Surface Modification of Electrocatalyst for Optimal Adsorption of Reactants in Oxygen Evolution Reaction
Abstract
:1. Introduction
2. Results
2.1. Surface Morphology
2.2. Electrichemical Characteristics
2.3. Electrochemical Measurements for Oxygen Evolution Reaction (OER) Activity
3. Discussion
3.1. Discussion of H2O2 Immersion Electrodes (HIEs) Based on Patent
3.2. Discussion of Results
4. Materials and Methods
4.1. Preparation of Porous Electrodes (PEs)
4.2. Preparation of H2O2 Immersion Electrodes (HIEs) and H2O2 Immersion Silicon-Coated Electrodes (Si-HIEs)
4.3. Characterization of Electrode Samples
4.4. Electrochemical Measurements for Oxygen Evolution Reaction (OER) Activity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rad, M.A.V.; Ghasempour, R.; Rahdan, P.; Mousavi, S.; Arastounia, M. Techno-economic analysis of a hybrid power system based on the cost-effective hydrogen production method for rural electrification, a case study in Iran. Energy 2021, 190, 116421. [Google Scholar] [CrossRef]
- Hassanpouryouzband, A.; Joonaki, E.; Edlmann, K.; Haszeldine, S. Offshore Geological Storage of Hydrogen: Is This Our Best Option to Achieve Net-Zero? ACS Energy Lett. 2021, 6, 2181–2186. [Google Scholar] [CrossRef]
- Hiragon, C.B.; Lee, J.H.; Kim, H.P.; Jung, J.-W.; Cho, C.-H.; In, S.-I. A novel N-doped graphene oxide enfolded reduced titania for highly stable and selective gas-phase photocatalytic CO2 reduction into CH4: An in-depth study on the interfacial charge transfer mechanism. Chem. Eng. J. 2021, 416, 127978. [Google Scholar] [CrossRef]
- Chu, S.; Majumdat, A. Opportunities and challenges for a sustainable energy future. Natrue 2012, 488, 294–303. [Google Scholar] [CrossRef]
- Forinash, K., III; Perkins, J.H.; Whitten, B. Background, approaches, and resources for teaching energy in environmental studies. J. Environ. Stud. Sci. 2021. [Google Scholar] [CrossRef]
- Wu, H.-L.; Tung, C.-H.; Wu, L.-Z. Semiconductor Quantum Dots: An Emerging Candidate for CO2 Photoreduction. Adv. Mater. 2019, 31, 1900709. [Google Scholar] [CrossRef]
- CarbonBrief. Mapped: Climate Change Laws around the World. 11 May 2017. Available online: https://www.carbonbrief.org/mapped-climate-change-laws-around-world (accessed on 10 March 2021).
- Zeng, K.; Zhang, D. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 2010, 36, 307–326. [Google Scholar] [CrossRef]
- Carno, M.; Fritz, D.L.; Mergel, J.; Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrog. Energy 2013, 38, 4901–4934. [Google Scholar] [CrossRef]
- Carrette, L.; Fridrich, K.A.; Stimming, U. Fuel Cells—Fundamentals and Applications. Fuel Cells 2001, 1, 1. [Google Scholar] [CrossRef]
- Kirubakaran, A.; Jain, S.; Nema, R.K. A reivew on fuel cell technologies and power electronic interface. Renew. Sust. Energ. Rev. 2009, 13, 2430–2440. [Google Scholar] [CrossRef]
- Suntivich, J.; Gasteiger, H.A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J.B.; Shao-Horn, Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat. Chem. 2011, 3, 546–550. [Google Scholar] [CrossRef] [PubMed]
- Suen, N.-T.; Hung, S.-F.; Quan, Q.; Zhang, N.; Xu, Y.-J.; Chen, H.M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 24, 337–365. [Google Scholar] [CrossRef]
- Yue, X.; Jin, Y.; Shen, P.K. Highly stable and efficient non-precious metal electrocatalysts of tantalum dioxyfluoride used for the oxygen evolution reaction. J. Mater. Chem. A 2017, 5, 8287–8291. [Google Scholar] [CrossRef]
- Wu, Z.-P.; Lu, X.F.; Zang, S.-Q.; Lou, X.W. Non-Noble-Metal-Based Electrocatalysts toward the Oxygen Evolution Reaction. Adv. Funct. Mater. 2020, 30, 1910274. [Google Scholar] [CrossRef]
- Cui, X.; Ren, P.; Deng, D.; Deng, J.; Bao, X. Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy Environ. Sci. 2016, 9, 123–129. [Google Scholar] [CrossRef]
- Jin, H.; Wang, J.; Su, D.; Wei, Z.; Pang, Z.; Wang, Y. In situ Cobalt–Cobalt Oxide/N-Doped Carbon Hybrids As Superior Bifunctional Electrocatalysts for Hydrogen and Oxygen Evolution. J. Am. Chem. Soc. 2015, 137, 2688. [Google Scholar] [CrossRef]
- Smith, R.D.L.; Prévot, M.S.; Fagan, R.D.; Zhang, Z.; Sedach, P.A.; Siu, M.K.J.; Trudel, S.; Berlinguette, C.P. Photochemical Route for Accessing Amorphous Metal Oxide Materials for Water Oxidation Catalysis. Science 2013, 340, 60–63. [Google Scholar] [CrossRef]
- Ryu, J.; Jung, N.; Jang, J.H.; Kim, H.-J.; Yoo, S.J. In Situ Transformation of Hydrogen-Evolving CoP Nanoparticles: Toward Efficient Oxygen Evolution Catalysts Bearing Dispersed Morphologies with Co-oxo/hydroxo Molecular Units. ACS Catal. 2015, 5, 4066–4074. [Google Scholar] [CrossRef]
- Bhanja, P.; Kim, Y.; Paul, B.; Lin, J.; Alshehri, S.M.; Ahamad, T.; Kaneti, Y.V.; Bhaumik, A.; Yamauchi, Y. Facile Synthesis of Nanoporous Transition Metal-Based Phosphates for Oxygen Evolution Reaction. ChemCatChem 2020, 12, 2091–2096. [Google Scholar] [CrossRef]
- Zheng, Y.; Jiao, Y.; Li, L.H.; Xing, T.; Chen, Y.; Jaroniec, M.; Qiao, S.Z. Toward Design of Synergistically Active Carbon-Based Catalysts for Electrocatalytic Hydrogen Evolution. ACS Nano 2014, 8, 5290–5296. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Ha, J.; Shin, N.; Kim, Y.-T.; Choi, J. Self-activated anodic nanoporous stainless steel electrocatalysts with high durability for the hydrogen evolution reaction. Electrochim. Acta 2020, 364, 137315. [Google Scholar] [CrossRef]
- Lyu, Y.; Wang, R.; Tao, L.; Zou, Y.; Zhou, H.; Liu, T.; Zhou, Y.; Huo, J.; Jiang, S.P.; Zheng, J.; et al. In-situ evolution of active layers on commercial stainless steel for stable water splitting. Appl. Catal. B-Environ. 2019, 248, 277–285. [Google Scholar] [CrossRef]
- Hong, I.T.; Koo, C.H. Antibacterial properties, corrosion resistance and mechanical properties of Cu-modified SUS 304 stainless steel. Mater. Sci. Eng. A 2005, 393, 213–222. [Google Scholar] [CrossRef]
- Olivares-Ramírez, J.M.; Campos-Cornelio, M.L.; Uribe Godínez, J.; Borja-Arco, E.; Castellanos, R.H. Studies on the hydrogen evolutio reaction on different stainless steels. Int. J. Hydrog. Energy 2007, 32, 3170–3173. [Google Scholar] [CrossRef]
- Liu, X.; You, B.; Sun, Y. Facile Surface Modification of Ubiquitous Stainless Steel Led to Competent Electrocatalysts for Overall Water Splitting. ACS Sustain. Chem. Eng. 2017, 5, 4778–4784. [Google Scholar] [CrossRef]
- Zhang, G.-R.; Shen, L.-L.; Schmatz, P.; Krois, K.; Etzold, B.J.M. Cathodic activated stainless steel mesh as a highly active electrocatalyst for the oxygen evolution reaction with self-healing possibility. J. Energy Chem. 2020, 49, 153–160. [Google Scholar] [CrossRef]
- Zhu, S.; Chang, C.; Sun, Y.; Duan, G.; Chen, Y.; Pan, J.; Tang, Y.; Wan, P. Modification of stainless steel fiber felt via in situ self-growth by electrochemical induction as a robust catalysis electrode for oxygen evolution reaction. Int. J. Hydrog. Energy 2020, 45, 1810–1821. [Google Scholar] [CrossRef]
- In, S.-I.; Gwak, Y.S.; Kim, H.R.; Razzaq, A.; Lee, K.-S.; Kim, H.Y.; Chang, S.; Lee, B.H.; Grimes, C.A.; Yang, C.H. Hierarchical Micro/Nano-Porous Acupuncture Needles Offering Enhanced Therapeutic Properties. Sci. Rep. 2016, 6, 34061. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.R.; Kim, H.-R.; Choi, E.-S.; Cho, J.-H.; Kim, N.-J.; Kim, J.-H.; Lee, K.-M.; Razzaq, A.; Choi, H.; Hwang, Y.; et al. Enhanced Therapeutic Treatment of Colorectal Cancer Using Surface-Modified Nanoporous Acupuncture Needles. Sci. Rep. 2017, 7, 12900. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Lee, K.-S.; Sorcar, S.; Razzaq, A.; Lee, M.-G.; In, S.-I. Novel Porous Brain Electrodes for Augmented Local Field Potential Signal Detection. Materials 2019, 12, 542. [Google Scholar] [CrossRef] [Green Version]
- Sorcar, S.; Grimes, C.A.; In, S.-I. The Biocompatibility of Nanoporous Acupuncture Needles. J. Acupunct. Meridian Stud. 2018, 11, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Choi, H.; Flores, M.C.; Razzaq, A.; Gwak, Y.S.; Ahn, D.; Kim, S.M.; Gurel, O.; Lee, B.H.; In, S.-I. Noble Metal Sensitized Invasive Porous Bioelectrodes: Advanced Medical Device for Enhanced Neuronal Activity and Chronic Alcohol Treatment. RSC Adv. 2020, 10, 43514–43522. [Google Scholar] [CrossRef]
- Roy, A.; Ghosh, N.; Ghosh, M.; Das, C.S.; Majumdar, A. Atmospheric plasma irradiation for surface modifcation of Cu-TiC thin film. Appl. Phys. A-Mater. Sci. Process. 2021, 127, 182. [Google Scholar] [CrossRef]
- Weidler, N.; Paulus, S.; Schuch, J.; Klett, J.; Hoch, S.; Stenner, P.; Maljusch, A.; Brötz, J.; Wittich, C.; Kaiser, B.; et al. CoOx thin film deposited by CVD as efficient water oxidation catalyst: Change of oxidation state in XPS and its correlation to electrochemical activity. Phys. Chem. Chem. Phys. 2016, 18, 10708–10718. [Google Scholar] [CrossRef] [PubMed]
- Kou-Tsair, S.U. Porous Acupuncture Needle. U.S. Patent Application No. 20110245856A1, 6 October 2011. [Google Scholar]
- Gondek, C.; Lippold, M.; Röver, I.; Bohmhammel, K.; Kroke, E. Etching silicon with HF-H2O2-based mixtures: Reactivity studies and surface investigations. J. Phys. Chem. C 2014, 118, 2044–2051. [Google Scholar] [CrossRef]
- Liu, X.; Liu, H.; He, G.; Zhu, Y.; Xiao, J.; Han, L. Borate Anion Dopant Inducing Oxygen Vacancies over Co3O4 Nanocages for Enhanced Oxygen Evolution. Catalysts 2021, 11, 659. [Google Scholar] [CrossRef]
- AI-Zuraiji, S.M.; Benkó, T.; Frey, K.; Kerner, Z.; Pap, J.S. Electrodeposition of Fe-Complexes on Oxide Surfaces for Efficient OER Catalysis. Catalysts 2021, 11, 577. [Google Scholar] [CrossRef]
- Adesuji, E.T.; Guaradado-Villegas, E.; Fuentes, K.M.; Sánchez-Domínguez, M.; Videa, M. Pt-Co3O4 Superstructures by One-Pot Reduction/Precipitation in Bicontinuous Microemulsion for Electrocatalytic Oxygen Evolution Reaction. Catalysts 2020, 10, 1311. [Google Scholar] [CrossRef]
- Sekar, N.; Ramasamy, R.P. Electrochemical impedance spectroscopy for microbial fuel cell characterization. J. Microb. Biochem. Technol. S 2013, 6, 004. [Google Scholar]
- Guo, Q.; Li, X.; Wei, H.; Liu, Y.; Li, L.; Yang, X.; Zhang, X.; Liu, H.; Lu, Z., Sr. Fe Co-doped Perovskite Oxides With High Performance for Oxygen Evolution Reaction. Front. Chem. 2019, 7, 224. [Google Scholar] [CrossRef]
- Du, C.; Shang, M.; Mao, J.; Song, W. Hierarchical MoP/Ni2P heterostructures on nickel foam for efficient water splitting. J. Mater. Chem. A 2017, 5, 15940–15949. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.S.; Kim, H.; Flores, M.C.; Jung, G.-S.; In, S.-I. Surface Modification of Electrocatalyst for Optimal Adsorption of Reactants in Oxygen Evolution Reaction. Catalysts 2021, 11, 717. https://doi.org/10.3390/catal11060717
Kim HS, Kim H, Flores MC, Jung G-S, In S-I. Surface Modification of Electrocatalyst for Optimal Adsorption of Reactants in Oxygen Evolution Reaction. Catalysts. 2021; 11(6):717. https://doi.org/10.3390/catal11060717
Chicago/Turabian StyleKim, Hong Soo, Hwapyong Kim, Monica Claire Flores, Gyu-Seok Jung, and Su-Il In. 2021. "Surface Modification of Electrocatalyst for Optimal Adsorption of Reactants in Oxygen Evolution Reaction" Catalysts 11, no. 6: 717. https://doi.org/10.3390/catal11060717
APA StyleKim, H. S., Kim, H., Flores, M. C., Jung, G.-S., & In, S.-I. (2021). Surface Modification of Electrocatalyst for Optimal Adsorption of Reactants in Oxygen Evolution Reaction. Catalysts, 11(6), 717. https://doi.org/10.3390/catal11060717