Use of a Sequential Fermentation Method for the Production of Aspergillus tamarii URM4634 Protease and a Kinetic/Thermodynamic Study of the Enzyme
Abstract
:1. Introduction
2. Results and Discussion
2.1. Protease Production by Sequential Fermentation
2.2. Effect of Temperature and pH on Protease Activity
2.3. Kinetic and Thermodynamic Parameters of Azocasein Hydrolysis
2.4. Kinetic and Thermodynamic Parameters of Protease Thermal Denaturation
3. Materials and Methods
3.1. Materials
3.2. Microorganism and Inoculum Preparation
3.3. Protease Production by Sequential Fermentation
3.4. Protease Production by Submerged Fermentation
3.5. Analytical Determinations
3.6. Effect of pH and Temperature on Protease Activity
3.7. Kinetic and Thermodynamic Parameters of Azocasein Hydrolysis
3.8. Kinetic and Thermodynamic Parameters of Protease Thermal Denaturation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naveed, M.; Nadeem, F.; Mehmood, T.; Bilal, M.; Anwar, Z.; Amjad, F. A versatile and ecofriendly biocatalyst with multi-industrial applications: An updated review. Catal. Lett. 2020, 151, 307–323. [Google Scholar] [CrossRef]
- Gurumallesh, P.; Alagu, K.; Ramakrishnan, B.; Muthusamy, S. A systematic reconsideration on proteases. Int. J. Biol. Macromol. 2019, 128, 254–267. [Google Scholar] [CrossRef]
- Sharma, K.M.; Kumar, R.; Panwar, S.; Kumar, A. Microbial alkaline proteases: Optimization of production parameters and their properties. J. Genet. Eng. Biotechnol. 2017, 15, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Soccol, C.R.; da Costa, E.S.F.; Letti, L.A.J.; Karp, S.G.; Woiciechowski, A.L.; Vandenberghe, L.P.S. Recent developments and innovations in solid state fermentation. Biotechnol. Res. Innov. 2017, 1, 52–71. [Google Scholar] [CrossRef]
- Farinas, C.S. Developments in solid-state fermentation for the production of biomass-degrading enzymes for the bioenergy sector. Renew. Sustain. Energy Rev. 2015, 52, 179–188. [Google Scholar] [CrossRef]
- Yazid, N.A.; Barrena, R.; Komilis, D.; Sánchez, A. Solid-State Fermentation as a novel paradigm for organic waste valorization: A review. Sustainability 2017, 9, 224. [Google Scholar] [CrossRef] [Green Version]
- Cunha, F.M.; Esperança, M.N.; Zangirolami, T.C.; Badino, A.C.; Farinas, C.S. Sequential solid-state and submerged cultivation of Aspergillus niger on sugarcane bagasse for the production of cellulase. Bioresour. Technol. 2012, 112, 270–274. [Google Scholar] [CrossRef] [Green Version]
- Farinas, C.S.; Florencio, C.; Badino, A.C. On-site production of cellulolytic enzymes by the sequential cultivation method. In Cellulases. Methods in Molecular Biology; Lübeck, M., Ed.; Humana Press: New York, NY, USA, 2018; Volume 1796, pp. 273–282. [Google Scholar] [CrossRef]
- Florencio, C.; Cunha, F.M.; Badino, A.C.; Farinas, C.S.; Ximenes, E.; Ladisch, M.R. Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation processes: Enzyme production for sugarcane bagasse hydrolysis. Enzyme Microb. Technol. 2016, 90, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Florencio, C.; Cunha, F.M.; Badino, A.C.; Farinas, C.S. Validation of a novel sequential cultivation method for the production of enzymatic cocktails from Trichoderma strains. Appl. Biochem. Biotechnol. 2014, 175, 1389–1402. [Google Scholar] [CrossRef]
- An, Q.; Wu, X.; Han, M.; Chu, B.; He, S.; Dai, Y.; Si, J. Sequential Solid-State and Submerged Cultivation of the white rot fungus Pleurotus ostreatus on biomass and the activity of lignocellulolytic enzymes. BioResources 2016, 11, 8791–8805. [Google Scholar] [CrossRef] [Green Version]
- Cunha, F.M.; Vasconcellos, V.M.; Florencio, C.; Badino, A.C.; Farinas, C.S. On-site production of enzymatic cocktails using a non-conventional fermentation method with agro-industrial residues as renewable feedstocks. Waste Biomass Valorization 2017, 8, 517–526. [Google Scholar] [CrossRef]
- Bankar, S.B.; Bule, M.V.; Singhal, R.S.; Ananthanarayan, L. Optimization of Aspergillus niger fermentation for the production of glucose oxidase. Food Bioprocess Technol. 2009, 2, 344–352. [Google Scholar] [CrossRef]
- Ahmed, A.; Ejaz, U.; Sohail, M. Pectinase production from immobilized and free cells of Geotrichum candidum AA15 in galacturonic acid and sugars containing medium. J. King Saud Univ. Sci. 2020, 32, 952–954. [Google Scholar] [CrossRef]
- Sun, H.; Ge, X.; Hao, Z.; Peng, M. Cellulase production by Trichoderma sp. on apple pomace under solid state fermentation. Afr. J. Biotechnol. 2010, 9, 163–166. [Google Scholar] [CrossRef]
- Sandhya, C.; Sumantha, A.; Szakacs, G.; Pandey, A. Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. Process Biochem. 2005, 10, 2689–2694. [Google Scholar] [CrossRef]
- Robinson, P.K. Enzymes: Principles and biotechnological applications. Essays Biochem. 2015, 59, 1–41. [Google Scholar] [CrossRef]
- Vitolo, M. Enzymes: The catalytic proteins. In Pharmaceutical Biotechnology, 1st ed.; Pessoa, A., Jr., Vitolo, M., Long, P.F., Eds.; CRC Press: Boca Raton, FL, USA, 2021; Volume 1, pp. 257–263. [Google Scholar] [CrossRef]
- da Silva, O.S.; de Oliveira, R.L.; Souza-Motta, C.M.; Porto, A.L.F.; Porto, T.S. Novel protease from Aspergillus tamarii URM4634: Production and characterization using inexpensive agroindustrial substrates by Solid-State Fermentation. Adv. Enzym. Res. 2016, 4, 125–143. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, L.M.G.; Carneiro-da-Cunha, M.N.; Silva, J.C.; Porto, A.L.F.; Porto, T.S. Purification and characterization of a novel Aspergillus heteromorphus URM 0269 protease extracted by aqueous two-phase systems PEG/citrate. J. Mol. Liq. 2020, 317, 113957. [Google Scholar] [CrossRef]
- de Castro, R.J.S.; Nishide, T.G.; Sato, H.H. Production and biochemical properties of proteases secreted by Aspergillus niger under solid state fermentation in response to different agroindustrial substrates. Biocatal. Agric. Biotechnol. 2014, 3, 236–245. [Google Scholar] [CrossRef]
- Salihi, A.; Asoodeh, A.; Aliabadian, M. Production and biochemical characterization of an alkaline protease from Aspergillus oryzae CH93. Int. J. Biol. Macromol. 2017, 94, 827–835. [Google Scholar] [CrossRef]
- Razzaq, A.; Shamsi, S.; Ali, A.; Ali, Q.; Sajjad, M.; Malik, A.; Ashraf, M. Microbial proteases applications. Front. Bioeng. Biotechnol. 2019, 7, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tavano, O.L.; Berenguer-Murcia, A.; Secundo, F.; Fernandez-Lafuente, R. Biotechnological applications of proteases in food technology. Compr. Rev. Food Sci. Food Saf. 2018, 17, 412–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belmessikh, A.; Boukhalfa, H.; Mechakra-Maza, A.; Gheribi-Aoulmi, Z.; Amrane, A. Statistical optimization of culture medium for neutral protease production by Aspergillus oryzae. Comparative study between solid and submerged fermentations on tomato pomace. J. Taiwan Inst. Chem. Eng. 2013, 44, 377–385. [Google Scholar] [CrossRef]
- Alves, R.O.; de Oliveira, R.L.; da Silva, O.S.; Porto, A.L.F.; Porto, C.S. Extractive fermentation for process integration of protease production by Aspergillus tamarii Kita UCP1279 and purification by PEG-Citrate Aqueous Two-Phase System. Prep. Biochem. Biotechnol. 2021, 1–8. [Google Scholar] [CrossRef]
- Lee, S.K.; Hwang, J.Y.; Choi, S.H.; Kim, S.M. Purification and characterization of Aspergillus oryzae LK-101 salt-tolerant acid protease isolated from soybean paste. Food Sci. Biotechnol. 2010, 19, 327–334. [Google Scholar] [CrossRef]
- Hernández-Martínez, R.; Gutiérrez-Sánchez, G.; Bergmann, C.W.; Loera-Corral, O.; Rojo-Domínguez, A.; Huerta-Ochoa, S.; Regalado-González, C.; Prado-Barragán, L.A. Purification and characterization of a thermodynamic stable serine protease from Aspergillus fumigatus. Process Biochem. 2011, 45, 2001–2006. [Google Scholar] [CrossRef]
- Melikoglu, M.; Lin, C.S.K.; Webb, C. Kinetic studies on the multi-enzyme solution produced via solid state fermentation of waste bread by Aspergillus awamori. Biochem. Eng. J. 2013, 80, 76–82. [Google Scholar] [CrossRef]
- de Castro, R.J.S.; Ohara, A.; Nishide, T.G.; Albernaz, J.R.M.; Soares, M.H.; Sato, H.H. A new approach for proteases production by Aspergillus niger based on the kinetic and thermodynamic parameters of the enzymes obtained. Biocatal. Agric. Biotechnol. 2015, 4, 199–207. [Google Scholar] [CrossRef]
- de Oliveira, R.L.; Silva, M.F.; Converti, A.; Porto, T.S. Biochemical characterization and kinetic/thermodynamic study of Aspergillus tamarii URM4634 β-fructofuranosidase with transfructosylating activity. Biotechnol. Prog. 2019, 35, 2879. [Google Scholar] [CrossRef]
- Abdel-Naby, M.A.; Ahmed, S.A.; Wehaidy, H.R.; El-Mahdy, S.A. Catalytic, kinetic and thermodynamic properties of stabilized Bacillus stearothermophilus alkaline protease. Int. J. Biol. Macromol. 2017, 96, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.C.; de França, P.R.L.; Converti, A.; Porto, T.S. Kinetic and thermodynamic characterization of a novel Aspergillus aculeatus URM4953 polygalacturonase. Comparison of free and calcium alginate-immobilized enzyme. Process Biochem. 2018, 74, 61–70. [Google Scholar] [CrossRef]
- Mostafa, F.A.; Abdel, W.A.; Salah, H.A.; Nawwar, G.A.M.; Esawy, M.A. Kinetic and thermodynamic characteristic of Aspergillus awamori EM66 levansucrase. Int. J. Biol. Macromol. 2018, 119, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Converti, A.; Pessoa, A., Jr.; Silva, J.C.; de Oliveira, R.L.; Porto, T.S. Thermodynamics applied to biomolecules. In Pharmaceutical Biotechnology, 1st ed.; Pessoa, A., Vitolo, M., Long, P.F., Eds.; CRC Press: Boca Raton, FL, USA, 2021; Volume 1, pp. 27–42. [Google Scholar] [CrossRef]
- Abdel-Naby, M.A.; El-Wafa, W.M.A.; Salem, G.E.M. Molecular characterization, catalytic, kinetic and thermodynamic properties of protease produced by a mutant of Bacillus cereus-S6. Int. J. Biol. Macromol 2020, 160, 695–702. [Google Scholar] [CrossRef] [PubMed]
- da Silva, O.S.; de Oliveira, R.L.; Silva, J.C.; Converti, A.; Porto, T.S. Thermodynamic investigation of an alkaline protease from Aspergillus tamarii URM4634: A comparative approach between crude extract and purified enzyme. Int. J. Biol. Macromol. 2018, 109, 1039–1044. [Google Scholar] [CrossRef] [PubMed]
- Saqib, A.A.N.; Hassan, M.; Khan, N.F.; Baig, S. Thermostability of crude endoglucanase from Aspergillus fumigatus grown under solid state fermentation (SSF) and submerged fermentation (SmF). Process Biochem. 2010, 45, 641–646. [Google Scholar] [CrossRef]
- de Oliveira, R.L.; da Silva, O.S.; Converti, A.; Porto, T.S. Thermodynamic and kinetic studies on pectinase extracted from Aspergillus aculeatus: Free and immobilized enzyme entrapped in alginate beads. Int. J. Biol. Macromol. 2018, 115, 1088–1093. [Google Scholar] [CrossRef] [PubMed]
- Porto, A.L.F.; Campos-Takaki, G.M.; Lima Filho, J.L. Effects of culture conditions on protease production by Streptomyces clavuligerus growing on soybean flour medium. Appl. Biochem. Biotechnol. 1996, 60, 115–122. [Google Scholar] [CrossRef]
- Ginther, C.L. Sporulation and the production of serine protease and cephamycin C by Streptomyces lactamdurans. Antimicrob. Agents Chemother. 1979, 15, 522–526. [Google Scholar] [CrossRef] [Green Version]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Dixon, M.; Webb, C. Enzyme inhibition and inactivation. In Enzymes, 3rd ed.; Longman: London, UK, 1979; pp. 332–467. [Google Scholar]
Run | Glucose Concentration (g L−1) | Medium Volume (mL g−1 of Substrate) | Inoculum Size (Spores g−1 of Substrate) | Protease Activity (U mL−1) |
---|---|---|---|---|
1 | 30 | 15 | 106 | 33.33 ± 0.94 |
2 | 50 | 15 | 106 | 25.33 ± 3.53 |
3 | 30 | 25 | 106 | 18.00 ± 4.95 |
4 | 50 | 25 | 106 | 12.67 ± 1.17 |
5 | 30 | 15 | 108 | 90.33 ± 4.95 |
6 | 50 | 15 | 108 | 127.67 ± 11.66 |
7 | 30 | 25 | 108 | 80.67 ± 0.47 |
8 | 50 | 25 | 108 | 78.67 ± 1.64 |
9 | 40 | 20 | 107 | 35.67 ± 1.88 |
10 | 40 | 20 | 107 | 39.67 ± 3.29 |
11 | 40 | 20 | 107 | 43.00 ± 3.06 |
12 | 40 | 20 | 107 | 38.00 ± 3.30 |
Variable or Interaction | Estimates | p-Value |
(1) Glucose concentration | 4.74 * | 0.0047 |
(2) Medium volume | −18.68 * | 0.0021 |
(3) Inoculum size | 62.06 * | 0.0006 |
1 × 2 | −7.90 * | 0.0245 |
1 × 3 | 10.49 * | 0.0113 |
2 × 3 | −6.61 * | 0.0390 |
1 × 2 × 3 | −9.05 * | 0.0170 |
Run | Glucose Concentration (g L−1) | Medium Volume (mL g−1 of Substrate) | Protease Activity (U mL−1) |
---|---|---|---|
1 | 45 | 12.5 | 151.00 ± 14.66 |
2 | 45 | 17.5 | 89.17 ± 6.36 |
3 | 55 | 12.5 | 169.50 ± 10.13 |
4 | 55 | 17.5 | 180.17 ± 4.94 |
5 | 42.05 | 15.0 | 135.50 ± 7.77 |
6 | 57.05 | 15.0 | 94.00 ± 8.66 |
7 | 50 | 11.475 | 156.67 ± 11.66 |
8 | 50 | 18.525 | 103.83 ± 5.42 |
9 | 50 | 15.0 | 134.17 ± 16.5 |
10 | 50 | 15.0 | 128.44 ± 2.35 |
11 | 50 | 15.0 | 139.50 ± 10.78 |
Source | Sum of Squares | Degrees of Freedom | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
GC(L) | 322.71 | 1 | 322.71 | 10.55 | 0.083 |
GC(Q) | 65.40 | 2 | 65.40 | 2.14 | 0.281 |
MV(L) | 1980.86 | 1 | 1980.86 | 64.75 | 0.015 |
MV(Q) | 106.70 | 1 | 106.70 | 3.49 | 0.203 |
GC(L) × MV(L) | 1314.06 | 1 | 1314.06 | 42.95 | 0.022 |
Lack of fit | 4851.15 | 3 | 1617.05 | 52.85 | 0.019 |
Pure error | 61.19 | 2 | 30.59 | ||
Total | 8772.15 | 10 |
Parameter | Value |
---|---|
a Km (mg mL−1) | 16.26 |
b Vmax (mg mL−1 min−1) | 147.06 |
c kcat (s−1) | 195.37 |
d E*a (kJ mol−1) | 40.38 |
e ΔG* (kJ mol−1) | 59.94 |
f ΔH* (kJ mol−1) | 37.90 |
g ΔS* (J K−1 mol−1) | −73.94 |
T (°C) | a kd (min−1) | R2 | b t1/2 (min) | c D-Value (min) | d Z-Value (°C) | e E*d (kJ mol−1) | f ΔG*d (kJ mol−1) | g ΔH*d (kJ mol−1) | h ΔS*d (J mol−1 K−1) |
---|---|---|---|---|---|---|---|---|---|
50 | 0.0030 | 0.979 | 231.05 | 767.53 | 33.89 | 64.78 | 105.97 | 62.09 | −135.76 |
60 | 0.0083 | 0.969 | 83.51 | 277.42 | 106.51 | 62.01 | −133.57 | ||
70 | 0.0170 | 0.997 | 40.77 | 135.45 | 107.75 | 61.93 | −133.52 | ||
80 | 0.0227 | 0.998 | 30.53 | 101.43 | 110.12 | 61.84 | −136.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira, R.L.; de Souza Claudino, E.; Converti, A.; Porto, T.S. Use of a Sequential Fermentation Method for the Production of Aspergillus tamarii URM4634 Protease and a Kinetic/Thermodynamic Study of the Enzyme. Catalysts 2021, 11, 963. https://doi.org/10.3390/catal11080963
de Oliveira RL, de Souza Claudino E, Converti A, Porto TS. Use of a Sequential Fermentation Method for the Production of Aspergillus tamarii URM4634 Protease and a Kinetic/Thermodynamic Study of the Enzyme. Catalysts. 2021; 11(8):963. https://doi.org/10.3390/catal11080963
Chicago/Turabian Stylede Oliveira, Rodrigo Lira, Emiliana de Souza Claudino, Attilio Converti, and Tatiana Souza Porto. 2021. "Use of a Sequential Fermentation Method for the Production of Aspergillus tamarii URM4634 Protease and a Kinetic/Thermodynamic Study of the Enzyme" Catalysts 11, no. 8: 963. https://doi.org/10.3390/catal11080963
APA Stylede Oliveira, R. L., de Souza Claudino, E., Converti, A., & Porto, T. S. (2021). Use of a Sequential Fermentation Method for the Production of Aspergillus tamarii URM4634 Protease and a Kinetic/Thermodynamic Study of the Enzyme. Catalysts, 11(8), 963. https://doi.org/10.3390/catal11080963