Synthesis and Application of Innovative and Environmentally Friendly Photocatalysts: A Review
Abstract
:1. Introduction
2. Innovative Methods for Doping Photocatalysts: Codoped Photocatalysts
3. Main Synthesis Methods of Doped and Codoped Catalysts
4. Recent Application of Innovative Photocatalysts
4.1. Photocatalytic Removal of Orgainic Dyes from Aqueous Solution
4.2. Photocatalytic Removal of Emerging Contaminants from Aqueous Solution
4.3. Photocatalytic Degradation of Phenolic Compounds
5. Innovative Photocatalysts for Hydrogen Production
5.1. Noble Metal Free Photocatalyst for H2 Production
5.2. Green Synthesis of Photocatalysts for Hydrogen Production
6. Conclusions
7. Future Development
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, K.M.; Lai, C.W.; Ngai, K.S.; Juan, J.C. Recent Developments of Zinc Oxide Based Photocatalyst in Water Treatment Technology: A Review. Water Res. 2016, 88, 428–448. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, K.P.; Madhav, N.V.; Krishnan, A.; Malolan, R.; Rangarajan, G. Present Applications of Titanium Dioxide for the Photocatalytic Removal of Pollutants from Water: A Review. J. Environ. Manag. 2020, 270, 110906. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Zhou, Q. Action and Mechanism of Semiconductor Photocatalysis on Degradation of Organic Pollutants in Water Treatment: A Review. Environ. Nanotechnol. Monit. Manag. 2019, 12, 100255. [Google Scholar] [CrossRef]
- Zinicovscaia, I. Conventional methods of wastewater treatment. Cyanobacteria Bioremediation Wastewaters 2016, 17–25. [Google Scholar] [CrossRef]
- Rajasulochana, P.; Preethy, V. Comparison on Efficiency of Various Techniques in Treatment of Waste and Sewage Water–A Comprehensive Review. Resour. Technol. 2016, 2, 175–184. [Google Scholar] [CrossRef]
- Gutierrez-Urbano, I.; Villen-Guzman, M.; Perez-Recuerda, R.; Rodriguez-Maroto, J.M. Removal of Polycyclic Aromatic Hydrocarbons (Pahs) in Conventional Drinking Water Treatment Processes. J. Contam. Hydrol. 2021, 243, 103888. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.; Chen, B.; Liu, B.; Hounjet, L.J.; Cao, Y.; Stoyanov, S.R.; Yang, M.; Zhang, B. Advanced Oxidation Processes in Microreactors for Water and Wastewater Treatment: Development, Challenges, and Opportunities. Water Res. 2022, 211, 118047. [Google Scholar] [CrossRef]
- Andreozzi, R.; Caprio, V.; Insola, A.; Marotta, R. Advanced Oxidation Processes (AOP) for Water Purification and Recovery. Catal. Today 1999, 53, 51–59. [Google Scholar] [CrossRef]
- Dewil, R.; Mantzavinos, D.; Poulios, I.; Rodrigo, M.A. New Perspectives for Advanced Oxidation Processes. J. Environ. Manag. 2017, 195, 93–99. [Google Scholar] [CrossRef]
- Ibhadon, A.O.; Fitzpatrick, P. Heterogeneous Photocatalysis: Recent Advances and Applications. Catalysts 2013, 3, 189–218. [Google Scholar] [CrossRef] [Green Version]
- Al-Mamun, M.R.; Kader, S.; Islam, M.S.; Khan, M.Z.H. Photocatalytic Activity Improvement and Application of UV-TiO2 Photocatalysis in Textile Wastewater Treatment: A Review. J. Environ. Chem. Eng. 2019, 7, 103248. [Google Scholar] [CrossRef]
- Vaiano, V.; Iervolino, G.; Rizzo, L.; Sannino, D. Advanced Oxidation Processes for the Removal of Food Dyes in Wastewater. Curr. Org. Chem. 2017, 21, 1068–1073. [Google Scholar] [CrossRef]
- Fujishima, A.; Rao, T.N.; Tryk, D.A. Titanium Dioxide Photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 2000, 1, 1–21. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, S.; Li, W.; Zhang, Z. Visible-Light-Mediated Oxidative Amidation of Aldehydes by Using Magnetic CdS Quantum Dots as a Photocatalyst. Chem. A Eur. J. 2021, 27, 5483–5491. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, H.; Zhang, J.; Lv, H.; Yang, G.-Y. Research Advances of Light-Driven Hydrogen Evolution Using Polyoxometalate-Based Catalysts. Chin. J. Catal. 2021, 42, 855–871. [Google Scholar] [CrossRef]
- Li, C.J.; Trost, B.M. Green Chemistry for Chemical Synthesis. Proc. Natl. Acad. Sci. USA 2008, 105, 13197–13202. [Google Scholar] [CrossRef]
- Mian, M.; Liu, G. Recent Progress in Biochar-Supported Photocatalysts: Synthesis, Role of Biochar, and Applications. RSC Adv. 2018, 8, 14237–14248. [Google Scholar] [CrossRef]
- Basavarajappa, P.S.; Patil, S.B.; Ganganagappa, N.; Reddy, K.R.; Raghu, A.V.; Reddy, C.V. Recent Progress in Metal-Doped TiO2, Non-Metal Doped/Codoped TiO2 and TiO2 Nanostructured Hybrids for Enhanced Photocatalysis. Int. J. Hydrogen Energy 2019, 45, 7764–7778. [Google Scholar] [CrossRef]
- Cheng, H.-H.; Chen, S.-S.; Yang, S.-Y.; Liu, H.-M.; Lin, K.-S. Sol-Gel Hydrothermal Synthesis and Visible Light Photocatalytic Degradation Performance of Fe/N Codoped TiO2 Catalysts. Materials 2018, 11, 939. [Google Scholar] [CrossRef]
- Lam, S.W.; Chiang, K.; Lim, T.M.; Amal, R.; Low, G.K.-C. The Effect of Platinum and Silver Deposits in the Photocatalytic Oxidation of Resorcinol. Appl. Catal. B Environ. 2007, 72, 363–372. [Google Scholar] [CrossRef]
- Kamat, P.V. Manipulation of Charge Transfer Across Semiconductor Interface. A Criterion That Cannot Be Ignored in Photocatalyst Design. J. Phys. Chem. Lett. 2012, 3, 663–672. [Google Scholar] [CrossRef] [PubMed]
- Marami, M.B.; Farahmandjou, M.; Khoshnevisan, B. Sol–Gel Synthesis of Fe-Doped TiO2 Nanocrystals. J. Electron. Mater. 2018, 47, 3741–3748. [Google Scholar] [CrossRef]
- Jafari, A.J.; Moslemzadeh, M. Synthesis of Fe-Doped TiO2 for Photocatalytic Processes under UV-Visible Light: Effect of Preparation Methods on Crystal Size—A Systematic Review Study. Comments Inorg. Chem. 2020, 40, 327–346. [Google Scholar] [CrossRef]
- Sood, S.; Umar, A.; Mehta, S.K.; Kansal, S.K. Highly Effective Fe-Doped TiO2 Nanoparticles Photocatalysts for Visible-Light Driven Photocatalytic Degradation of Toxic Organic Compounds. J. Colloid Interface Sci. 2015, 450, 213–223. [Google Scholar] [CrossRef]
- Ali, T.; Tripathi, P.; Azam, A.; Raza, W.; Ahmed, A.S.; Ahmed, A.; Muneer, M. Photocatalytic Performance of Fe-Doped TiO2 Nanoparticles Under Visible-Light Irradiation. Mater. Res. Express 2017, 4, 015022. [Google Scholar] [CrossRef]
- Guan, B.; Yu, J.; Guo, S.; Yu, S.; Han, S. Porous Nickel Doped Titanium Dioxide Nanoparticles with Improved Visible Light Photocatalytic Activity. Nanoscale Adv. 2020, 2, 1352–1357. [Google Scholar] [CrossRef]
- Shen, J.-H.; Chuang, H.-Y.; Jiang, Z.-W.; Liu, X.-Z.; Horng, J.-J. Novel Quantification of Formation Trend and Reaction Efficiency of Hydroxyl Radicals for Investigating Photocatalytic Mechanism of Fe-Doped TiO2 During UV And Visible Light-Induced Degradation of Acid Orange 7. Chemosphere 2020, 251, 126380. [Google Scholar] [CrossRef]
- Ebrahimi, R.; Maleki, A.; Rezaee, R.; Daraei, H.; Safari, M.; McKay, G.; Lee, S.-M.; Jafari, A. Synthesis and Application of Fe-Doped TiO2 Nanoparticles for Photodegradation of 2,4-D from Aqueous Solution. Arab. J. Sci. Eng. 2020, 46, 6409–6422. [Google Scholar] [CrossRef]
- Bhatia, V.; Dhir, A. Transition Metal Doped TiO2 Mediated Photocatalytic Degradation of Anti-Inflammatory Drug Under Solar Irradiations. J. Environ. Chem. Eng. 2016, 4, 1267–1273. [Google Scholar] [CrossRef]
- Santara, B.; Pal, B.; Giri, P.K. Signature of Strong Ferromagnetism and Optical Properties of Co Doped TiO2 Nanoparticles. J. Appl. Phys. 2011, 110, 114322. [Google Scholar] [CrossRef]
- Kayestha, R.; Sumati; Hajela, K. ESR Studies on the Effect of Ionic Radii on Displacement of Mn2+ Bound to a Soluble Β-Galactoside Binding Hepatic Lectin. FEBS Lett. 1995, 368, 285–288. [Google Scholar] [CrossRef]
- Krishnakumar, V.; Boobas, S.; Jayaprakash, J.; Rajaboopathi, M.; Han, B.; Louhi-Kultanen, M. Effect of Cu Doping on TiO2 Nanoparticles and Its Photocatalytic Activity Under Visible Light. J. Mater. Sci. Mater. Electron. 2016, 27, 7438–7447. [Google Scholar] [CrossRef]
- Klein, M.; Grabowska, E.; Zaleska-Medynska, A. Noble Metal Modified TiO2 for Photocatalytic Air Purification. Physicochem. Probl. Miner. Processing 2015, 51, 49–57. [Google Scholar] [CrossRef]
- Xu, A.-W.; Gao, Y.; Liu, H.Q. The Preparation, Characterization, and their Photocatalytic Activities of Rare-Earth-Doped TiO2 Nanoparticles. J. Catal. 2002, 207, 151–157. [Google Scholar] [CrossRef]
- Li, F.; Li, X.; Ao, C.; Lee, S.; Hou, M. Enhanced Photocatalytic Degradation of Vocs Using Ln3+–TiO2 Catalysts for Indoor Air Purification. Chemosphere 2005, 59, 787–800. [Google Scholar] [CrossRef]
- Hewer, T.; Souza, E.; Martins, T.S.; Muccillo, E.; Freire, R. Influence of Neodymium Ions on Photocatalytic Activity of TiO2 Synthesized by Sol–Gel and Precipitation Methods. J. Mol. Catal. A Chem. 2010, 336, 58–63. [Google Scholar] [CrossRef]
- Ramya, R.; Krishnan, P.S.; Neelaveni, M.; Gurulakshmi, M.; Sivakumar, T.; Shanthi, K. Enhanced Visible Light Activity of Pr–TiO2 Nanocatalyst in the Degradation of Dyes: Effect of Pr Doping and TiO2 Morphology. J. Nanosci. Nanotechnol. 2019, 19, 3971–3981. [Google Scholar] [CrossRef]
- Reszczynska, J.; Esteban, D.A.; Gazda, M.; Zaleska-Medynska, A. Pr-doped TiO2. The Effect of Metal Content on Photocatalytic Activity. Physicochem. Probl. Miner. Processing 2014, 50, 515–524. [Google Scholar] [CrossRef]
- Cordeiro, D.S.; Cassio, F.L.; Ciccotti, L.; Hewer, T.L.R.; Corio, P.; Freire, R.S. Photocatalytic Activity of Pr-Modified TiO2 for the Degradation of Bisphenol A. SN Appl. Sci. 2021, 3, 258. [Google Scholar] [CrossRef]
- Xiao, Q.; Si, Z.; Yu, Z.; Qiu, G. Sol–Gel Auto-Combustion Synthesis of Samarium-Doped TiO2 Nanoparticles and Their Photocatalytic Activity Under Visible Light Irradiation. Mater. Sci. Eng. B 2007, 137, 189–194. [Google Scholar] [CrossRef]
- Singh, K.; Harish, S.; Kristy, A.P.; Shivani, V.; Archana, J.; Navaneethan, M.; Shimomura, M.; Hayakawa, Y. Erbium Doped TiO2 Interconnected Mesoporous Spheres as an Efficient Visible Light Catalyst for Photocatalytic Applications. Appl. Surf. Sci. 2018, 449, 755–763. [Google Scholar] [CrossRef]
- Silva, A.M.; Silva, C.G.; Dražić, G.; Faria, J.L. Ce-Doped TiO2 for Photocatalytic Degradation of Chlorophenol. Catal. Today 2009, 144, 13–18. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, C.; Duan, Y.; Wang, C.; Zhao, Z.; Wang, H.; Gao, Y. Phosphorus-Doped TiO2 for Visible Light-Driven Oxidative Coupling of Benzyl Amines and Photodegradation of Phenol. Appl. Surf. Sci. 2020, 527, 146693. [Google Scholar] [CrossRef]
- Piątkowska, A.; Janus, M.; Szymański, K.; Mozia, S. C-, N-and S-Doped TiO2 Photocatalysts: A Review. Catalysts 2021, 11, 144. [Google Scholar] [CrossRef]
- Vaiano, V.; Sacco, O.; Sannino, D.; Ciambelli, P. Nanostructured N-doped TiO2 Coated on Glass Spheres for the Photocatalytic Removal of Organic Dyes Under UV or Visible Light Irradiation. Appl. Catal. B: Environ. 2015, 170–171, 153–161. [Google Scholar] [CrossRef]
- Sun, J.; Qiao, L.; Sun, S.; Wang, G. Photocatalytic Degradation of Orange G on Nitrogen-Doped TiO2 Catalysts Under Visible Light and Sunlight Irradiation. J. Hazard. Mater. 2008, 155, 312–319. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X.; Li, J.; Burda, C. Photocatalytic Degradation of Azo Dyes by Nitrogen-Doped TiO2 Nano catalysts. Chemosphere 2005, 61, 11–18. [Google Scholar] [CrossRef]
- Ragesh Nath, R.; Nethravathi, C.; Rajamathi, M. Hierarchically Porous, Biphasic, and C-Doped TiO2 for Solar Photocatalytic Degradation of Dyes and Selective Oxidation of Benzyl Alcohol. ACS Omega 2021, 6, 12124–12132. [Google Scholar] [CrossRef]
- Umebayashi, T.; Yamaki, T.; Tanaka, S.; Asai, K. Visible Light-Induced Degradation of Methylene Blue on S-doped TiO2. Chem. Lett. 2003, 32, 330–331. [Google Scholar] [CrossRef]
- Kuźmiński, K.; Morawski, A.W.; Janus, M. Adsorption and Photocatalytic Degradation of Anionic and Cationic Surfactants on Nitrogen-Modified TiO2. J. Surfactants Deterg. 2018, 21, 909–921. [Google Scholar] [CrossRef]
- Sacco, O.; Vaiano, V.; Rizzo, L.; Sannino, D. Photocatalytic Activity of a Visible Light Active Structured Photocatalyst Developed for Municipal Wastewater Treatment. J. Clean. Prod. 2018, 175, 38–49. [Google Scholar] [CrossRef]
- Sun, P.; Zhang, J.; Liu, W.; Wang, Q.; Cao, W. Modification to L-H Kinetics Model and Its Application in the Investigation on Photodegradation of Gaseous Benzene by Nitrogen-Doped TiO2. Catalysts 2018, 8, 326. [Google Scholar] [CrossRef]
- Kamaei, M.; Rashedi, H.; Dastgheib, S.M.M.; Tasharrofi, S. Comparing Photocatalytic Degradation of Gaseous Ethylbenzene Using N-doped and Pure TiO2 Nano-Catalysts Coated on Glass Beads under Both UV and Visible Light Irradiation. Catalysts 2018, 8, 466. [Google Scholar] [CrossRef]
- Preethi, L.; Antony, R.P.; Mathews, T.; Loo, J.; Wong, L.H.; Dash, S.; Tyagi, A. Nitrogen Doped Anatase-Rutile Heterostructured Nanotubes for Enhanced Photocatalytic Hydrogen Production: Promising Structure for Sustainable Fuel Production. Int. J. Hydrogen Energy 2016, 41, 5865–5877. [Google Scholar] [CrossRef]
- Ansari, S.A.; Khan, M.M.; Ansari, M.O.; Cho, M.H. Nitrogen-Doped Titanium Dioxide (N-Doped TiO2) for Visible Light Photocatalysis. New J. Chem. 2016, 40, 3000–3009. [Google Scholar] [CrossRef]
- Bersezio, C.; Pardo, C.; Miranda, S.; Maran, B.M.; Jorquera, G.; da Silva, A., Jr.; Rodrigues, M.T.; Fernández, E. Evaluation of the Effectiveness in Teeth Whitening of a Single Session with 6% Hydrogen Peroxide Laser/LED System. Photodiagnosis Photodyn. Ther. 2021, 36, 102532. [Google Scholar] [CrossRef]
- Huang, J.; Song, H.; Chen, C.; Yang, Y.; Xu, N.; Ji, X.; Li, C.; You, J.-A. Facile Synthesis of N-Doped TiO2 Nanoparticles Caged In MIL-100(Fe) For Photocatalytic Degradation of Organic Dyes Under Visible Light Irradiation. J. Environ. Chem. Eng. 2017, 5, 2579–2585. [Google Scholar] [CrossRef]
- Kawashita, M.; Endo, N.; Watanabe, T.; Miyazaki, T.; Furuya, M.; Yokota, K.; Abiko, Y.; Kanetaka, H.; Takahashi, N. Formation of Bioactive N-Doped TiO2 on Ti with Visible Light-Induced Antibacterial Activity Using Naoh, Hot Water, and Subsequent Ammonia Atmospheric Heat Treatment. Colloids Surf. B Biointerfaces 2016, 145, 285–290. [Google Scholar] [CrossRef]
- Kim, T.H.; Go, G.-M.; Cho, H.-B.; Song, Y.; Lee, C.-G.; Choa, Y.-H. A Novel Synthetic Method for N Doped TiO2 Nanoparticles Through Plasma-Assisted Electrolysis and Photocatalytic Activity in the Visible Region. Front. Chem. 2018, 6, 458. [Google Scholar] [CrossRef]
- Herrmann, J.-M. Heterogeneous Photocatalysis: Fundamentals and Applications to the Removal of Various Types of Aqueous Pollutants. Catal. Today 1999, 53, 115–129. [Google Scholar] [CrossRef]
- Qin, H.-L.; Gu, G.-B.; Liu, S. Preparation of nitrogen-Doped Titania with Visible-Light Activity and Its Application. Comptes Rendus. Chim. 2008, 11, 95–100. [Google Scholar] [CrossRef]
- Bakre, P.V.; Tilve, S.; Shirsat, R. Influence of N Sources on the Photocatalytic Activity of N-Doped TiO2. Arab. J. Chem. 2020, 13, 7637–7651. [Google Scholar] [CrossRef]
- Matos, J.; Miralles-Cuevas, S.; Ruíz-Delgado, A.; Oller, I.; Malato, S. Development of TiO2-C Photocatalysts for Solar Treatment of Polluted Water. Carbon 2017, 122, 361–373. [Google Scholar] [CrossRef]
- Jia, G.; Wang, Y.; Cui, X.; Zheng, W. Highly Carbon-Doped TiO2 Derived from MXene Boosting the Photocatalytic Hydrogen Evolution. ACS Sustain. Chem. Eng. 2018, 6, 13480–13486. [Google Scholar] [CrossRef]
- Wang, P.; Yin, G.; Bi, Q.; Huang, X.; Du, X.; Zhao, W.; Huang, F.-Q. Efficient Photocatalytic Reduction of CO2 Using Carbon-Doped Amorphous Titanium Oxide. ChemCatChem 2018, 10, 3854–3861. [Google Scholar] [CrossRef]
- Ohno, T.; Akiyoshi, M.; Umebayashi, T.; Asai, K.; Mitsui, T.; Matsumura, M. Preparation of S-Doped TiO2 Photocatalysts and Their Photocatalytic Activities Under Visible Light. Appl. Catal. A Gen. 2004, 265, 115–121. [Google Scholar] [CrossRef]
- McManamon, C.; O’Connell, J.; Delaney, P.; Rasappa, S.; Holmes, J.; Morris, M. A Facile Route to Synthesis of S-Doped TiO2 Nanoparticles for Photocatalytic Activity. J. Mol. Catal. A Chem. 2015, 406, 51–57. [Google Scholar] [CrossRef]
- Helmy, E.T.; Abouellef, E.M.; Soliman, U.A.; Pan, J.H. Novel Green Synthesis of S-Doped TiO2 Nanoparticles Using Malva Parviflora Plant Extract and Their Photocatalytic, Antimicrobial and Antioxidant Activities Under Sunlight Illumination. Chemosphere 2020, 271, 129524. [Google Scholar] [CrossRef]
- Zhu, M.; Zhai, C.; Qiu, L.; Lu, C.; Paton, A.S.; Du, Y.; Goh, M.C. New Method to Synthesize S-Doped TiO2 with Stable and Highly Efficient Photocatalytic Performance under Indoor Sunlight Irradiation. ACS Sustain. Chem. Eng. 2015, 3, 3123–3129. [Google Scholar] [CrossRef]
- Bu, X.; Wang, Y.; Li, J.; Zhang, C. Improving the Visible Light Photocatalytic Activity of TiO2 by Combining Sulfur Doping and Rectorite Carrier. J. Alloys Compd. 2015, 628, 20–26. [Google Scholar] [CrossRef]
- Sharotri, N.; Gupta, S.; Sud, D. Visible Light Responsive S-Doped TiO2 Nanoparticles: Synthesis, Characterization and Photocatalytic Degradation of Pollutants. Nanotechnol. Environ. Eng. 2022, 7, 503–515. [Google Scholar] [CrossRef]
- Boningari, T.; Inturi, S.N.R.; Suidan, M.; Smirniotis, P.G. Novel One-Step Synthesis of Sulfur Doped-TiO2 by Flame Spray Pyrolysis for Visible Light Photocatalytic Degradation of Acetaldehyde. Chem. Eng. J. 2018, 339, 249–258. [Google Scholar] [CrossRef]
- Bakar, S.A.; Ribeiro, C. A comparative Run for Visible-Light-Driven Photocatalytic Activity of Anionic and Cationic S-Doped TiO2 Photocatalysts: A Case Study of Possible Sulfur Doping Through Chemical Protocol. J. Mol. Catal. A Chem. 2016, 421, 1–15. [Google Scholar] [CrossRef]
- Liu, C.; Chen, W.; Sheng, Y.; Li, L. Atrazine Degradation in Solar Irradiation/S-Doped Titanium Dioxide Treatment. In Proceedings of the 2009 3rd International Conference on Bioinformatics and Biomedical Engineering, Beijing, China, 11–13 June 2009; pp. 1–4. [Google Scholar]
- Lin, Y.-H.; Chou, S.-H.; Chu, H. A Kinetic Study for the Degradation of 1,2-Dichloroethane By S-Doped TiO2 Under Visible Light. J. Nanoparticle Res. 2014, 16, 1–12. [Google Scholar] [CrossRef]
- Baeissa, E. Synthesis and Characterization of Sulfur-Titanium Dioxide Nanocomposites for Photocatalytic Oxidation of Cyanide Using Visible Light Irradiation. Chin. J. Catal. 2015, 36, 698–704. [Google Scholar] [CrossRef]
- Mancuso, A.; Sacco, O.; Sannino, D.; Pragliola, S.; Vaiano, V. Enhanced Visible-Light-Driven Photodegradation of Acid Orange 7 Azo Dye in Aqueous Solution Using Fe-N Co-Doped TiO2. Arab. J. Chem. 2020, 13, 8347–8360. [Google Scholar] [CrossRef]
- Thambiliyagodage, C.; Usgodaarachchi, L. Photocatalytic activity of N, Fe and Cu co-doped TiO2 Nanoparticles Under Sunlight. Curr. Res. Green Sustain. Chem. 2021, 4, 100186. [Google Scholar] [CrossRef]
- Iervolino, G.; Vaiano, V.; Rizzo, L. Visible light active Fe-doped TiO2 for the Oxidation of Arsenite to Arsenate in Drinking Water. Chem. Eng. Trans. 2018, 70, 1573–1578. [Google Scholar]
- Iervolino, G.; Vaiano, V.; Matarangolo, M.; Rizzo, L. Photocatalytic Oxidation of Arsenite to Arsenate Using a Continuous Packed Bed Photoreactor. Chem. Eng. Trans. 2019, 73, 253–258. [Google Scholar] [CrossRef]
- Mancuso, A.; Sacco, O.; Vaiano, V.; Sannino, D.; Pragliola, S.; Venditto, V.; Morante, N. Visible Light Active Fe-Pr Co-Doped TiO2 for Water Pollutants Degradation. Catal. Today 2021, 380, 93–104. [Google Scholar] [CrossRef]
- Jeong, E.D.; Borse, P.H.; Jang, J.S.; Lee, J.S.; Jung, O.S.; Chang, H.; Jin, J.S.; Won, M.S.; Kim, H.G. Hydrothermal Synthesis of Cr and Fe Co-Doped TiO2 Nanoparticle Photocatalyst. J. Ceram. Processing Res. 2008, 9, 250–253. [Google Scholar]
- Liu, Q.; Zhou, Y.; Duan, Y.; Wang, M.; Lin, Y. Improved Photovoltaic Performance of Dye-Sensitized Solar Cells (Dsscs) By Zn+Mg Co-Doped TiO2 Electrode. Electrochim. Acta 2013, 95, 48–53. [Google Scholar] [CrossRef]
- Qin, Z.; Zhao, Z.; Jiao, W.; Han, Z.; Xia, L.; Fang, Y.; Wang, S.; Ji, L.; Jiang, Y. Coupled Photocatalytic-Bacterial Degradation of Pyrene: Removal Enhancement and Bacterial Community Responses. Environ. Res. 2020, 183, 109135. [Google Scholar] [CrossRef]
- Sharotri, N.; Sharma, D.; Sud, D. Experimental and Theoretical Investigations of Mn-N-Co-Doped TiO2 Photocatalyst for Visible Light Induced Degradation of Organic Pollutants. J. Mater. Res. Technol. 2019, 8, 3995–4009. [Google Scholar] [CrossRef]
- Le, T.T.T.; Tran, T.D. Photocatalytic Degradation of Rhodamine B by C and N Codoped TiO2 Nanoparticles under Visible-Light Irradiation. J. Chem. 2020, 2020, 1–8. [Google Scholar] [CrossRef]
- Li, D.; Haneda, H.; Hishita, S.; Ohashi, N. Visible-Light-Driven N− F− Codoped TiO2 Photocatalysts. 2. Optical Characterization, Photocatalysis, And Potential Application to Air Purification. Chem. Mater. 2005, 17, 2596–2602. [Google Scholar] [CrossRef]
- Zheng, P.; Wu, H.; Guo, J.; Dong, J.; Jia, S.; Zhu, Z. P–N Co-Doping Induced Structural Recovery of TiO2 For Overall Water Splitting Under Visible Light Irradiation. J. Alloys Compd. 2014, 615, 79–83. [Google Scholar] [CrossRef]
- Qaderi, J.; Mamat, C.R.; Jalil, A.A. Preparation and Characterization of Copper, Iron, and Nickel Doped Titanium Dioxide Photocatalysts for Decolorization of Methylene Blue. Sains Malays. 2021, 50, 135–149. [Google Scholar] [CrossRef]
- Li, H.; Hao, Y.; Lu, H.; Liang, L.; Wang, Y.; Qiu, J.; Shi, X.; Wang, Y.; Yao, J. A Systematic Study on Visible-Light N-Doped TiO2 Photocatalyst Obtained from Ethylenediamine by Sol–Gel Method. Appl. Surf. Sci. 2015, 344, 112–118. [Google Scholar] [CrossRef]
- Grabowska-Musiał, E.; Zaleska-Medynska, A.; Sobczak, J.; Gazda, M.; Hupka, J. Boron-Doped TiO2: Characteristics and Photoactivity Under Visible Light. Procedia Chem. 2009, 1, 1553–1559. [Google Scholar] [CrossRef]
- Gopal, N.O.; Lo, H.-H.; Ke, T.-F.; Lee, C.-H.; Chou, C.-C.; Wu, J.-D.; Sheu, S.-C.; Ke, S.-C. Visible Light Active Phosphorus-Doped TiO2 Nanoparticles: An EPR Evidence for the Enhanced Charge Separation. J. Phys. Chem. C 2012, 116, 16191–16197. [Google Scholar] [CrossRef]
- Mugundan, S.; Rajamannan, B.; Viruthagiri, G.; Shanmugam, N.; Gobi, R.; Praveen, P. Synthesis and Characterization of Undoped and Cobalt-Doped TiO2 Nanoparticles Via Sol–Gel Technique. Appl. Nanosci. 2015, 5, 449–456. [Google Scholar] [CrossRef] [Green Version]
- Giahi, M.; Pathania, D.; Agarwal, S.; Gomaa, A.M.A.; Chong, K.F.; Gupta, V.K. Preparation of Mg-Doped TiO2 Nanoparticles for Photocatalytic Degradation of Some Organic Pollutants. Stud. Univ. Babes-Bolyai Chem. 2019, 64, 7–18. [Google Scholar] [CrossRef]
- Manzoor, M.; Rafiq, A.; Ikram, M.; Nafees, M.; Ali, S. Structural, Optical, And Magnetic Study of Ni-Doped TiO2 Nanoparticles Synthesized by Sol–Gel Method. Int. Nano Lett. 2018, 8, 1–8. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Q. Preparation and Characterization of Titania Photocatalyst Co-Doped with Boron, Nickel, and Cerium. Mater. Lett. 2008, 62, 2589–2592. [Google Scholar] [CrossRef]
- Srinivasan, S.S.; Wade, J.; Stefanakos, E.K.; Goswami, Y. Synergistic Effects of Sulfation and Co-Doping on the Visible Light Photocatalysis of TiO2. J. Alloys Compd. 2006, 424, 322–326. [Google Scholar] [CrossRef]
- Mugundan, S.; Praveen, P.; Sridhar, S.; Prabu, S.; Mary, K.L.; Ubaidullah, M.; Shaikh, S.F.; Kanagesan, S. Sol-Gel Synthesized Barium Doped TiO2 Nanoparticles for Solar Photocatalytic Application. Inorg. Chem. Commun. 2022, 139, 109340. [Google Scholar] [CrossRef]
- Huang, J.-G.; Guo, X.-T.; Wang, B.; Li, L.-Y.; Zhao, M.-X.; Dong, L.-L.; Liu, X.-J.; Huang, Y.-T. Synthesis and Photocatalytic Activity of Mo-Doped TiO2Nanoparticles. J. Spectrosc. 2015, 2015, 1–8. [Google Scholar] [CrossRef]
- Nithya, N.; Bhoopathi, G.; Magesh, G.; Kumar, C.D.N. Neodymium Doped TiO2 Nanoparticles by Sol-Gel Method for Antibacterial and Photocatalytic Activity. Mater. Sci. Semicond. Process. 2018, 83, 70–82. [Google Scholar] [CrossRef]
- Sacco, O.; Stoller, M.; Vaiano, V.; Ciambelli, P.; Chianese, A.; Sannino, D. Photocatalytic Degradation of Organic Dyes Under Visible Light on N-Doped TiO2 Photocatalysts. Int. J. Photoenergy 2012, 2012, 1–9. [Google Scholar] [CrossRef]
- Vaiano, V.; Sacco, O.; Iervolino, G.; Sannino, D.; Ciambelli, P.; Liguori, R.; Bezzeccheri, E.; Rubino, A. Enhanced Visible Light Photocatalytic Activity by Up-Conversion Phosphors Modified N-Doped TiO2. Appl. Catal. B Environ. 2015, 176, 594–600. [Google Scholar] [CrossRef]
- Tian, B.Z.; Li, C.Z.; Gu, F.; Jiang, H.B.; Hu, Y.J. Visible-Light Photocatalytic Activity of Cr-Doped TiO2 Nanoparticles Synthesized by Flame Spray Pyrolysis. J. Inorg. Mater. 2009, 24, 661–665. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, Y.; Shi, L.; Yuan, S.; Fang, J.; Wang, Z.; Zhang, M. Solvothermal Synthesis of Crystalline Phase and Shape Controlled Sn4+-Doped TiO2 Nanocrystals: Effects of Reaction Solvent. ACS Appl. Mater. Interfaces 2011, 3, 1261–1268. [Google Scholar] [CrossRef]
- Cano-Casanova, L.; Amorós-Pérez, A.; Lillo-Ródenas, M.Á.; Román-Martínez, M.D.C. Effect of the Preparation Method (Sol-Gel or Hydrothermal) and Conditions on the TiO2 Properties and Activity for Propene Oxidation. Materials 2018, 11, 2227. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, M.C.; Aguilar-Moncayo, M.; Maicu, M.; Navío, J.A.; Colón, G. Hydrothermal Preparation of Highly Photoactive TiO2 Nanoparticles. Catal. Today 2007, 129, 50–58. [Google Scholar] [CrossRef]
- Zhou, J.K.; Lv, L.; Yu, J.; Li, H.L.; Guo, P.-Z.; Sun, A.H.; Zhao, X.S. Synthesis of Self-Organized Polycrystalline F-doped TiO2 Hollow Microspheres and Their Photocatalytic Activity under Visible Light. J. Phys. Chem. C 2008, 112, 5316–5321. [Google Scholar] [CrossRef]
- Wu, D.; Long, M.; Cai, W.; Chen, C.; Wu, Y. Low Temperature Hydrothermal Synthesis of N-Doped TiO2 Photocatalyst with High Visible-Light Activity. J. Alloys Compd. 2010, 502, 289–294. [Google Scholar] [CrossRef]
- Li, Z.; Shen, W.; He, W.; Zu, X. Effect of Fe-Doped TiO2 Nanoparticle Derived from Modified Hydrothermal Process on the Photocatalytic Degradation Performance on Methylene Blue. J. Hazard. Mater. 2008, 155, 590–594. [Google Scholar] [CrossRef]
- Zhu, J.; Zheng, W.; He, B.; Zhang, J.; Anpo, M. Characterization of Fe–TiO2 Photocatalysts Synthesized by Hydrothermal Method and Their Photocatalytic Reactivity for Photodegradation of XRG Dye Diluted in Water. J. Mol. Catal. A Chem. 2004, 216, 35–43. [Google Scholar] [CrossRef]
- Amano, F.; Yamakata, A.; Nogami, K.; Osawa, M.; Ohtani, B. Visible Light Responsive Pristine Metal Oxide Photocatalyst: Enhancement of Activity by Crystallization under Hydrothermal Treatment. J. Am. Chem. Soc. 2008, 130, 17650–17651. [Google Scholar] [CrossRef]
- Nasir, M.; Bagwasi, S.; Jiao, Y.; Chen, F.; Tian, B.; Zhang, J. Characterization and Activity of the Ce and N co-doped TiO2 Prepared Through Hydrothermal Method. Chem. Eng. J. 2014, 236, 388–397. [Google Scholar] [CrossRef]
- Xu, H.; Wang, K.; Liu, S.; Li, Y.; Chen, W. Preparation of Ce, N-Codoped Mesoporous Titania Photocatalyst with High Photocatalytic Activity under Visible Light. In Materials in Environmental Engineering; Hadi, H., Ed.; De Gruyter: Berlin, Germany, 2017; pp. 777–786. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, S.; Cao, X.; Wu, S.; Liu, C.; Li, G.; Jiang, W.; Wang, H.; Wang, N.; Ding, W. Preparation and Characterization of TiO2 Nanoparticles by Two Different Precipitation Methods. Ceram. Int. 2020, 46, 15333–15341. [Google Scholar] [CrossRef]
- Banić, N.; Abramović, B.; Krstić, J.; Šojić, D.; Lončarević, D.; Cherkezova-Zheleva, Z.; Guzsvány, V. Photodegradation of Thiacloprid Using Fe/TiO2 as a Heterogeneous Photo-Fenton Catalyst. Appl. Catal. B Environ. 2011, 107, 363–371. [Google Scholar] [CrossRef]
- Jiao, W.; Liu, Y.; Qi, G. A New Impinging Stream–Rotating Packed Bed Reactor for Improvement of Micromixing Iodide and Iodate. Chem. Eng. J. 2010, 157, 168–173. [Google Scholar] [CrossRef]
- Zeng, G.; Zhang, Q.; Liu, Y.; Zhang, S.; Guo, J. Preparation of TiO2 and Fe-TiO2 with an Impinging Stream-Rotating Packed Bed by the Precipitation Method for the Photodegradation of Gaseous Toluene. Nanomaterials 2019, 9, 1173. [Google Scholar] [CrossRef]
- He, R.; Zhang, Q.; Liu, Y.; Guo, J.; Shen, H. Preparation of Fe and Co co-doped TiO2 by Precipitation Method in an Impinging Stream-Rotating Packed Bed for Photodegradation of Phenol Wastewater. Adv. Appl. Ceram. 2021, 120, 134–143. [Google Scholar] [CrossRef]
- Javaid, R.; Qazi, U.Y. Catalytic Oxidation Process for the Degradation of Synthetic Dyes: An Overview. Int. J. Environ. Res. Public Health 2019, 16, 2066. [Google Scholar] [CrossRef]
- Susan, E.F.; Elizabeth, A.D. Sensitization to Dyes in Textiles and Other Consumer Products. J. Toxicol. Cutan. Ocul. Toxicol. 1988, 7, 195–222. [Google Scholar] [CrossRef]
- Svedman, C.; Engfeldt, M.; Malinauskiene, L. Textile Contact Dermatitis: How Fabrics Can Induce Dermatitis. Curr. Treat. Options Allergy 2019, 6, 103–111. [Google Scholar] [CrossRef]
- Jamee, R.; Siddique, R. Biodegradation of Synthetic Dyes of Textile Effluent by Microorganisms: An Environmentally and Economically Sustainable Approach. Eur. J. Microbiol. Immunol. 2019, 9, 114–118. [Google Scholar] [CrossRef]
- Bhosale, R.R.; Pujari, S.R.; Muley, G.G.; Patil, S.H.; Patil, K.R.; Shaikh, M.F.; Gambhire, A.B. Solar Photocatalytic Degradation of Methylene Blue Using Doped TiO2 Nanoparticles. Sol. Energy 2014, 103, 473–479. [Google Scholar] [CrossRef]
- Shahmoradi, B.; Negahdary, M.; Maleki, A. Hydrothermal Synthesis of Surface-Modified, Manganese-Doped TiO2 Nanoparticles for Photodegradation of Methylene Blue. Environ. Eng. Sci. 2012, 29, 1032–1037. [Google Scholar] [CrossRef]
- Umar, K.; Aris, A.; Ahmad, H.; Parveen, T.; Jaafar, J.; Majid, Z.A.; Reddy, A.V.B.; Talib, J. Synthesis of Visible Light Active Doped TiO2 for the Degradation of Organic Pollutants—Methylene Blue and Glyphosate. J. Anal. Sci. Technol. 2016, 7, 725. [Google Scholar] [CrossRef]
- Nakhate, G.; Nikam, V.; Kanade, K.; Arbuj, S.; Kale, B.; Baeg, J. Hydrothermally Derived Nanosized Ni-Doped TiO2: A Visible Light Driven Photocatalyst for Methylene Blue Degradation. Mater. Chem. Phys. 2010, 124, 976–981. [Google Scholar] [CrossRef]
- Bayan, E.M.; Lupeiko, T.G.; Pustovaya, L.E.; Volkova, M.G. Synthesis and Photocatalytic Properties of Sn–TiO2 Nanomaterials. J. Adv. Dielectr. 2020, 10, 2060018. [Google Scholar] [CrossRef]
- Afshar, S.; Pordel, S.; Tahmouresilerd, B.; Azad, A. Improving the Photocatalytic Activity of Modified Anatase TiO2 with Different Concentrations of Aluminum under Visible Light: Mechanistic Survey. Photochem. Photobiol. 2016, 92, 783–789. [Google Scholar] [CrossRef]
- Luo, J.-L.; Wang, S.-F.; Liu, W.; Tian, C.-X.; Wu, J.-W.; Zu, X.-T.; Zhou, W.-L.; Yuan, X.-D.; Xiang, X. Influence of Different Aluminum Salts on the Photocatalytic Properties of Al Doped TiO2 Nanoparticles Towards the Degradation of AO7 Dye. Sci. Rep. 2017, 7, 1–16. [Google Scholar] [CrossRef]
- Arul, A.R.; Manjulavalli, T.E.; Venckatesh, R. Visible Light Proven Si Doped TiO2 Nanocatalyst for the Photodegradation of Organic Dye. Mater. Today Proc. 2019, 18, 1760–1769. [Google Scholar] [CrossRef]
- Alamelu, K.; Ali, J. TiO2-Pt Composite Photocatalyst for Photodegradation and Chemical Reduction of Recalcitrant Organic Pollutants. J. Environ. Chem. Eng. 2018, 6, 5720–5731. [Google Scholar] [CrossRef]
- Nguyen, C.H.; Fu, C.-C.; Juang, R.-S. Degradation of Methylene Blue and Methyl Orange by Palladium-Doped TiO2 Photocatalysis for Water Reuse: Efficiency and Degradation Pathways. J. Clean. Prod. 2018, 202, 413–427. [Google Scholar] [CrossRef]
- Ahadi, S.; Moalej, N.S.; Sheibani, S. Characteristics and Photocatalytic Behavior of Fe and Cu Doped TiO2 Prepared by Combined Sol-Gel and Mechanical Alloying. Solid State Sci. 2019, 96, 105975. [Google Scholar] [CrossRef]
- Xiao, Q.; Zhang, J.; Xiao, C.; Si, Z.; Tan, X. Solar Photocatalytic Degradation of Methylene Blue in Carbon-Doped TiO2 Nanoparticles Suspension. Sol. Energy 2008, 82, 706–713. [Google Scholar] [CrossRef]
- Barkul, R.P.; Patil, M.K.; Patil, S.M.; Shevale, V.B.; Delekar, S.D. Sunlight-Assisted Photocatalytic Degradation of Textile Effluent and Rhodamine B By Using Iodine Doped TiO2 Nanoparticles. J. Photochem. Photobiol. A Chem. 2017, 349, 138–147. [Google Scholar] [CrossRef]
- Jaimy, K.B.; Safeena, V.P.; Ghosh, S.; Hebalkar, N.Y.; Warrier, K.G.K. Photocatalytic Activity Enhancement in Doped Titanium Dioxide by Crystal Defects. Dalton Trans. 2012, 41, 4824–4832. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Chen, J.; Lin, W.; Liu, Y.; Kong, Y. Improved Visible Light Photocatalytic Activity of Fluorine and Nitrogen Co-Doped TiO2 with Tunable Nanoparticle Size. Appl. Surf. Sci. 2015, 332, 573–580. [Google Scholar] [CrossRef]
- Ahmed, S.; Mofijur, M.; Nuzhat, S.; Chowdhury, A.T.; Rafa, N.; Uddin, A.; Inayat, A.; Mahlia, T.; Ong, H.C.; Chia, W.Y.; et al. Recent Developments in Physical, Biological, Chemical, And Hybrid Treatment Techniques for Removing Emerging Contaminants from Wastewater. J. Hazard. Mater. 2021, 416, 125912. [Google Scholar] [CrossRef]
- Kasonga, T.K.; Coetzee, M.A.A.; Kamika, I.; Ngole-Jeme, V.M.; Momba, M.N.B. Endocrine-Disruptive Chemicals as Contaminants of Emerging Concern in Wastewater and Surface Water: A Review. J. Environ. Manag. 2021, 277, 111485. [Google Scholar] [CrossRef]
- Purba, L.D.A.; Othman, F.S.; Yuzir, A.; Mohamad, S.E.; Iwamoto, K.; Abdullah, N.; Shimizu, K.; Hermana, J. Enhanced Cultivation and Lipid Production of Isolated Microalgae Strains Using Municipal Wastewater. Environ. Technol. Innov. 2022, 27, 102444. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, X.; Wu, S.; Zhong, Y.; Yang, C. Enhanced Strategies for Antibiotic Removal from Swine Wastewater in Anaerobic Digestion. Trends Biotechnol. 2020, 39, 8–11. [Google Scholar] [CrossRef]
- Valbonesi, P.; Profita, M.; Vasumini, I.; Fabbri, E. Contaminants of Emerging Concern in Drinking Water: Quality Assessment by Combining Chemical and Biological Analysis. Sci. Total Environ. 2020, 758, 143624. [Google Scholar] [CrossRef]
- Akhbarizadeh, R.; Dobaradaran, S.; Schmidt, T.C.; Nabipour, I.; Spitz, J. Worldwide Bottled Water Occurrence of Emerging Contaminants: A Review of the Recent Scientific Literature. J. Hazard. Mater. 2020, 392, 122271. [Google Scholar] [CrossRef] [PubMed]
- Pal, A.; Gin, K.Y.-H.; Lin, A.y.-C.; Reinhard, M. Impacts of Emerging Organic Contaminants on Freshwater Resources: Review of Recent Occurrences, Sources, Fate and Effects. Sci. Total Environ. 2010, 408, 6062–6069. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Guerrero-Juarez, C.F.; Zhang, L.; Chang, I.; Ramos, R.; Kuan, C.-H.; Myung, P.; Plikus, M.V.; Nie, Q. Inference and Analysis of Cell-Cell Communication Using Cellchat. Nat. Commun. 2021, 12, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.-J.; Lee, C.-L.; Fang, M.-D.; Tu, B.-W.; Liang, Y.-J. Impacts of Emerging Contaminants on Surrounding Aquatic Environment from a Youth Festival. Environ. Sci. Technol. 2014, 49, 792–799. [Google Scholar] [CrossRef]
- Saidulu, D.; Gupta, B.; Gupta, A.K.; Ghosal, P.S. A Review on Occurrences, Eco-Toxic Effects, And Remediation of Emerging Contaminants from Wastewater: Special Emphasis on Biological Treatment Based Hybrid Systems. J. Environ. Chem. Eng. 2021, 9, 105282. [Google Scholar] [CrossRef]
- Zhang, B.; He, X.; Yu, C.; Liu, G.; Ma, D.; Cui, C.; Yan, Q.; Zhang, Y.; Zhang, G.; Ma, J.; et al. Degradation of Tetracycline Hydrochloride by Ultrafine TiO2 Nanoparticles Modified G-C3N4 Heterojunction Photocatalyst: Influencing Factors, Products and Mechanism Insight. Chin. Chem. Lett. 2021, 33, 1337–1342. [Google Scholar] [CrossRef]
- Prieto-Rodriguez, L.; Miralles-Cuevas, S.; Oller, I.; Agüera, A.; Puma, G.L.; Malato, S. Treatment of Emerging Contaminants in Wastewater Treatment Plants (WWTP) Effluents by Solar Photocatalysis Using Low TiO2 Concentrations. J. Hazard. Mater. 2012, 211–212, 131–137. [Google Scholar] [CrossRef]
- Bhosale, M.G.; Sutar, R.S.; Londhe, S.S.; Patil, M.K. Sol–Gel Method Synthesized Ce-Doped TiO2 Visible Light Photocatalyst for Degradation of Organic Pollutants. Appl. Organomet. Chem. 2022, 36, e6586. [Google Scholar] [CrossRef]
- Šojić, D.; Despotović, V.; Abramović, B.; Todorova, N.; Giannakopoulou, T.; Trapalis, C. Photocatalytic Degradation of Mecoprop and Clopyralid in Aqueous Suspensions of Nanostructured N-doped TiO2. Molecules 2010, 15, 2994–3009. [Google Scholar] [CrossRef]
- Kusumawardani, L.J.; Syahputri, Y.; Iryani, A. Photocatalytic Degradation of Paraquat Dichloride using TiO2-Fe Nano Powder under Visible and Sunlight Irradiation. J. Kim. Val. 2020, 6, 55–61. [Google Scholar] [CrossRef]
- Quiroz, N.A.; Gutierrez, D.J.R.; Martínez, S.S.; Bahena, C.L. Degradation of Gesaprim Herbicide by Heterogeneous Photocatalysis Using Fe-Doped TiO2. Int. J. Geosci. 2011, 2, 669–675. [Google Scholar] [CrossRef]
- Senthilnathan, J.; Philip, L. Photocatalytic Degradation of Lindane Under UV and Visible Light Using N-Doped TiO2. Chem. Eng. J. 2010, 161, 83–92. [Google Scholar] [CrossRef]
- Manoharan, R.K.; Sankaran, S. Photocatalytic Degradation of Organic Pollutant Aldicarb by Non-Metal-Doped Nanotitania: Synthesis and Characterization. Environ. Sci. Pollut. Res. 2017, 25, 20510–20517. [Google Scholar] [CrossRef]
- Aba-Guevara, C.G.; Medina-Ramírez, I.E.; Hernández-Ramírez, A.; Jáuregui-Rincón, J.; Lozano-Álvarez, J.A.; Rodríguez-López, J.L. Comparison of Two Synthesis Methods on the Preparation of Fe, N-Co-Doped TiO2 Materials For Degradation of Pharmaceutical Compounds Under Visible Light. Ceram. Int. 2017, 43, 5068–5079. [Google Scholar] [CrossRef]
- Ortiz-Bustos, J.; Gómez-Ruiz, S.; Mazarío, J.; Domine, M.E.; del Hierro, I.; Pérez, Y. Copper and Sulphur Co-Doped Titanium Oxide Nanoparticles with Enhanced Catalytic and Photocatalytic Properties. Catal. Sci. Technol. 2020, 10, 6511–6524. [Google Scholar] [CrossRef]
- Mancuso, A.; Navarra, W.; Sacco, O.; Pragliola, S.; Vaiano, V.; Venditto, V. Photocatalytic Degradation of Thiacloprid Using Tri-Doped TiO2 Photocatalysts: A Preliminary Comparative Study. Catalysts 2021, 11, 927. [Google Scholar] [CrossRef]
- Joseph, A.I.J.; Thiripuranthagan, S. Non-Metal Doped Titania Photocatalysts for the Degradation of Neonicotinoid Insecticides Under Visible Light Irradiation. J. Nanosci. Nanotechnol. 2018, 18, 3158–3164. [Google Scholar] [CrossRef]
- López-Gámez, G.; Elez-Martínez, P.; Martín-Belloso, O.; Soliva-Fortuny, R. Pulsed Electric Fields Affect Endogenous Enzyme Activities, Respiration and Biosynthesis of Phenolic Compounds in Carrots. Postharvest Biol. Technol. 2020, 168, 111284. [Google Scholar] [CrossRef]
- Hays, M.D.; Fine, P.M.; Geron, C.D.; Kleeman, M.J.; Gullett, B.K. Open Burning of Agricultural Biomass: Physical and Chemical Properties of Particle-Phase Emissions. Atmos. Environ. 2005, 39, 6747–6764. [Google Scholar] [CrossRef]
- Batura, I.I.; Gogotov, A.F.; Cherepanov, V.I.; Baranov, O.I.; Levchuk, A.A.; Parilova, M.V. Utilizing the Phenol Byproducts of Coke Production: 3. Phenols as Coinhibitors of Thermopolymerization During Styrene Production. Coke Chem. 2009, 52, 23–27. [Google Scholar] [CrossRef]
- Villegas, L.G.C.; Mashhadi, N.; Chen, M.; Mukherjee, D.; Taylor, K.E.; Biswas, N. A Short Review of Techniques for Phenol Removal from Wastewater. Curr. Pollut. Rep. 2016, 2, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Pedroza, A.M.; Mosqueda, R.; Alonso-Vante, N.; Rodriguez-Vazquez, R. Sequential Treatment Via Trametes Versicolor And UV/TiO2/Ruxsey to Reduce Contaminants in Wastewater Resulting from the Bleaching Process During Paper Production. Chemosphere 2007, 67, 793–801. [Google Scholar] [CrossRef] [PubMed]
- She, Z.; Gao, M.; Jin, C.; Chen, Y.; Yu, J. Toxicity and Biodegradation of 2,4-Dinitrophenol and 3-Nitrophenol in Anaerobic Systems. Process Biochem. 2005, 40, 3017–3024. [Google Scholar] [CrossRef]
- Gopi, P.K.; Srinithi, S.; Chen, S.-M.; Ravikumar, C.H. Designing of Cerium-Doped Bismuth Vanadate Nanorods/Functionalized-MWCNT Nanocomposite for the High Toxicity of 4-Cyanophenol Herbicide Detection in Human Urine Sample. Colloids Surf. A Physicochem. Eng. Asp. 2022, 639, 128371. [Google Scholar] [CrossRef]
- Tyler, C.R.; Jobling, S.; Sumpter, J.P. Endocrine Disruption in Wildlife: A Critical Review of the Evidence. Crit. Rev. Toxicol. 1998, 28, 319–361. [Google Scholar] [CrossRef]
- Karci, A.; Arslan-Alaton, I.; Olmez-Hanci, T.; Bekbölet, M. Transformation of 2, 4-Dichlorophenol by H2O2/UV-C, Fenton and Photo-Fenton Processes: Oxidation Products and Toxicity Evolution. J. Photochem. Photobiol. A Chem. 2012, 230, 65–73. [Google Scholar] [CrossRef]
- Niu, Y.; Xing, M.; Zhang, J.; Tian, B. Visible Light Activated Sulfur and Iron Co-Doped TiO2 Photocatalyst for the Photocatalytic Degradation of Phenol. Catal. Today 2013, 201, 159–166. [Google Scholar] [CrossRef]
- Xu, J.; Wang, F.; Liu, W.; Cao, W. Nanocrystalline N-Doped Powders: Mild Hydrothermal Synthesis and Photocatalytic Degradation of Phenol Under Visible Light Irradiation. Int. J. Photoenergy 2013, 2013, 1–8. [Google Scholar] [CrossRef]
- Chen, X.; Kuo, D.-H.; Lu, D. N-Doped Mesoporous TiO2 Nanoparticles Synthesized by Using Biological Renewable Nanocrystalline Cellulose as Template for The Degradation of Pollutants Under Visible and Sun Light. Chem. Eng. J. 2016, 295, 192–200. [Google Scholar] [CrossRef]
- Wang, Z.; Cai, W.; Hong, X.; Zhao, X.; Xu, F.; Cai, C. Photocatalytic Degradation of Phenol in Aqueous Nitrogen-Doped TiO2 Suspensions with Various Light Sources. Appl. Catal. B Environ. 2005, 57, 223–231. [Google Scholar] [CrossRef]
- Deng, B.; Fu, S.; Zhang, Y.; Wang, Y.; Ma, D.; Dong, S. Simultaneous Pollutant Degradation and Power Generation in Visible-Light Responsive Photocatalytic Fuel Cell with An Ag-TiO2 Loaded Photoanode. Nano-Struct. Nano-Objects 2018, 15, 167–172. [Google Scholar] [CrossRef]
- Borji, S.H.; Nasseri, S.; Mahvi, A.H.; Nabizadeh, R.; Javadi, A.H. Investigation of Photocatalytic Degradation of Phenol by Fe(III)-Doped TiO2 And TiO2 Nanoparticles. J. Environ. Health Sci. Eng. 2014, 12, 101. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Liao, S.; Zhou, W.; Quan, S.; Liu, L.; He, Z.; Wan, J. Synthesis of Samarium- and Nitrogen-Co-Doped TiO2 by Modified Hydrothermal Method and Its Photocatalytic Performance for the Degradation of 4-Chlorophenol. J. Phys. Chem. Solids 2009, 70, 853–859. [Google Scholar] [CrossRef]
- Te Lin, J.C.; Tolosa, N.C.; Sopajaree, K.; Gongglom, A.; Jitjanesuwan, T.; Lu, M.C. Visible-Light Degradation of 2-Chlorophenol by TiO2 doped with Neighboring Transition Metal Cerium via Various Approaches and Operation Parameters. Research Squar 2021. Available online: https://www.researchsquare.com/article/rs-508006/latest.pdf (accessed on 14 July 2022).
- Benkhennouche-Bouchene, H.; Mahy, J.; Wolfs, C.; Vertruyen, B.; Poelman, D.; Eloy, P.; Hermans, S.; Bouhali, M.; Souici, A.; Bourouina-Bacha, S.; et al. Green Synthesis of N/Zr Co-Doped TiO2 for Photocatalytic Degradation of p-Nitrophenol in Wastewater. Catalysts 2021, 11, 235. [Google Scholar] [CrossRef]
- Choi, J.; Park, H.; Hoffmann, M.R. Combinatorial Doping of TiO2 with Platinum (Pt), Chromium (Cr), Vanadium (V), and Nickel (Ni) To Achieve Enhanced Photocatalytic Activity with Visible Light Irradiation. J. Mater. Res. 2010, 25, 149–158. [Google Scholar] [CrossRef]
- Tseng, T.K.; Lin, Y.S.; Chen, Y.J.; Chu, H. A Review of Photocatalysts Prepared by Sol-Gel Method for VOCs Removal. Int. J. Mol. Sci. 2010, 11, 2336–2361. [Google Scholar] [CrossRef] [PubMed]
- Chakhtouna, H.; Benzeid, H.; Zari, N.; Bouhfid, R. Recent Progress on Ag/TiO2 Photocatalysts: Photocatalytic and Bactericidal Behaviors. Environ. Sci. Pollut. Res. 2021, 28, 44638–44666. [Google Scholar] [CrossRef]
- Kanakaraju, D.; Kutiang, F.D.A.; Lim, Y.C.; Goh, P.S. Recent Progress of Ag/TiO2 Photocatalyst for Wastewater Treatment: Doping, Co-Doping, and Green Materials Functionalization. Appl. Mater. Today 2022, 27, 101500. [Google Scholar] [CrossRef]
- Kaur, N.; Singh, M.; Moumen, A.; Duina, G.; Comini, E. 1D Titanium Dioxide: Achievements in Chemical Sensing. Materials 2020, 13, 2974. [Google Scholar] [CrossRef]
- Vaiano, V.; Lara, M.A.; Iervolino, G.; Matarangolo, M.; Navío, J.A.; Hidalgo, M.C. Photocatalytic H2 Production from Glycerol Aqueous Solutions Over Fluorinated Pt-TiO2 with High {001} Facet Exposure. J. Photochem. Photobiol. A Chem. 2018, 365, 52–59. [Google Scholar] [CrossRef]
- Iervolino, G.; Vaiano, V.; Sannino, D.; Puga, F.; Navío, J.A.; Hidalgo, M.C. LaFeO3 Modified with Ni for Hydrogen Evolution via Photocatalytic Glucose Reforming in Liquid Phase. Catalysts 2021, 11, 1558. [Google Scholar] [CrossRef]
- Qian, W.; Greaney, P.A.; Fowler, S.; Chiu, S.-K.; Goforth, A.M.; Jiao, J. Low-Temperature Nitrogen Doping in Ammonia Solution for Production of N-Doped TiO2-Hybridized Graphene as a Highly Efficient Photocatalyst for Water Treatment. ACS Sustain. Chem. Eng. 2014, 2, 1802–1810. [Google Scholar] [CrossRef]
- Nadeem, M.A.; Idriss, H. Photo-Thermal Reactions of Ethanol Over Ag/TiO2 Catalysts. The Role of Silver Plasmon Resonance in the Reaction Kinetics. Chem. Commun. 2018, 54, 5197–5200. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xing, Z.; Zhang, Y.; Li, Z.; Wu, X.; Tan, S.; Yu, X.; Zhu, Q.; Zhou, W. Fabrication of 3D Flower-Like Black N-TiO2-X@ Mos2 for Unprecedented-High Visible-Light-Driven Photocatalytic Performance. Appl. Catal. B Environ. 2017, 201, 119–127. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, H.; Pan, P.; Xue, K.; Zhang, Z.; Duan, J. Enhanced the Photocatalytic Activity of B–C–N–TiO2 Under Visible Light:Synergistic Effect of Element Doping and Z-Scheme Interface Heterojunction Constructed with Ag Nanoparticles. Ceram. Int. 2020, 47, 6094–6104. [Google Scholar] [CrossRef]
- Soni, V.; Raizada, P.; Kumar, A.; Hasija, V.; Singal, S.; Singh, P.; Hosseini-Bandegharaei, A.; Thakur, V.K.; Nguyen, V.-H. Indium Sulfide-Based Photocatalysts for Hydrogen Production and Water Cleaning: A Review. Environ. Chem. Lett. 2021, 19, 1065–1095. [Google Scholar] [CrossRef]
- He, J.; Kumar, A.; Khan, M.; Lo, I.M. Critical Review of Photocatalytic Disinfection of Bacteria: From Noble Metals-And Carbon Nanomaterials-TiO2 Composites to Challenges of Water Characteristics and Strategic Solutions. Sci. Total Environ. 2021, 758, 143953. [Google Scholar] [CrossRef]
- Jeyalakshmi, V.; Mahalakshmy, R.; Krishnamurthy, K.; Viswanathan, B. Photocatalytic Reduction of Carbon Dioxide by Water: A Step towards Sustainable Fuels and Chemicals. Mater. Sci. Forum 2012, 734, 1–62. [Google Scholar]
- Kunnamareddy, M.; Diravidamani, B.; Rajendran, R.; Singaram, B.; Varadharajan, K. Synthesis of Silver and Sulphur Codoped TiO2 Nanoparticles for Photocatalytic Degradation of Methylene Blue. J. Mater. Sci. Mater. Electron. 2018, 29, 18111–18119. [Google Scholar] [CrossRef]
- Chadwick, S.S. Ullmann’s Encyclopedia of Industrial Chemistry. Ref. Serv. Rev. 1988, 16, 31–34. [Google Scholar] [CrossRef]
- Steinfeld, A. Solar Thermochemical Production of Hydrogen—A Review. Sol. Energy 2005, 78, 603–615. [Google Scholar] [CrossRef]
- Crespo-Quesada, M.; Reisner, E. Emerging Approaches to Stabilise Photocorrodible Electrodes and Catalysts for Solar Fuel Applications. Energy Environ. Sci. 2017, 10, 1116–1127. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Roberts, R.; Naterer, G.; Gabriel, K. Comparison of Thermochemical, Electrolytic, Photoelectrolytic and Photochemical Solar-To-Hydrogen Production Technologies. Int. J. Hydrogen Energy 2012, 37, 16287–16301. [Google Scholar] [CrossRef]
- Clarizia, L.; Russo, D.; Di Somma, I.; Andreozzi, R.; Marotta, R. Hydrogen Generation through Solar Photocatalytic Processes: A Review of the Configuration and the Properties of Effective Metal-Based Semiconductor Nanomaterials. Energies 2017, 10, 1624. [Google Scholar] [CrossRef]
- Kitano, M.; Hara, M. Heterogeneous Photocatalytic Cleavage of Water. J. Mater. Chem. 2009, 20, 627–641. [Google Scholar] [CrossRef]
- Hu, J.; Cao, Y.; Wang, K.; Jia, D. Green Solid-State Synthesis and Photocatalytic Hydrogen Production Activity of Anatase TiO2 Nanoplates with Super Heat-Stability. RSC Adv. 2017, 7, 11827–11833. [Google Scholar] [CrossRef]
- Yang, H.G.; Sun, C.H.; Qiao, S.Z.; Zou, J.; Liu, G.; Smith, S.C.; Cheng, H.M.; Lu, G.Q. Anatase TiO2 Single Crystals with a Large Percentage of Reactive Facets. Nature 2008, 453, 638–641. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, H.; Quan, X.; Chen, S. Green synthesis of Feather-Shaped Mos2/Cds Photocatalyst for Effective Hydrogen Production. Int. J. Photoenergy 2013, 2013, 247516. [Google Scholar] [CrossRef]
- Chen, G.; Li, D.; Li, F.; Fan, Y.; Zhao, H.; Luo, Y.; Yu, R.; Meng, Q. Ball-Milling Combined Calcination Synthesis of Mos2/Cds Photocatalysts for High Photocatalytic H2 Evolution Activity Under Visible Light Irradiation. Appl. Catal. A Gen. 2012, 443, 138–144. [Google Scholar] [CrossRef]
- Serpone, N.; Pelizzetti, E. Photocatalysis: Fundamentals and Applications; Wiley-Interscience: Hoboken, NJ, USA, 1989. [Google Scholar]
- Al–Ekabi, H.; Safarzadeh–Amiri, A.; Sifton, W.; Story, J. Advanced Technology for Water Purification by Heterogeneous Photocatalysis. Int. J. Environ. Pollut. 1991, 1, 125–136. [Google Scholar]
- Ilisz, I.; Dombi, A.; Mogyorósi, K.; Dékány, I. Photocatalytic Water Treatment with Different TiO2 Nanoparticles and Hydrophilic/Hydrophobic Layer Silicate Adsorbents. Colloids Surf. A Physicochem. Eng. Asp. 2003, 230, 89–97. [Google Scholar] [CrossRef]
- Reddy, E.P.; Davydov, L.; Smirniotis, P. TiO2-Loaded Zeolites and Mesoporous Materials in the Sonophotocatalytic Decomposition of Aqueous Organic Pollutants: The Role of the Support. Appl. Catal. B Environ. 2003, 42, 1–11. [Google Scholar] [CrossRef]
- Iervolino, G.; Sacco, O.; Vaiano, V.; Palma, V. Non-Thermal Plasma Technology for the Effective Regeneration of Macroscopic Adsorbent Materials Used in the Removal of Patent Blue V Dye from Aqueous Solutions. Chem. Eng. Trans. 2019, 73, 151–156. [Google Scholar] [CrossRef]
- Iervolino, G.; Vaiano, V.; Sannino, D.; Rizzo, L.; Galluzzi, A.; Polichetti, M.; Pepe, G.; Campiglia, P. Hydrogen Production from Glucose Degradation in Water and Wastewater Treated by Ru-Lafeo3/Fe2O3 Magnetic Particles Photocatalysis and Heterogeneous Photo-Fenton. Int. J. Hydrogen Energy 2018, 43, 2184–2196. [Google Scholar] [CrossRef]
- Liu, S.-Q. Magnetic Nano-Photocatalysts: Preparation, Structure, and Application. In Environmental Chemistry for a Sustainable World; Springer: Berlin/Heidelberg, Germany, 2012; pp. 99–117. [Google Scholar]
- Moon, H.S.; Yong, K. Noble-Metal Free Photocatalytic Hydrogen Generation of Cupc/TiO2 Nanoparticles Under Visible-Light Irradiation. Appl. Surf. Sci. 2020, 530, 147215. [Google Scholar] [CrossRef]
- Chen, W.-T.; Chan, A.; Sun-Waterhouse, D.; Moriga, T.; Idriss, H.; Waterhouse, G.I. Ni/TiO2: A Promising Low-Cost Photocatalytic System for Solar H2 Production from Ethanol–Water Mixtures. J. Catal. 2015, 326, 43–53. [Google Scholar] [CrossRef]
- Yin, M.; Ma, S.; Wu, C.; Fan, Y. A Noble-Metal-Free Photocatalytic Hydrogen Production System Based on Cobalt(iii) Complex And Eosin Y-Sensitized TiO2. RSC Adv. 2014, 5, 1852–1858. [Google Scholar] [CrossRef]
- Lin, X.; Wang, J. Green Synthesis of Well Dispersed TiO2/Pt Nanoparticles Photocatalysts and Enhanced Photocatalytic Activity Towards Hydrogen Production. Int. J. Hydrogen Energy 2019, 44, 31853–31859. [Google Scholar] [CrossRef]
- Wang, X.; Cao, L.; Chen, D.; Caruso, R.A. Engineering of Monodisperse Mesoporous Titania Beads for Photocatalytic Applications. ACS Appl. Mater. Interfaces 2013, 5, 9421–9428. [Google Scholar] [CrossRef]
- Leung, D.Y.C.; Fu, X.; Wang, C.; Ni, M.; Leung, M.K.H.; Wang, X.; Fu, X. Hydrogen Production over Titania-Based Photocatalysts. ChemSusChem 2010, 3, 681–694. [Google Scholar] [CrossRef]
- Cai, J.; Kimura, S.; Wada, M.; Kuga, S. Nanoporous Cellulose as Metal Nanoparticles Support. Biomacromolecules 2008, 10, 87–94. [Google Scholar] [CrossRef]
- Lin, X.; Wu, M.; Wu, D.; Kuga, S.; Endo, T.; Huang, Y. Platinum Nanoparticles Using Wood Nanomaterials: Eco-Friendly Synthesis, Shape Control and Catalytic Activity for P-Nitrophenol Reduction. Green Chem. 2010, 13, 283–287. [Google Scholar] [CrossRef]
- Jing, D.; Guo, L. A Novel Method for the Preparation of a Highly Stable and Active CdS Photocatalyst with a Special Surface Nanostructure. J. Phys. Chem. B 2006, 110, 11139–11145. [Google Scholar] [CrossRef] [PubMed]
- Meissner, D.; Memming, R.; Kastening, B. Photoelectrochemistry of Cadmium Sulfide. 1. Reanalysis of Photocorrosion and Flat-Band Potential. J. Phys. Chem. 1988, 92, 3476–3483. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, L.; Lu, G.; Yao, X.; Guo, L. Nanoparticles Enwrapped with Nanotubes: A Unique Architecture of Cds/Titanate Nanotubes for Efficient Photocatalytic Hydrogen Production from Water. J. Mater. Chem. 2011, 21, 5134–5141. [Google Scholar] [CrossRef]
- Garcia-Esparza, A.T.; Cha, D.; Ou, Y.; Kubota, J.; Domen, K.; Takanabe, K. Tungsten Carbide Nanoparticles as Efficient Cocatalysts for Photocatalytic Overall Water Splitting. ChemSusChem 2012, 6, 168–181. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Q.; Yu, J.; Jaroniec, M. Synergetic Effect of Mos2 and Graphene as Cocatalysts for Enhanced Photocatalytic H2 Production Activity of TiO2 Nanoparticles. J. Am. Chem. Soc. 2012, 134, 6575–6578. [Google Scholar] [CrossRef]
- Niu, B.; Chen, Z.; Xu, Z. Recycling Waste Tantalum Capacitors to Synthesize High Value-Added Ta2O5 and Polyaniline-Decorated Ta2O5 Photocatalyst by an Integrated Chlorination-Sintering-Chemisorption Process. J. Clean. Prod. 2019, 252, 117206. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, B.; Li, H.; Ma, Y. Preparation and Characterization of a Magnetically Separated Photocatalyst and Its Catalytic Properties. Mater. Chem. Phys. 2003, 80, 348–355. [Google Scholar] [CrossRef]
- Vaiano, V.; Sacco, O.; Sannino, D.; Stoller, M.; Ciambelli, P.; Chianese, A. Photocatalytic Removal of Phenol by Ferromagnetic N-TiO2/SiO2/Fe3O4 Nanoparticles in Presence of Visible Light Irradiation. Chem. Eng. Trans. 2016, 47, 235–240. [Google Scholar] [CrossRef]
- Vaiano, V.; Iervolino, G.; Sannino, D.; Rizzo, L.; Sarno, G. MoOx/TiO2 Immobilized on Quartz Support as Structured Catalyst for the Photocatalytic Oxidation of as (III) to as (V) in Aqueous Solutions. Chem. Eng. Res. Des. 2016, 109, 190–199. [Google Scholar] [CrossRef]
- Vaiano, V.; Chianese, L.; Rizzo, L.; Iervolino, G. Visible Light Driven Oxidation of Arsenite to Arsenate in Aqueous Solution Using Cu-Doped Zno Supported on Polystyrene Pellets. Catal. Today 2020, 361, 69–76. [Google Scholar] [CrossRef]
- Vaiano, V.; Iervolino, G. Facile Method to Immobilize Zno Particles on Glass Spheres for the Photocatalytic Treatment of Tannery Wastewater. J. Colloid Interface Sci. 2018, 518, 192–199. [Google Scholar] [CrossRef] [PubMed]
Catalyst | Doping or Codoping Element | Light Source | Application |
---|---|---|---|
Fe-TiO2 | Fe | visible | Para-niro phenol and methylene blue degradation |
Ni-TiO2 | Ni | solar | Ibuprofen degradation |
Bi-TiO2 | Bi | solar | Ibuprofen degradation |
Cu-TiO2 | Cu | visible | Red 198 dye removal |
Pr-TiO2 | (RE Element): Pr | visible | RhB and Crystal violet dyes removal |
N-TiO2 | Non metal: N | solar | Dyes removal |
S-TiO2 | Non metal: S | visible | Methyl orange and phenol removal |
Fe-Cu-TiO2 | Fe and Cu | visible | Methylene blue removal |
Fe-Pr-TiO2 | Fe and Pr | visible | AO7 dye removal |
Cu-N-TiO2 | Fe and Cu | visible | Pyrene removal |
Catalyst | Preparation Method | Treatment Time (min) | Target Dye | Dye Concentration (ppm) | Degradation Efficiency (%) | Refs. |
---|---|---|---|---|---|---|
Fe-TiO2 | sol gel | 60 | methylene blue | 30 | 93 | [123] |
Mn-TiO2 | hydrothermal | 180 | methylene blue | 10 | 97 | [124] |
Mn-TiO2 | hydrothermal | 300 | methylene blue | 160 | 75 | [125] |
Ni-TiO2 | hydrothermal | 180 | methylene blue | 5 | 98 | [126] |
Ni-TiO2 | hydrothermal | 60 | methylene blue | 10 | 93 | [26] |
Sn-TiO2 | sol gel | 120 | methylene blue | 20 | 77 | [127] |
Al-TiO2 | sol gel | 180 | rhodamine B | 10 | 89 | [128] |
Al-TiO2 | sol gel | 60 | Acid orange 7 | 5 | 99 | [129] |
Si-TiO2 | sol gel | 120 | methylene blue | 10 | 87 | [130] |
Pt-TiO2 | Hydrothermal | 90 | rhodamine B | 10 | 99.5 | [131] |
Pd-TiO2 | sol gel | 120 | methylene blue | 20 | 99.4 | [132] |
Fe-TiO2 | sol gel | 60 | acid orange 7 | 10 | 73 | [77]. |
Fe-TiO2 | sol gel and mechanical alloying | 240 | methylene blue | 2 | 78 | [133] |
Pr-TiO2 | sol gel | 60 | acid orange 7 | 10 | - | [81] |
C-TiO2 | sol gel | 100 | methylene blue | 10 | 100 | [134] |
N-TiO2 | sol gel | 60 | acid orange 7 | 10 | 55 | [77] |
I-TiO2 | sol gel | 240 | rhodamine B | 20 | 95 | [135] |
S-TiO2 | hydrothermal | 70 | rhodamine B | 10 | 95 | [57] |
C-N-TiO2 | solvothermal | 90 | Rhodamine B | 20 | 94 | [86] |
Fe-N-TiO2 | sol gel | 60 | Acid orange 7 | 10 | 83 | [77] |
Fe-Pr-TiO2 | sol gel | 60 | Acid orange 7 | 10 | 80 | [81] |
Fe-Ce-TiO2 | sol gel | 120 | methylene blue | 4 | 86 | [136] |
Fe-La-TiO2 | sol gel | 180 | methylene blue | 0.1 | 44 | [65] |
F-N-TiO2 | hydrothermal | 300 | methylene blue | 5 | 97 | [137] |
Catalyst | Preparation Method | Treatment Time (min) | Target EC | EC Concentration (ppm) | Degradation Efficiency (%) | Refs. |
---|---|---|---|---|---|---|
Ce-TiO2 | sol gel | 60 | tetracycline | 20 | 93 | [150] |
Bi-TiO2 | sol gel | 360 | Ibuprofen | 25 | 89 | [29] |
Ni-TiO2 | sol gel | 360 | Ibuprofen | 25 | 50 | [29] |
N-TiO2 | sol gel | 1200 | mecoprop | 580 | 50 | [151] |
Fe-TiO2 | sol gel | 75 | Paraquat dichloride | 30 | 98 | [152] |
Fe-TiO2 | sol gel | 200 | Gesaprim Herbicide | 40 | 90 | [153] |
Mn-TiO2 | hydrothermal | 300 | glyphosate | 6 | 75 | [154] |
N-TiO2 | sol gel | 330 | lindane | 100 | 100 | [154] |
Cr-TiO2 | sol gel | 330 | lindane | 100 | 30 | [154] |
Ag-TiO2 | sol gel | 330 | lindane | 100 | 23 | [154] |
Fe-TiO2 | sol gel | 330 | lindane | 100 | 10 | [154] |
Fe-Cr-TiO2 | sol gel | 330 | lindane | 100 | 37 | [154] |
N-S-TiO2 | sol gel | 90 | aldicarb pesticide | 19 | >80% | [155] |
Fe-N-TiO2 | sol gel | 240 | amoxicillin | 30 | 59 | [156] |
Fe-N-TiO2 | sol gel | 240 | streptomycin | 30 | 50 | [156] |
Cu-S-TiO2 | sol gel | 90 | ciprofloxacin | 15 | 100 | [157] |
Fe-N-P-TiO2 | sol gel | 180 | thiachloprid | 0.5 | 29 | [158] |
C-N-B-F-TiO2 | sol gel | 480 | thiamethoxam | 87.5 | 65 | [159] |
C-N-B-F-TiO2 | sol gel | 450 | imidacloprid | 24 | 71 | [159] |
Catalyst | Preparation Method | Treatment Time (min) | Target Phenolic Compound | Phenolic Compound (ppm) | Degradation Efficiency (%) | Refs. |
---|---|---|---|---|---|---|
N-TiO2 | hydrolysis precipitation | 120 | phenol | 50 | 100 | [171] |
N-TiO2 | hydrothermal | 120 | phenol | 20 | 36 | [172] |
N-TiO2 | hydrothermal | 600 | phenol | 25 | 81 | [170] |
Ag-TiO2 | sol gel impregnation | 360 | 4-chlorophenol | 10 | 73.5 | [173] |
Fe-TiO2 | sol gel | 210 | phenol | 10 | 30 | [174] |
N-TiO2 | hydrothermal | 600 | 4-chlorophenol | 130 | 17 | [99] |
Sm-TiO2 | hydrothermal | 600 | 4-chlorophenol | 130 | 1.5 | [175] |
Ce-TiO2 | sol gel | 240 | 2-chlorophenol | 10 | 100 | [176] |
Fe -TiO2 | sol-gel and mechanical alloying | 240 | phenol | 5 | 40 | [133] |
Sm–N-TiO2 | hydrothermal | 600 | 4-chlorophenol | 130 | 40 | [175] |
N-Zr-TiO2 | sol–gel | 1400 | 4-nitrophenol | 14 | 68 | [177] |
Cr-V-TiO2 | sol gel | 180 | phenol | 5 | 50 | [178] |
Pt(II)-Cr-TiO2 | sol gel | 180 | phenol | 5 | 70 | [178] |
Fe-Pr-TiO2 | sol gel | 240 | phenol | 10 | 66 | [81] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mancuso, A.; Iervolino, G. Synthesis and Application of Innovative and Environmentally Friendly Photocatalysts: A Review. Catalysts 2022, 12, 1074. https://doi.org/10.3390/catal12101074
Mancuso A, Iervolino G. Synthesis and Application of Innovative and Environmentally Friendly Photocatalysts: A Review. Catalysts. 2022; 12(10):1074. https://doi.org/10.3390/catal12101074
Chicago/Turabian StyleMancuso, Antonietta, and Giuseppina Iervolino. 2022. "Synthesis and Application of Innovative and Environmentally Friendly Photocatalysts: A Review" Catalysts 12, no. 10: 1074. https://doi.org/10.3390/catal12101074
APA StyleMancuso, A., & Iervolino, G. (2022). Synthesis and Application of Innovative and Environmentally Friendly Photocatalysts: A Review. Catalysts, 12(10), 1074. https://doi.org/10.3390/catal12101074