Exogenous Enzymes as Zootechnical Additives in Animal Feed: A Review
Abstract
:1. Introduction
2. Enzymes as Zootechnical Additives
- Action on the bonds or components that cannot be hydrolyzed by endogenous enzymes.
- Degradation of anti-nutritional factors that reduce digestibility and increase the viscosity of feed.
- Cell wall rupture and the release of nutrients attached to the cell wall.
- Digestion of nutrients.
- Reduction in secretions and the loss of endogenous proteins in the intestine, reducing maintenance needs.
- Increase in digestive enzymes, which are insufficient or non-existent in the animal, resulting in better digestion, especially in young animals with immature digestive systems.
3. Use of Enzymes in Animal Diets
3.1. Enzymes in Poultry Feed
3.2. Enzymes in Swine Feeding
3.3. Enzymes in Ruminant Feeds
3.4. Enzymes in Fish Feeds
3.5. Enzymes in Dog’s Feeds
4. Production of Enzymes for Animal Feeding
5. Future Developments of Enzymes for Animal Feeding
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ugwuanyi, J.O. Enzymes for nutritional enrichment of agro-residues as livestock feed. In Agro-Industrial Wastes as Feedstock for Enzyme, Production; Gurpreet, S.D., Surinder, K., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 233–260. [Google Scholar]
- Walsh, G.A.; Ronan, F.P.; Denis, R.H. Enzymes in the animal-feed industry. Trends Biotechnol. 1993, 11, 424–430. [Google Scholar] [CrossRef]
- Ravindran, V. Feed enzymes: The science, practice, and metabolic realities. J. Appl. Poult. Res. 2013, 22, 628–636. [Google Scholar] [CrossRef]
- Ojha, B.K.; Singh, P.K.; Shrivastava, N. Enzymes in the Animal Feed Industry. In Enzymes in Food Biotechnology; Mohammed, K., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 93–109. [Google Scholar]
- Wang, Y.; McAllister, T.A.; Rode, L.M.; Beauchemin, K.A.; Morgavi, D.P.; Nsereko, V.L.; Iwaasa, D.A.; Yang, W. Effects of an exogenous enzyme preparation on microbial protein synthesis, enzyme activity and attachment to feed in the Rumen Simulation Technique (Rusitec). Br. J. Nutr. 2001, 85, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Greiner, R.; Konietzny, U. Phytase for food applications. Food Technol. Biotechnol. 2006, 44, 125–140. [Google Scholar]
- Rosen, G.D. Effects of genetic, managemental and dietary factors on the efficacy of exogenous microbial phytase in broiler nutrition. Br. Poult. Sci. 2003, 44, 25–26. [Google Scholar] [CrossRef]
- Debyser, W.; Peumans, W.J.; Van Damme, E.J.M.; Delcour, J.A. Triticum aestivum xylanase inhibitor (TAXI), a new class of enzyme inhibitor affecting breadmaking performance. J. Cereal Sci. 1999, 30, 39–43. [Google Scholar] [CrossRef]
- Brufau, J. Introducción al uso de enzimas en la alimentación animal un proceso de innovación. nutriNews 2014, 1, 17–21. [Google Scholar]
- Imran, M.; Nazar, M.; Saif, M.; Khan, M.A.; Sanaullah, V.M.; Javed, O. Role of Enzymes in Animal Nutrition: A Review. PSM Vet Res. 2016, 1, 38–45. [Google Scholar]
- Bedford, M.R.; Cowieson, A.J. Exogenous enzymes and their effects on intestinal microbiology. Anim. Feed Sci. Tech. 2012, 173, 76–85. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Colombatto, D.; Morgavi, D.P.; Yang, W.Z.; Rode, L.M. Mode of action of exogenous cell wall degrading enzymes for ruminants. Can. J. Anim. Sci. 2004, 84, 13–22. [Google Scholar] [CrossRef]
- Pariza, M.W.; Cook, M. Determining the safety of enzymes used in animal feed. Regul. Toxicol. Pharmacol. 2010, 56, 332–342. [Google Scholar] [CrossRef] [PubMed]
- De Vos, P.; Faas, M.M.; Spasojevic, M.; Sikkema, J. Encapsulation for preservation of functionality and targeted delivery of bioactive food components. Int. Dairy J. 2010, 20, 292–302. [Google Scholar] [CrossRef]
- Bedford, M.R. The evolution and application of enzymes in the animal feed industry: The role of data interpretation. Br. Poult. Sci. 2018, 59, 486–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nortey, T.N.; Patience, J.F.; Sands, J.S.; Zijlstra, R.T. Xylanase supplementation improves energy digestibility of wheat by-products in grower pigs. Livest. Sci. 2007, 109, 96–99. [Google Scholar] [CrossRef]
- Yin, Y.L.; Baidoo, S.K.; Jin, L.Z.; Liu, Y.G.; Schulze, H.; Simmins, P.H. The effect of different carbohydrase and protease supplementation on apparent (ileal and overall) digestibility of nutrients of five hulless barley varieties in young pigs. Livest. Prod. Sci. 2001, 71, 109–120. [Google Scholar] [CrossRef]
- Ghazi, S.; Rooke, J.A.; Galbraith, H.; Bedford, M.R. The potential for the improvement of the nutritive value of soya-bean meal by different proteases in broiler chicks and broiler cockerels. Br. Poult. Sci. 2002, 43, 70–77. [Google Scholar] [CrossRef]
- Marsman, G.J.; Gruppen, H.; Van der Poel, A.F.; Kwakkel, R.P.; Verstegen, M.W.; Voragen, A.G. The effect of thermal processing and enzyme treatments of soybean meal on growth performance, ileal nutrient digestibilities, and chyme characteristics in broiler chicks. Poult. Sci. 1997, 76, 864–872. [Google Scholar] [CrossRef]
- Philipps, W.P. Proteases–animal feed. In Enzymes in Human and Animal Nutrition; Simões, N.C., Kumar, V., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 279–297. [Google Scholar]
- Kaldhusdal, M.I. Necrotic enteritis as affected by dietary ingredients. World Poult. 2000, 16, 42–43. [Google Scholar]
- Raza, A.; Bashir, S.; Tabassum, R. An update on carbohydrases: Growth performance and intestinal health of poultry. Heliyon 2019, 5, e01437. [Google Scholar] [CrossRef] [Green Version]
- Khattak, F.M.; Pasha, T.N.; Hayat, Z.; Mahmud, A. Enzymes in poultry nutrition. J. Anim. Plant Sci. 2006, 16, 1–7. [Google Scholar]
- Wenk, C. Recent advances in animal feed additives such as metabolic modifiers, antimicrobial agents, probiotics, enzymes and highly available minerals-review. Asian-Australas. J. Anim. Sci. 2000, 13, 86–95. [Google Scholar]
- Gracia, M.I.; Aranibar, M.; Lazaro, R.; Medel, P.; Mateos, G.G. Alpha-amylase supplementation of broiler diets based on corn. Poult. Sci. 2003, 82, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Café, M.B.; Borges, C.A.; Fritts, C.A.; Waldroup, P.W. Avizyme improves performance of broilers fed corn-soybean meal-based diets. J. Appl. Poult. Res. 2002, 11, 29–33. [Google Scholar] [CrossRef]
- Babalola, T.O.; Apata, D.F.; Atteh, J.O. Effect of β-xylanase supplementation of boiled castor seed meal-based diets on the performance, nutrient absorbability and some blood constituents of pullet chicks. Trop. Sci. 2006, 46, 216–223. [Google Scholar] [CrossRef]
- Fernandes, V.O.; Costa, M.; Ribeiro, T.; Serrano, L.; Cardoso, V.; Santos, H.; Lordelo, M.; Ferreira, L.M.; Fontes, C.M. 1,3-1,4-β-Glucanases and not 1,4-β-glucanases improve the nutritive value of barley-based diets for broilers. Anim. Feed Sci. Technol. 2016, 211, 153–163. [Google Scholar] [CrossRef]
- Teymouri, H.; Zarghi, H.; Golian, A. Evaluation of hull-less barley with or without enzyme cocktail in the finisher diets of broiler chickens. J. Agric. Sci. Technol. 2018, 20, 469–483. [Google Scholar]
- Kalantar, M.; Khajali, F.; Yaghobfar, A. Different dietary source of non-starch polysaccharides supplemented with enzymes affected growth and carcass traits, blood parameters and gut physicochemical properties of broilers. Glob. J. Anim. Sci. Res. 2015, 3, 412–418. [Google Scholar]
- Juanpere, J.; Perez, V.A.M.; Angulo, E.; Brufau, J. Assessment of potential interactions between phytase and glycosidase enzyme supplementation on nutrient digestibility in broilers. Poult. Sci. 2005, 84, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, C.J.; Domínguez, H.E.M.; Mercado, F.Y.; O’Donovan, A.; Diaz, G.G. Mycosphere Essay 10: Properties and characteristics of microbial xylanases. Mycosphere 2016, 7, 1600–1619. [Google Scholar] [CrossRef]
- Ohimain, E.I.; Ofongo, R. Enzyme supplemented poultry diets: Benefits so far—A review. Int. J. Adv. Biotechnol. Res. 2014, 3, 31–39. [Google Scholar]
- Acosta, A.; Cárdenas, M. Enzimas en la alimentación de las aves. Fitasas. Rev. Cuba. Cienc. Agríc. 2006, 40, 377–387. [Google Scholar]
- Waldroup, P.W.; Kersey, J.H.; Saleh, E.A.; Fritts, C.A.; Yan, F.; Stilborn, H.L.; Crum, R.C., Jr.; Raboy, V. Nonphytate phosphorus requirement and phosphorus excretion of broiler chicks fed diets composed of normal or high available phosphate corn with and without microbial phytase. Poult. Sci. 2000, 79, 1451–1459. [Google Scholar] [CrossRef]
- Sebastian, S.; Touchburn, S.P.; Chavez, E.R.; Lague, P.C. Efficacy of supplemental microbial phytase at different dietary calcium levels on growth performance and mineral utilization of broiler chickens. Poult. Sci. 1996, 75, 1516–1523. [Google Scholar] [CrossRef]
- Namkung, H.; Leeson, S. Effect of phytase enzyme on dietary nitrogen-corrected apparent metabolizable energy and the ileal digestibility of nitrogen and amino acids in broiler chicks. Poult. Sci. 1999, 78, 1317–1319. [Google Scholar] [CrossRef]
- Torres, P.A.; Hermans, D.; Manzanilla, E.G.; Bindelle, J.; Everaert, N.; Beckers, Y.; Torrallardona, D.; Bruggeman, G.; Gardiner, G.E.; Lawlor, P.G. Effect of feed enzymes on digestibility and growth in weaned pigs: A systematic review and meta-analysis. Anim. Feed Sci. Technol. 2017, 233, 145–159. [Google Scholar] [CrossRef]
- Hernández, J.F.P. Utilización de enzimas en la alimentación del ganado porcino. Anaporc Rev. Asoc. Porc. Cient. 2006, 3, 32–36. [Google Scholar]
- Dersjant, L.Y.; Awati, A.; Schulze, H.; Partridge, G. Phytase in non-ruminant animal nutrition: A critical review on phytase activities in the gastrointestinal tract and influencing factors. J. Sci. Food Agric. 2015, 95, 878–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodehutscord, M.; Rosenfelder, P. Update on phytate degradation pattern in the gastrointestinal tract of pigs and broiler chickens. In Phytate Destruction-Consequences for Precision Animal Nutrition; Walk, C.L., Kühn, I., Stein, H.H., Kidd, M.T., Rodehutscord, M., Eds.; Wageningen Academic Publishers: Wagingen, The Netherlands, 2016; pp. 237–246. [Google Scholar]
- Tiwari, U.P.; Chen, H.; Kim, S.W.; Jha, R. Supplemental effect of xylanase and mannanase on nutrient digestibility and gut health of nursery pigs studied using both in vivo and in vitro models. Anim. Feed Sci. Technol. 2018, 245, 77–90. [Google Scholar] [CrossRef]
- Nortey, T.N.; Owusu, A.A.; Zijlstra, R.T. Effects of xylanase and phytase on digestion site of low-density diets fed to weaned pigs. Livest. Res. Rural. Dev. 2015, 27, 133. [Google Scholar]
- Rojo, R.; Mendoza, G.D.; González, S.S.; Landois, L.; Bárcena, R.; Crosby, M.M. Effects of exogenous amylases from Bacillus licheniformis and Aspergillus niger on ruminal starch digestion and lamb performance. Anim. Feed Sci. Technol. 2005, 123, 655–665. [Google Scholar] [CrossRef]
- Refat, B.; Christensen, D.A.; McKinnon, J.J.; Yang, W.; Beattie, A.D.; McAllister, T.A.; Eun, J.S.; Abdel, R.G.A.; Yu, P. Effect of fibrolytic enzymes on lactational performance, feeding behavior, and digestibility in high-producing dairy cows fed a barley silage–based diet. Int. J. Dairy Sci. 2018, 101, 7971–7979. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, H.J.; Hazlewood, G.P. Bacterial cellulases and xylanases. J. Gen. Microbiol. 1993, 139, 187–194. [Google Scholar] [CrossRef] [Green Version]
- Murad, H.A.; Azzaz, H.H. Cellulase and dairy animal feeding. Biotechnology 2010, 9, 238–256. [Google Scholar] [CrossRef] [Green Version]
- Golder, H.M.; Rossow, H.A.; Lean, I.J. Effects of in-feed enzymes on milk production and components, reproduction, and health in dairy cows. J. Dairy Sci. 2019, 102, 8011–8026. [Google Scholar] [CrossRef]
- Trejo, L.T.; Zepeda, B.A.; Franco, F.J.; Soto, S.S.; Ojeda, R.D.; Ayala, M.M. Uso de extracto enzimático de Pleurotus ostreatus sobre los parámetros productivos de cabras. Abanico Vet. 2017, 7, 14–21. [Google Scholar]
- Zinn, R.A.; Salinas, J. Influence of Fibrozyme on digestive function and growth performance of feedlot steers fed a 78 % concentrate growing diet. In Biotechnology in the Feed Industry Proceedings of the Fifteenth Annual Symposium Nottingham; Lyons, T.P., Jacques, K.A., Eds.; Nottingham University Press: Nottingham, UK, 1999; pp. 313–319. [Google Scholar]
- Rojo, R.R.; Martínez, G.D.M.; Galván, M.M.C. Uso de la amilasa termoestable de Bacillus licheniformis en la digestibilidad in vitro del almidón de sorgo y maíz. Agrociencia 2001, 35, 423–427. [Google Scholar]
- Rojo, R.R.; Mendoza, M.G.D.; Montañez, V.O.D.; Rebollar, R.S.; Cardoso, J.D.; Hernández, M.J.; González, R.F.J. Enzimas amilolíticas exógenas en la alimentación de rumiantes. Univ. Cienc. 2007, 23, 173–182. [Google Scholar]
- Francis, G.; Makkar, H.; Becker, K. Antinutritional factors present in plant- derived alternate fish feed ingredients and their effects in fish. Aquaculture 2001, 199, 197–227. [Google Scholar] [CrossRef]
- Kolkovski, S.; Tandler, A.; Kissil, G.; Gertler, A. The effect of dietary exogenous digestive enzymes on ingestion, assimilation, growth and survival of gilthead seabream (Sparus auratus, Sparidae, Linnaeus) larvae. Fish Physiol. Biochem. 1993, 12, 203–209. [Google Scholar] [CrossRef]
- Ghomi, M.R.; Shahriari, R.; Langroudi, H.F.; Nikoo, M.; von Elert, E. Effects of exogenous dietary enzyme on growth, body composition, and fatty acid profiles of cultured great sturgeon Huso huso fingerlings. Aquac. Int. 2012, 20, 249–254. [Google Scholar] [CrossRef]
- Castillo, S.; Gatlin, D.M., III. Dietary supplementation of exogenous carbohydrase enzymes in fish nutrition: A review. Aquaculture 2015, 435, 286–292. [Google Scholar] [CrossRef]
- Adeola, O.; Cowieson, A.J. Board-Invited Review: Opportunities and challenges in using exogenous enzymes to improve nonruminant animal production. Anim. Sci. J. 2011, 89, 3189–3218. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Sinha, A.K.; Makkar, H.P.S.; De Boeck, G.; Becker, K. Phytate and phytase in fish nutrition. J. Anim. Physiol. Anim. Nutr. 2012, 96, 335–364. [Google Scholar] [CrossRef] [PubMed]
- Kolkovski, S.; Tandler, A.; Izquierdo, M.S. Effects of live food and dietary digestive enzymes on the efficiency of microdiets for seabass (Dicentrarchus labrax) larva. Aquaculture 1997, 148, 313–322. [Google Scholar] [CrossRef]
- Farhangi, M.; Carter, C. Effect of enzyme supplementation to dehulled lupin-based diets on growth, feed efficiency, nutrient digestibility and carcass composition of rainbow trout, Oncorhynchus mykiss (Walbaum). Aquac. Res. 2007, 38, 1274–1282. [Google Scholar] [CrossRef]
- Ogunkoya, A.E.; Page, G.I.; Adewolu, M.A.; Bureau, D.P. Dietary incorporation of soybean meal and exogenous enzyme cocktail can affect physical characteristics of faecal material egested by rainbow trout (Oncorhynchus mykiss). Aquaculture 2006, 254, 466–475. [Google Scholar] [CrossRef]
- Ai, Q.; Mai, K.; Zhang, W.; Xu, W.; Tan, B.; Zhang, C.; Li, H. Effects of exogenous enzymes (phytase, non- starch polysaccharide enzyme) in diets on growth, feed utilization, nitrogen and phosphorus excretion of Japanese seabass, Lateolabrax japonicas. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2007, 147, 502–508. [Google Scholar] [CrossRef]
- Yildirim, Y.B.; Turan, F. Effects of exogenous multienzyme supplementation in diets on growth and feed utilization of African catfish, Clarias gariepinus. J. Anim. Vet. Adv. 2010, 9, 327–331. [Google Scholar]
- Yigit, N.O.; Olmez, M. Effects of cellulase addition to canola meal in tilapia (Oreochromis niloticus L.) diets. Aquac. Nutr. 2011, 17, e494–e500. [Google Scholar] [CrossRef]
- Ali, Z.A.; Kanani, H.G.; Azam, E.A.; Ramezani, S.; Zoriezahra, S.J. Effects of two dietary exogenous multi-enzyme supplementation, Natuzyme® and beta-mannanase (Hemicell®), on growth and blood parameters of Caspian salmon (Salmo trutta caspius). Comp. Clin. Path. 2014, 23, 187–192. [Google Scholar]
- Adeoye, A.A.; Jaramillo, T.A.; Fox, S.W.; Merrifield, D.L.; Davies, S.J. Supplementation of formulated diets for tilapia (Oreochromis niloticus) with selected exogenous enzymes: Overall performance and effects on intestinal histology and microbiota. Anim. Feed. Sci. Technol. 2016, 215, 133–143. [Google Scholar] [CrossRef]
- Dalsgaard, J.; Verlhac, V.; Hjermitslev, N.H.; Ekmann, K.S.; Fischer, M.; Klausen, M.; Pedersen, P.B. Effects of exogenous enzymes on apparent nutrient digestibility in rainbow trout (Oncorhynchus mykiss) fed diets with high inclusion of plant-based protein. Anim. Feed Sci. Technol. 2012, 171, 181–191. [Google Scholar] [CrossRef]
- Villaverde, C.; Manzanilla, E.G.; Molina, J.; Larsen, J.A. Effect of enzyme supplements on macronutrient digestibility by healthy adult dogs. J. Nutr. Sci. 2017, 6, e12. [Google Scholar] [CrossRef] [Green Version]
- Twomey, L.N.; Pluske, J.R.; Rowe, J.B.; Choct, M.; Brown, W.; Pethick, D.W. The replacement value of sorghum and maize with or without supplemental enzymes for rice in extruded dog foods. Anim. Feed Sci. Technol. 2003, 108, 61–69. [Google Scholar] [CrossRef]
- Sá, F.C.; Vasconcellos, R.S.; Brunetto, M.A.; Filho, F.O.R.; Gomes, M.O.S.; Carciofi, C.A. Enzyme use in kibble diets formulated with wheat bran for dogs: Effects on processing and digestibility. J. Anim. Physiol. Anim. Nutr. 2013, 97, 51–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carciofi, A.C.; Palagiano, C.; Sá, F.C.; Martins, M.S.; Gonçalves, K.N.V.; Bazolli, R.S.; Souza, D.F.; Vasconcellos, R.S. Amylase utilization for the extrusion of dog diets. Anim. Feed Sci. Technol. 2012, 177, 211–217. [Google Scholar] [CrossRef]
- Pacheco, G.F.E.; Marcolla, C.S.; Machado, G.S.; Kessler, A.M.; Trevizan, L. Effect of full-fat rice bran on palatability and digestibility of diets supplemented with enzymes in adult dogs. Anim. Sci. J. 2014, 92, 4598–4606. [Google Scholar] [CrossRef]
- Twomey, L.N.; Pluske, J.R.; Rowe, J.B.; Choct, M.; Brown, W.; McConnell, M.F.; Pethick, D.W. The effects of increasing levels of soluble non-starch polysaccharides and inclusion of feed enzymes in dog diets on faecal quality and digestibility. Anim. Feed Sci. Technol. 2003, 108, 71–82. [Google Scholar] [CrossRef]
- McAllister, T.A.; Hristov, A.N.; Beauchemin, K.A.; Rode, L.M.; Cheng, K.J. Enzymes in ruminant diets. Enzym. Farm Anim. Nutr. 2001, 273–298. [Google Scholar] [CrossRef] [Green Version]
- Sarder, N.U.; Hasan, A.M.; Anower, M.R.; Salam, M.A.; Alam, M.J.; Islam, S. Commercial Enzymes Production by Recombinant DNA Technology: A Conceptual Works. Pak. J. Biol. Sci. 2005, 8, 345–355. [Google Scholar]
- Souza, P.M. Application of microbial α-amylase in industry—A review. Braz. J. Microbiol. 2010, 41, 850–861. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Gupta, V.K.; Modi, D.R.; Yadava, L.P. Production and characterization of α-amylase from Aspergillus niger. Biotechnol. 2008, 7, 551–556. [Google Scholar] [CrossRef]
- Olempska, B.Z.S.; Merker, R.I.; Ditto, M.D.; DiNovi, M.J. Food-processing enzymes from recombinant microorganisms–a review. Regul. Toxicol. Pharmacol. 2006, 45, 144–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuster, E.; Dunn, C.N.; Frisvad, J.C.; Van Dijck, P.W. On the safety of Aspergillus niger–a review. Appl. Microbiol. Biotechnol. 2002, 59, 426–435. [Google Scholar] [PubMed]
- Zhang, X.Z.; Zhang, Y.H. Cellulases: Characteristics, sources, production, and applications. In Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers; Shang-Tian, Y., Hesham, A., El-Enshasy, N.T., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 131–146. [Google Scholar]
- Schülein, M. Enzymatic properties of cellulases from Humicola insolens. J. Biotechnol. 1997, 57, 71–81. [Google Scholar] [CrossRef]
- De Andrade, T.P.C.S.; Da Costa, C.L.A.; Karp, S.G. α-Galactosidases: Characteristics, production and immobilization. J. Food Nutr. Res. 2016, 55, 195–204. [Google Scholar]
- Coenen, T.M.; Schoenmakers, A.C.; Verhagen, H. Safety evaluation of β-glucanase derived from Trichoderma reesei: Summary of toxicological data. Food Chem. Toxicol. 1995, 33, 859–866. [Google Scholar] [CrossRef]
- Shahi, N.; Hasan, A.; Akhtar, S.; Siddiqui, M.H.; Sayeed, U.; Khan, M.K. Xylanase: A promising enzyme. J. Chem. Pharm. Res. 2016, 8, 334–339. [Google Scholar]
- Flood, M.T.; Kondo, M. Safety evaluation of lipase produced from Rhizopus oryzae: Summary of toxicological data. Regul. Toxicol. Pharmacol. 2003, 37, 293–304. [Google Scholar] [CrossRef]
- Flood, M.T.; Kondo, M. Safety evaluation of lipase produced from Candida rugosa: Summary of toxicological data. Regul. Toxicol. Pharmacol. 2001, 33, 157–164. [Google Scholar] [CrossRef] [Green Version]
- De Melo, S.K.; Sá, F.C.; de Souza, D.F.; da Silva, F.L.; Urrego, M.I.; Vendramini, T.H.; Brunetto, M.A.; Carciofi, A.C. Effect of the addition of papain enzyme on digestive parameters and palatability of extruded diets for dogs. Braz. J. Vet. Res. Anim. Sci. 2017, 54, 357–365. [Google Scholar]
- Awad, G.E.; Helal, M.M.; Danial, E.N.; Esawy, M.A. Optimization of phytase production by Penicillium purpurogenum GE1 under solid state fermentation by using Box–Behnken design. Saudi J. Biol. Sci. 2014, 21, 81–88. [Google Scholar] [CrossRef]
- Sarteshnizi, F.R.; Benemar, H.A.; Seifdavati, J.; Greiner, R.; Salem, A.Z.; Behroozyar, H.K. Production of an environmentally friendly enzymatic feed additive for agriculture animals by spray drying abattoir’s rumen fluid in the presence of different hydrocolloids. J. Clean. Prod. 2018, 197, 870–874. [Google Scholar] [CrossRef]
- Sarteshnizi, F.R.; Seifdavati, J.; Abdi-Benemar, H.; Salem, A.Z.; Sharifi, R.S.; Mlambo, V. The potential of rumen fluid waste from slaughterhouses as an environmentally friendly source of enzyme additives for ruminant feedstuffs. J. Clean. Prod. 2018, 195, 1026–1031. [Google Scholar] [CrossRef]
- Cherdthong, A.; Wanapat, M.; Saenkamsorn, A.; Waraphila, N.; Khota, W.; Rakwongrit, D.; Anantasook, N.; Gunun, P. Effects of replacing soybean meal with dried rumen digesta on feed intake, digestibility of nutrients, rumen fermentation and nitrogen use efficiency in Thai cattle fed on rice straw. Livest. Sci. 2014, 169, 71–77. [Google Scholar] [CrossRef]
- Hassan, N.; Rafiq, M.; Rehman, M.; Sajjad, W.; Hasan, F.; Abdullah, S. Fungi in acidic fire: A potential source of industrially important enzymes. Fungal Biol. Rev. 2019, 33, 58–71. [Google Scholar] [CrossRef]
- Kristoffersen, S.; Gjefsen, T.; Svihus, B.; Kjos, N.P. The effect of reduced feed pH, phytase addition and their interaction on mineral utilization in pigs. Livest. Sci. 2021, 248, 104498. [Google Scholar] [CrossRef]
- Zeng, Z.K.; Wang, D.; Piao, X.S.; Li, P.F.; Zhang, H.Y.; Shi, C.X.; Yu, S.K. Efectos de la adición de superdosis de fitasa a las dietas deficientes en fósforo de los cerdos jóvenes sobre el rendimiento del crecimiento, la calidad ósea, la digestibilidad de minerales y aminoácidos. Rev. Cienc. Anim. Asia Aust. 2014, 27, 237–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassie, L.H.; Dean, B.R.; Koehler, D.; Stacie, A.G.; Qingyun, L.; Patience, J.F. The impact of “super-dosing” phytase in pig diets on growth performance during the nursery and grow-out periods. Transl. Anim. Sci. 2019, 1, 419–428. [Google Scholar]
- Valdivia, A.L.; Matos, M.M.; Rodríguez, Z.; Pérez, Y.; Rubio, Y.; Vega, J. Los aditivos enzimáticos, su aplicación en la crianza animal. Cuba. J. Agric. Sci. 2019, 53, 341–352. [Google Scholar]
- Roodveldt, C.; Aharoni, A.; Tawfik, D.S. Directed evolution of pro- teins for heterologous expression and stability. Curr. Opin. Struct. Biol. 2005, 15, 50–56. [Google Scholar] [CrossRef]
- Chapman, J.; Ismail, A.; Dinu, C. Industrial applications of enzymes: Recent advances, techniques, and outlooks. Catalysts 2018, 8, 238. [Google Scholar] [CrossRef] [Green Version]
- Currin, A.; Swainston, N.; Day, P.J.; Kell, D.B. Synthetic biology for the directed evolution of protein biocatalysts: Navigating sequence space intelligently. Chem. Soc. Rev. 2015, 44, 1172–1239. [Google Scholar] [CrossRef] [Green Version]
- Thapa, S.; Li, H.; OHair, J.; Bhatti, S.; Chen, F.C.; Al Nasr, K.; Zhou, S. Biochemical characteristics of microbial enzymes and their significance from industrial perspectives. Mol. Biotechnol. 2019, 61, 579–601. [Google Scholar] [CrossRef]
- Soo, V.W.; Yosaatmadja, Y.; Squire, C.J.; Patrick, W.M. Mechanistic and evolutionary insights from the reciprocal promiscuity of two pyridoxal phosphate-dependent enzymes. J. Biol. Chem. 2016, 291, 19873–19887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Packer, M.S.; Liu, D.R. Methods for the directed evolution of proteins. Nat. Rev. Genet. 2015, 16, 379. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, V. In vitro engineering of novel bioactivity in the natural enzymes. Front. Chem. 2016, 4, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Ruff, A.J.; Arlt, M.; Schwaneberg, U. Casting epPCR (cepPCR): A simple random mutagenesis method to generate high quality mutant libraries. Biotechnol. Bioeng. 2017, 114, 1921–1927. [Google Scholar] [CrossRef]
- Wang, K.; Luo, H.; Tian, J.; Turunen, O.; Huang, H.; Shi, P.; Yao, B. Thermostability improvement of a Streptomyces xylanase by introducing proline and glutamic acid residues. Appl. Environ. Microbiol. 2014, 80, 2158–2165. [Google Scholar] [CrossRef] [Green Version]
- Victorino da Silva, A.I.; Gonsales da Rosa-Garzon, N.; Antônio de Oliveira Simões, F.; Santiago, F.; Pereira da Silva Leite, N.; Raspante Martins, J.; Cabral, H. Enzyme engineering and its industrial applications. Appl. Biochem. Biotechnol. 2021. [Google Scholar] [CrossRef]
- Lin, L.L.; Liu, J.S.; Wang, W.C.; Chen, S.H.; Huang, C.C.; Lo, H.F. Glutamic acid 219 is critical for the thermostability of a truncated α-amylase from alkaliphilic and thermophilic Bacillus sp. strain TS-23. World J. Microbiol. Biotechnol. 2008, 24, 619–626. [Google Scholar] [CrossRef]
- Han, N.; Ma, Y.; Mu, Y.; Tang, X.; Li, J.; Huang, Z. Enhancing thermal tolerance of a fungal GH11 xylanase guided by B-factor analysis and multiple sequence alignment. Enzyme Microb. Technol. 2019, 131, 109422. [Google Scholar] [CrossRef]
- Tang, Z.; Jin, W.; Sun, R.; Liao, Y.; Zhen, T.; Chen, H.; Li, C. Improved thermostability and enzyme activity of a recombinant phyA mutant phytase from Aspergillus niger N25 by directed evolution and site-directed mutagenesis. Enzyme Microb. Technol. 2018, 108, 74–81. [Google Scholar] [CrossRef]
- Fenel, F.; Leisola, M.; Jänis, J.; Turunen, O. A de novo designed N-terminal disulphide bridge stabilizes the Trichoderma reesei endo-1,4-β-xylanase II. J. Biotech. 2004, 108, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Yang, H.; Shin, H.D.; Chen, R.R.; Li, J.; Du, G.; Chen, J. How to achieve high-level expression of microbial enzymes: Strategies and perspectives. Bioengineered 2013, 4, 212–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terpe, K. Overview of bacterial expression systems 18. for heterologous protein production: From molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol. 2006, 72, 211–222. [Google Scholar] [CrossRef]
- Forano, E.; Flint, H. Genetically modified organisms: Consequences for ruminant health and nutrition. Ann. Zootech. 2000, 49, 255–271. [Google Scholar] [CrossRef] [Green Version]
- Ravindran, V.; Son, J.H. Feed enzyme technology: Present status and future developments. Recent Pat. Food Nutr. Agric. 2011, 3, 102–109. [Google Scholar]
- Adrio, J.L.; Demain, A.L. Microbial enzymes: Tools for biotechnological processes. Biomolecules 2014, 4, 117–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suplatov, D.; Voevodin, V.; Švedas, V. Robust enzyme design: Bioinformatic tools for improved protein stability. Biotechnol. J. 2015, 10, 344–355. [Google Scholar] [CrossRef]
- Hernández-Domínguez, E.M.; Castillo-Ortega, L.S.; García-Esquivel, Y.; Mandujano-González, V.; Díaz-Godínez, G.; Álvarez-Cervantes, J. Bioinformatics as a Tool for the Structural and Evolutionary Analysis of Proteins. In Computational Biology and Chemistry; IntechOpen: London, UK, 2020; pp. 37–64. [Google Scholar]
- Escobar, C.A.M.; Murillo, L.V.R.; Soto, J.F. Tecnologías bioinformáticas para el análisis de secuencias de ADN. Sci. Tech. 2011, 3, 116–121. [Google Scholar]
- Robertson, G.; Schein, J.; Chiu, R.; Corbett, R.; Field, M.; Jackman, S.D.; Mungall, K.; Lee, S.; Okada, H.M.; Qian, J.Q.; et al. De novo assembly and analysis of RNA-seq data. Nat. Methods. 2010, 7, 909–912. [Google Scholar] [CrossRef] [PubMed]
- Merkl, R.; Sterner, R. Ancestral protein reconstruction: Techniques and applications. Biol. Chem. 2016, 397, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Cervantes, J.; Díaz-Godínez, G.; Mercado-Flores, Y.; Gupta, V.K.; Anducho-Reyes, M.A. Phylogenetic analysis of β-xylanase SRXL1 of Sporisorium reilianum and its relationship with families (GH10 and GH11) of Ascomycetes and Basidiomycetes. Sci. Rep. 2016, 6, 24010. [Google Scholar] [CrossRef] [Green Version]
- Bastolla, U.; Arenas, M. The influence of protein stability on sequence evolution: Applications to phylogenetic inference. In Computational Methods in Protein Evolution; Sikosek, T., Ed.; Humana Press: New York, NY, USA, 2019; pp. 215–231. [Google Scholar]
- Szurmant, H.; Weigt, M. Interresidue, inter-protein and inter-family coevolution: Bridging the scales. Curr. Opin. Struct. Biol. 2018, 50, 26–32. [Google Scholar] [CrossRef]
- Xu, D.; Xu, Y.; Uberbacher, C.E. Computational tools for protein modeling. Curr. Protein Pept. Sci. 2000, 1, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Cheung, N.J.; Yu, W. De novo protein structure prediction using ultra-fast molecular dynamics simulation. PLoS ONE. 2018, 13, e0205819. [Google Scholar] [CrossRef] [Green Version]
- Eiben, C.B.; Siegel, J.B.; Bale, J.B.; Cooper, S.; Khatib, F.; Shen, B.W.; Players, F.; Stoddard, B.L.; Popovic, Z.; Baker, D. Increased Diels-Alderase activity through backbone remodeling guided by Foldit players. Nat. Biotechnol. 2012, 30, 190–192. [Google Scholar] [CrossRef] [Green Version]
- Jemli, S.; Ayadi-Zouari, D.; Hlima, H.B.; Bejar, S. Biocatalysts: Application and engineering for industrial purposes. Crit. Rev. Biotechnol. 2014, 36, 246–258. [Google Scholar] [CrossRef]
- Hong, J.; Tamaki, H.; Akiba, S.; Yamamoto, K.; Kumagai, H. Cloning of a gene encoding a highly stable endo-β-1, 4-glucanase from Aspergillus niger and its expression in yeast. J. Biosci. Bioeng. 2001, 92, 434–441. [Google Scholar] [CrossRef]
- Yan, J.; Liu, W.; Li, Y.; Lai, H.L.; Zheng, Y.; Huang, J.W.; Chen, C.-C.; Chen, Y.; Jin, J.; Li, H.; et al. Functional and structural analysis of Pichia pastoris-expressed Aspergillus niger 1,4-β-endoglucanase. Biochem. Biophys. Res. Commun. 2016, 475, 8–12. [Google Scholar] [CrossRef]
- Yoshizawa, T.; Shimizu, T.; Hirano, H.; Sato, M.; Hashimoto, H. Structural basis for inhibition of xyloglucan-specific endo-β-1, 4-glucanase (XEG) by XEG-protein inhibitor. J. Biol. Chem. 2012, 287, 18710–18716. [Google Scholar] [CrossRef] [Green Version]
- Wiegand, G.; Epp, O.; Huber, R. The crystal structure of porcine pancreatic α-amylase in complex with the microbial inhibitor Tendamistat. J. Mol. Biol. 1995, 247, 99–110. [Google Scholar] [CrossRef]
- Shahhoseini, M.; Ziaee, A.A.; Ghaemi, N. Expression and secretion of an α-amylase gene from a native strain of Bacillus licheniformis in Escherichia coli by T7 promoter and putative signal peptide of the gene. J. Appl. Microbiol. 2003, 95, 1250–1254. [Google Scholar] [CrossRef]
- Machius, M.; Declerck, N.; Huber, R.; Wiegand, G. Kinetic stabilization of Bacillus licheniformis α-amylase through introduction of hydrophobic residues at the surface. J. Biol. Chem. 2003, 278, 11546–11553. [Google Scholar] [CrossRef] [Green Version]
- Oyama, T.; Miyake, H.; Kusunoki, M.; Nitta, Y. Crystal structures of β-amylase from Bacillus cereus var. mycoides in complexes with substrate analogs and affinity-labeling reagents. J. Biochem. 2003, 133, 467–474. [Google Scholar] [CrossRef]
- Watanabe, M.; Fukada, H.; Ishikawa, K. Construction of thermophilic xylanase and its structural analysis. Biochemistry 2016, 55, 4399–4409. [Google Scholar] [CrossRef] [PubMed]
- Wan, Q.; Zhang, Q.; Hamilton-Brehm, S.; Weiss, K.; Mustyakimov, M.; Coates, L.; Langan, P.; Graham, D.; Kovalevsky, A. X-ray crystallographic studies of family 11 xylanase Michaelis and product complexes: Implications for the catalytic mechanism. Acta Crystallogr. Sect. D Biol. Crystallogr. 2014, 70, 11–23. [Google Scholar] [CrossRef] [Green Version]
- Ramaswamy, S.; Rasheed, M.; Morelli, C.F.; Calvio, C.; Sutton, B.J.; Pastore, A. The structure of PghL hydrolase bound to its substrate poly-γ-glutamate. FEBS J. 2018, 285, 4575–4589. [Google Scholar] [CrossRef] [PubMed]
- Oakley, A.J. The structure of Aspergillus niger phytase PhyA in complex with a phytate mimetic. Biochem. Biophys. Res. Commun. 2010, 397, 745–749. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.F.; Ko, T.P.; Lai, H.L.; Cheng, Y.S.; Wu, T.H.; Ma, Y.; Chen, C.-C.; Yang, C.-S.; Cheng, K.-J.; Huang, C.-H.; et al. Crystal structures of Bacillus alkaline phytase in complex with divalent metal ions and inositol hexasulfate. J. Mol. Biol. 2011, 409, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Ha, N.C.; Oh, B.-C.; Shin, S.; Kim, H.J.; Oh, T.K.; Kim, Y.O.; Choi, K.Y.; Oh, B.H. Crystal structures of a novel, thermostable phytase in partially and fully calcium-loaded states. Nat. Struct. Biol. 2000, 7, 147–153. [Google Scholar] [PubMed]
Enzymes | Substrates | Effect | Example | Ref. |
---|---|---|---|---|
Carbohydrases | Carbohydrates (fiber and/or starch) | Improves digestibility of plant biomass and increases energy. Beneficial effect on poultry and pig diets. | Xylanases and β-glucanases (degrade cell walls, used in poultry) β-mannanases Pectinases α-galactosidases | [16,17] |
α-amylase (improves digestibility of starch, body weight gain has been observed in poultry) | ||||
Proteases | Proteins | Some proteases increased apparent ileal nitrogen, digestibility and apparent nitrogen retention across the whole digestive tract in broiler chicks and broiler cockerels. Exogenous proteases can further improve protein digestibility of ingredients through solubilization and hydrolysis of dietary proteins. Antinutritional factor levels decrease. They can be of animal, vegetable or microbial origin. | Proteases isolated from microorganisms such as Aspergillus niger and Bacillus spp. Chymosin, pepsin A Bromelain, papain, ficine, aminopeptidase, bacillolysin 1, dipeptidyl peptidase III, chymotrypsin, subtilisin, trypsin. | [18,19,20] |
Phytase | Phytates | Degrade phytate bonds releasing trapped nutrients. Improves cattle efficiency It increases the absorption of phosphorus, reducing the possibility of contamination of soil and water through excreta. Increase amino acid availability. | Acid phytases of histidine (pH 5.0) mainly applied to feed for poultry or pigs. | [4] |
Common Name | Classification | Function | Producing Organism | Ref. |
---|---|---|---|---|
α-Amylase | Carbohydrase | Starch Hydrolysis | Bacillus licheniformis, Bacillus stearothermophilus, Bacillus amyloliquefaciens | [76] |
Aspergillus niger Aspergillus oryzae | [77] | |||
Thermomyces lanuginosus | [76] | |||
Pseudomonas flourescens | [78] | |||
Maltogenic α-amylase | Carbohydrase | Starch hydrolysis with maltose production. | Bacillus subtilis | [78] |
Cellulase | Carbohydrase | Breaks down cellulose | Aspergillus niger | [79,80] |
Humicola insolens | [81] | |||
Trichoderma | [80] | |||
Pleurotus ostreatus | [49] | |||
α-Galactosidasa | Carbohydrase | Hydrolyzes oligosaccharides | Morteirella vinaceae var raffinoseutilizer Saccharomyces cerevisiae Saccharomyces carlsbergensis | [82] |
β-Glucanase | Carbohydrase | Hydrolyzes β-glucans | Trichoderma reesei | [83] |
Glucoamylase (amyloglucosidas) | Carbohydrase | Hydrolyzes starch with glucose production. | Aspergillus niger | [79] |
Hemicellulase | Carbohydrase | Breaks down the hemicellulose | Humicola insolens Aspergillus niger | [81] [79] |
Pectinase | Carbohydrase | Breaks downs the pectin | Aspergillus niger | [79] |
Pullulanase | Carbohydrase | Hydrolyzes starch | Bacillus licheniformis | [78] |
Xylanase | Carbohydrase | Hydrolyse xylan | Pleurotus ostreatus | [49] |
Bacillus circulans Bacillus Stearothermophilus Bacillus polymyxa Bacillus subtilis Bacillus amyloliquifaciens Bacillus acidocaldarius Bacillus thermoalkalophilus | [84] | |||
Fusarium venenatum | [78] | |||
Laccases | Oxidase | Oxidation of an organic or inorganic substrate and the reduction of molecular oxygen to water. | Aspergillus oryzae | [78] |
Pleurotus ostreatus | [49] | |||
Lipase | Lipase | Hydrolyzes triglycerides, diglycerides and monoglycerides. | Aspergillus niger | [79] |
Rhizopus oryzae | [85] | |||
Candida rugosa | [86] | |||
Papain | Protease | Hydrolyzes proteins | Carica papaya | [87] |
Pepsin | Protease | Hydrolyzes proteins | Animal stomach | [13] |
Trypsin | Protease | Hydrolyzes proteins | Animal pancreas | [13] |
Chymosin | Protease | Hydrolyzes proteins | Aspergillus niger | [78] |
Escherichia coli K-12 | [78] | |||
Kluyveromyces marxianus var. Lactis | [78] | |||
Catalase | Oxidoreductase | Hydrogen peroxide is needed for oxidation of compounds. | Aspergillus niger | [79] |
Glucose oxidase | Oxidoreductase | It degrades glucose to hydrogen peroxide and gluconic acid. | Aspergillus niger | [79] |
Aspergillus oryzae | [78] | |||
Phytase | Phosphatase | Hydrolyse phytate. | Penicillium funiculosum | [88] |
Enzymes | Source | Purpose of Modification | Method | Ref. |
---|---|---|---|---|
Alfa-amylase | Bacillus sp. TS-23 | Improve thermostability, change glutamic acid 219, crucial for the thermostability | Site-directed mutagenesis | [107] |
Xylanase (glycoside hydrolase-GH11) | Neocalli mastix patriciarum | Improve thermostability. Single mutants Gln87Arg, Asn88Gly, Ser89His and Ser90Thr | Site-directed mutagenesis | [108] |
Phytase | Aspergillus niger | Improve thermostability and catalytic efficiency. Change in Thr195Leu/Gln368Glu/Phe376Tyr; Gln172Arg/Lys432Arg/Gln368Glu; Gln172Arg/Lys432Arg/Gln368Glu/Phe376Tyr and Gln172Arg/Lys432Arg/Gln368Glu/Phr376 Tyr/Thr195Leu; phyA: Gln172Arg; Gln172Arg/Lys432Arg; Gln368Glu/Lys432Arg | Error-prone PCR/Directed evolution | [109] |
Endo-1,4 betaxylanase II | Trichoderma reessei | Improve thermostability, substituting Thr2 and Thr28 by cysteine | Error-prone PCR | [110] |
Protein | Gen | Organism | Catalytic Activity | pH | Temperature °C | Active Site | Glycosylation | Access Code UniProtKB | Access Code PDBe | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
Endo-beta-1,4-glucanase B | eglb | Aspergillus niger | Endohydrolysis of (1,4)-beta-D-glucosidic linkages in cellulose, lichenin and cereal beta-D-glucans. EC:3.2.1.4 | 6.0 | 70 | 160, 266 | 38, 100, 211, 288 | O74706 (EGLB_ASPNG) | 5i77, 5i78, 5i79 | [128,129] |
Xyloglucan-specific endo-beta-1,4-glucanase A | xgeA | Aspergillus aculeatus | Xyloglucan + H2O = xyloglucan oligosaccharides. EC:3.2.1.151 | 3.4 | 30 | - | - | O94218 (XGEA_ASPAC) | 3VL8, 3VL9, 3VLB | [130] |
Pancreatic alpha-amylase | AMY2 | Sus scrofa (Pig) | Endohydrolysis of (1,4)-alpha-D-glucosidic linkages in polysaccharides containing three or more (1,4)-alpha-linked D-glucose units. EC:3.2.1.1 | - | - | 212, 248, 315 | 427 | P00690 (AMYP_PIG) | 1BVN | [131] |
Alpha-amylase | amyS | Bacillus licheniformis | 11 | 100 | 260, 290 | - | P06278 (AMY_BACLI) | 1ob0 | [132,133] | |
Beta-amylase | spoII | Bacillus cereus | Hydrolysis of (1,4)-alpha-D-glucosidic linkages in polysaccharides to remove successive maltose units from the non-reducing ends of the chains. EC:3.2.1.2 | - | - | 202, 397 | - | P36924 (AMYB_BACCE) | 1J0Z | [134] |
Endo-1,4-beta-xylanase | xylC | Talaromyces cellulolyticus CF-2612 | Endohydrolysis of (1,4)-beta-D-xylosidic linkages in xylans | - | - | 119, 210 | - | W8VR85 (W8VR85_9EURO) | 5HXV | [135] |
Endo-1,4-beta-xylanase 2 | Xyn2 | Trichoderma reesei | 4.5–5.5 | 40 | 119, 210 | 71, 94 | P36217 (XYN2_HYPJR) | 4HKW | [136] | |
Endopolygalacturonase I | pgaI | Aspergillus niger | (1,4-alpha-D-galacturonosyl)(n + m) + H2O = (1,4-alpha-D-galacturonosyl)(n) + (1,4-alpha-D-galacturonosyl)(m). EC:3.2.1.15 | - | - | 207, 229 | 44, 46, 246 | P26213 (PGLR1_ASPNG) | 5ONK | [137] |
3-phytase A | phyA | Aspergillus niger | Catalyzes the hydrolysis of inorganic orthophosphate from phytate. | - | - | 82, 362 | 27, 59, 105, 120, 207, 230, 339, 352, 376, 388 | P34752 (PHYA_ASPNG) | 3K4P | [138] |
3- phytase | phyC | Bacillus subtillis | 7 | 55 | - | - | O31097 (PHYC_BACIU) | 3AMS | [139] | |
3-phytase | phy | Bacillus sp. | - | - | - | - | O66037 (PHYT_BACSD) | 2POO | [140] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velázquez-De Lucio, B.S.; Hernández-Domínguez, E.M.; Villa-García, M.; Díaz-Godínez, G.; Mandujano-Gonzalez, V.; Mendoza-Mendoza, B.; Álvarez-Cervantes, J. Exogenous Enzymes as Zootechnical Additives in Animal Feed: A Review. Catalysts 2021, 11, 851. https://doi.org/10.3390/catal11070851
Velázquez-De Lucio BS, Hernández-Domínguez EM, Villa-García M, Díaz-Godínez G, Mandujano-Gonzalez V, Mendoza-Mendoza B, Álvarez-Cervantes J. Exogenous Enzymes as Zootechnical Additives in Animal Feed: A Review. Catalysts. 2021; 11(7):851. https://doi.org/10.3390/catal11070851
Chicago/Turabian StyleVelázquez-De Lucio, Brianda Susana, Edna María Hernández-Domínguez, Matilde Villa-García, Gerardo Díaz-Godínez, Virginia Mandujano-Gonzalez, Bethsua Mendoza-Mendoza, and Jorge Álvarez-Cervantes. 2021. "Exogenous Enzymes as Zootechnical Additives in Animal Feed: A Review" Catalysts 11, no. 7: 851. https://doi.org/10.3390/catal11070851
APA StyleVelázquez-De Lucio, B. S., Hernández-Domínguez, E. M., Villa-García, M., Díaz-Godínez, G., Mandujano-Gonzalez, V., Mendoza-Mendoza, B., & Álvarez-Cervantes, J. (2021). Exogenous Enzymes as Zootechnical Additives in Animal Feed: A Review. Catalysts, 11(7), 851. https://doi.org/10.3390/catal11070851