Construction of the Photocatalytic Film of the Recyclable TaON/Nickel Foam with Ohmic Junction for Efficient Wastewater Treatment
Abstract
:1. Introduction
2. Experimental Section
2.1. Preparation of Samples
2.2. Characterization
2.3. Photocatalytic Activity Evaluation of Samples
2.4. Calculation Method
3. Results and Discussion
3.1. Characterization of Samples
3.2. Photocatalytic Performance Test
3.3. Carrier Transfer Resistance and Separation Efficiency
3.4. Photocatalytic Active Species
3.5. Photocatalytic Degradation Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, G.; Kumar, J.; Bag, M.; Dutta, R.K. Solar light induced photocatalytic process for reduction of hexavalent chromium and degradation of tetracycline and methylene blue by heterostructures made of SnS2 nanoplates surface modified by ZnWO4 nanorods. Sep. Purif. Technol. 2022, 292, 121040. [Google Scholar] [CrossRef]
- Wetchakun, N.; Wanwaen, P.; Phanichphant, S.; Wetchakun, K. Influence of Cu doping on the visible-light-induced photocatalytic activity of InVO4. RSC Adv. 2017, 7, 13911–13918. [Google Scholar] [CrossRef] [Green Version]
- Diugosz, M.; Zmudzki, P.; Kwiecien, A.; Szczubialka, K.; Krzek, J.; Nowakowska, M. Photocatalytic degradation of sulfamethoxazole in aqueous solution using a floating TiO2-expanded perlite photocatalyst. J. Hazard. Mater. 2015, 298, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.T.; Wang, J.; Bi, Z.X.; Chen, X.; Hu, X.; Pan, W.G. Recent advances and perspectives of g-C3N4-based materials for photocatalytic dyes degradation. Chemosphere 2022, 295, 133834. [Google Scholar] [CrossRef]
- Guan, Y.; Wang, S.; Du, Q.; Wu, M.; Zheng, Z.; Li, Z.; Yan, S. C-scheme electron transfer mechanism: An efficient ternary heterojunction photocatalyst carbon quantum dots/Bi/BiOBr with full ohmic contact. J. Colloid Interf. Sci. 2022, 624, 168–180. [Google Scholar] [CrossRef]
- Frank, S.N.; Bard, A.J. Heterogeneous Photocatalytic oxidation of Cyanide ion in aqueous Solution at TiO2 Powder. J. Am. Chem. Soc. 1977, 99, 303–313. [Google Scholar] [CrossRef]
- Wang, J.P.; Wang, Z.Y.; Huang, B.B.; Ma, Y.D.; Liu, Y.Y.; Qin, X.Y.; Zhang, X.Y.; Dai, Y. Oxygen Vacancy Induced Band-Gap Narrowing and Enhanced Visible Light Photocatalytic Activity of ZnO. ACS Appl. Mater. Inter. 2012, 4, 4024–4030. [Google Scholar] [CrossRef]
- Roy, A.; Velusamy, S.; Mallick, T.K.; Sundaram, S. Synergistic effect of nanoflower-like CdS for removal of highly toxic aqueous Cr(VI). Mater. Lett. 2020, 270, 127734. [Google Scholar] [CrossRef]
- Bi, Y.; Ouyang, S.; Umezawa, N.; Cao, J.; Ye, J. Facet Effect of Single-Crystalline Ag3PO4 Sub-microcrystals on Photocatalytic Properties. J. Am. Chem. Soc. 2011, 133, 6490–6492. [Google Scholar] [CrossRef]
- Fei, T.; Yu, L.; Liu, Z.; Song, Y.; Xu, F.; Mo, Z.; Liu, C.; Deng, J.; Ji, H.; Cheng, M.; et al. Graphene quantum dots modified flower like Bi2WO6 for enhanced photocatalytic nitrogen fixation. J. Colloid. Inter. Sci. 2019, 557, 498–505. [Google Scholar] [CrossRef]
- Ong, W.J.; Tan, L.L.; Ng, Y.H.; Yong, S.T.; Chai, S.P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability? Chem. Rev. 2016, 116, 7159–7329. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Wang, T.; Sun, H.; Shao, Q.; Zhao, J.; Song, K.; Hao, L.; Wang, L.; Guo, Z. Two-step hydrothermally synthesized carbon nanodots/WO3 photocatalysts with enhanced photocatalytic performance. Dalton T. 2017, 46, 15769–15777. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Ren, J.; Hao, Y.-J.; Li, Y.-L.; Wang, X.-J.; Liu, Y.; Su, R.; Li, F.-T. Insight into reactive species-dependent photocatalytic toluene mineralization and deactivation pathways via modifying hydroxyl groups and oxygen vacancies on BiOCl. Appl. Catal. B-Environ. 2022, 317, 121761. [Google Scholar] [CrossRef]
- Qi, Y.; Zhang, J.; Kong, Y.; Zhao, Y.; Chen, S.; Li, D.; Liu, W.; Chen, Y.; Xie, T.; Cui, J.; et al. Unraveling of cocatalysts photodeposited selectively on facets of BiVO4 to boost solar water splitting. Nat. Commun. 2022, 13, 484. [Google Scholar] [CrossRef]
- Chen, Y.; Liang, S.; Wen, L.; Wu, W.; Yuan, R.; Wang, X.; Wu, L. A TaON nano-photocatalyst with low surface reduction defects for effective mineralization of chlorophenols under visible light irradiation. Phys. Chem. Chem. Phys. 2013, 15, 12742–12747. [Google Scholar] [CrossRef]
- Kou, J.; Li, Z.; Yuan, Y.; Zhang, H.; Wang, Y.; Zou, Z. Visible-Light-Induced Photocatalytic Oxidation of Polycyclic Aromatic Hydrocarbons over Tantalum Oxynitride Photocatalysts. Environ. Sci. Technol. 2009, 43, 2919–2924. [Google Scholar] [CrossRef]
- Du, Y.; Zhao, L.; Zhang, Y. Roles of TaON and Ta3N5 in the visible-Fenton-like degradation of atrazine. J. Hazard. Mater. 2014, 267, 55–61. [Google Scholar] [CrossRef]
- Pei, L.; Li, T.; Yuan, Y.; Yang, T.; Zhong, J.; Ji, Z.; Yan, S.; Zou, Z. Schottky junction effect enhanced plasmonic photocatalysis by TaON@Ni NP heterostructures. Chem. Commun. 2019, 55, 11754–11757. [Google Scholar] [CrossRef]
- Li, S.; Wang, C.; Cai, M.; Yang, F.; Liu, Y.; Chen, J.; Zhang, P.; Li, X.; Chen, X. Facile fabrication of TaON/Bi2MoO6 core-shell S-scheme heterojunction nanofibers for boosting visible-light catalytic levofloxacin degradation and Cr(VI) reduction. Chem. Eng. J. 2022, 428, 131158. [Google Scholar] [CrossRef]
- Wang, S.; Li, Z.; Guan, Y.; Lu, L.; Shi, Z.; Weng, P.; Yan, S.; Zou, Z. Visible light driven TaON/V2O5 heterojunction photocatalyst for deep elimination of volatile-aromatic compounds. Appl. Catal. B-Environ. 2019, 245, 220–226. [Google Scholar] [CrossRef]
- Yan, S.C.; Lv, S.B.; Li, Z.S.; Zou, Z.G. Organic-inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities. Dalton T. 2010, 39, 1488–1491. [Google Scholar] [CrossRef] [PubMed]
- Cosham, S.D.; Celorrio, V.; Kulak, A.N.; Hyett, G. Observation of visible light activated photocatalytic degradation of stearic acid on thin films of tantalum oxynitride synthesized by aerosol assisted chemical vapour deposition. Dalton T. 2019, 48, 10619–10627. [Google Scholar] [CrossRef] [PubMed]
- Chun, W.J.; Ishikawa, A.; Fujisawa, H.; Takata, T.; Kondo, J.N.; Hara, M.; Kawai, M.; Matsumoto, Y.; Domen, K. Conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods. J. Phys. Chem. B 2003, 107, 1798–1803. [Google Scholar] [CrossRef]
- Khanal, V.; Soto-Harrison, E.; Chandra, D.; Balayeva, N.O.; Bahnemann, D.W.; Subramanian, V. A Selective Synthesis of TaON Nanoparticles and Their Comparative Study of Photoelectrochemical Properties. Catalysts 2020, 10, 1128. [Google Scholar] [CrossRef]
- Li, J.; Liu, S.; He, Y.; Wang, J. Adsorption and degradation of the cationic dyes over Co doped amorphous mesoporous titania-silica catalyst under UV and visible light irradiation. Micropor. Mesopor. Mat. 2008, 115, 416–425. [Google Scholar] [CrossRef]
- Gupta, A.; Khosla, N.; Govindasamy, V.; Saini, A.; Annapurna, K.; Dhakate, S.R. Trimetallic composite nanofibers for antibacterial and photocatalytic dye degradation of mixed dye water. Appl. Nanosci. 2020, 10, 4191–4205. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, Q.Y.; Guo, Y.H.; Hu, C.W.; Wang, E. Efficient degradation of dye pollutants on nanoporous polyoxotungstate-anatase composite under visible-light irradiation. J. Mol. Catal. A-Chem. 2005, 225, 203–212. [Google Scholar] [CrossRef]
- Dong, H.R.; Zeng, G.M.; Tang, L.; Fan, C.Z.; Zhang, C.; He, X.X.; He, Y. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res. 2015, 79, 128–146. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, S.K.; Sharma, G.; Al-Muhtaseb, A.H.; Naushad, M.; Ghfar, A.A.; Stadler, F.J. Wide spectral degradation of Norfloxacin by Ag@BiPO4/BiOBr/BiFeO3 nano-assembly: Elucidating the photocatalytic mechanism under different light sources. J. Hazard. Mater. 2019, 364, 429–440. [Google Scholar] [CrossRef]
- Li, S.J.; Hu, S.W.; Jiang, W.; Liu, Y.; Liu, J.S.; Wang, Z.H. Synthesis of n-type TaON microspheres decorated by p-type Ag2O with enhanced visible light photocatalytic activity. Mol. Catal. 2017, 435, 135–143. [Google Scholar] [CrossRef]
- Wang, S.; Li, D.; Sun, C.; Yang, S.; Guan, Y.; He, H. Synthesis and characterization of g-C3N4/Ag3VO4 composites with significantly enhanced visible-light photocatalytic activity for triphenylmethane dye degradation. Appl. Catal. B-Environ. 2014, 144, 885–892. [Google Scholar] [CrossRef]
- Gholami, P.; Khataee, A.; Bhatnagar, A.; Vahid, B. Synthesis of N-Doped Magnetic WO3-x@Mesoporous Carbon Using a Diatom Template and Plasma Modification: Visible-Light-Driven Photocatalytic Activities. ACS Appl. Mater. Interf. 2021, 13, 13072–13086. [Google Scholar] [CrossRef] [PubMed]
Material | Light Source | Pollutant | Pollutant Concentration (mg L−1) | Photocatalyst Dosage (g L−1) | Irradiation Time (min) | Degradation Efficiency (%) | Reference |
---|---|---|---|---|---|---|---|
Co-doped titania-silica | Halogen lamp (500 W) | Basic fuchsin | 50 | 0.25 | 240 | 73.0% | [25] |
Ag/ZnO/TiO2 | Direct sun light | Basic fuchsin | 3 | 0.2 | 90 | 69.8% | [26] |
H3PW12O40/TiO2 | Xenon lamp (400 W) | Fuchsin | 50 | 1.25 | 240 | 75% | [27] |
60 mg TaON/Ni foam | 72 W LED white light | Basic fuchsin | 50 | _ | 300 | 76.8% | Our work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Wang, J.; Liu, R.; Zheng, Z.; Guan, Y.; Shen, J. Construction of the Photocatalytic Film of the Recyclable TaON/Nickel Foam with Ohmic Junction for Efficient Wastewater Treatment. Catalysts 2022, 12, 1160. https://doi.org/10.3390/catal12101160
Wang S, Wang J, Liu R, Zheng Z, Guan Y, Shen J. Construction of the Photocatalytic Film of the Recyclable TaON/Nickel Foam with Ohmic Junction for Efficient Wastewater Treatment. Catalysts. 2022; 12(10):1160. https://doi.org/10.3390/catal12101160
Chicago/Turabian StyleWang, Shaomang, Jie Wang, Rui Liu, Zhiqian Zheng, Yuan Guan, and Juan Shen. 2022. "Construction of the Photocatalytic Film of the Recyclable TaON/Nickel Foam with Ohmic Junction for Efficient Wastewater Treatment" Catalysts 12, no. 10: 1160. https://doi.org/10.3390/catal12101160
APA StyleWang, S., Wang, J., Liu, R., Zheng, Z., Guan, Y., & Shen, J. (2022). Construction of the Photocatalytic Film of the Recyclable TaON/Nickel Foam with Ohmic Junction for Efficient Wastewater Treatment. Catalysts, 12(10), 1160. https://doi.org/10.3390/catal12101160