Experimental Investigation of Metal-Based Calixarenes as Dispersed Catalyst Precursors for Heavy Oil Hydrocracking
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Metal-Based p-tert-butylcalix[6]arenes
2.1.1. Scanning Electron Microscopy-Energy Dispersive X-ray (SEM-EDX)
2.1.2. Inductively Coupled Plasma (ICP)
2.1.3. Fourier Transform Infrared Spectroscopy (FT-IR)
2.1.4. Thermogravimetric/Calorimetric Analysis
2.2. Performance Evaluation
2.2.1. Standalone Dispersed Catalysts
2.2.2. Dispersed Catalysts with Supported Catalyst
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Metal-Based p-tert-butylcalix[6]arenes
3.3. Catalyst Characterization
3.4. Hydrocracking Experimental Conditions
Products Analysis
4. Conclusions
- I.
- The synthesis of the metal-based TBC[6] dispersed catalysts was achieved successfully and characterized by different techniques including ICP, FT-IR, SEM, and TG-DSC. The results confirm the cation coordination with the TBC[6] ligand to form organometallic compounds.
- II.
- The DSC profile of the TBC[6] shows three thermal decomposition stages, which can be exploited to release the metal precursors and subsequently generate the active dispersed phase.
- III.
- The VGO hydrocracking tests show that the use of mixed Ni- and Co-TBC[6] dispersed catalyst precursors is yielding the highest naphtha and distillate fractions (12 wt.% and 19.6 wt.%) due to the in situ generation of highly active Co–Ni bimetallic dispersed catalyst.
- IV.
- The dispersed catalyst precursors offer easy access to the hydrogenation sites for the intermediate hydrocarbon molecules and reactive hydrogen species, which enhances the hydrogenation reactions and lowers coke formation and catalyst deactivation.
- V.
- The use of dispersed and supported co-catalytic configuration increased naphtha yields from 10.7 wt.% for the supported catalyst to 11.7 wt.%, 12 wt.%, and 12.1 wt.% for Ni-TBC[6], Co-TBC[6] and Ni-Co-TBC[6], respectively. This observation can be explained due to the contribution of the supported catalyst acidic sites, which participate in the hydrogenation of the cracked molecules.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- U.S. Energy Information Administration. Annual Energy Outlook 2017 with Projections to 2050; U.S. Energy Information Administration: Washington, DC, USA, 2017; Volume 44. [Google Scholar]
- Kandiyoti, R. Hydroprocessing of Heavy Oils and Residua. J. Energy Inst. 2008, 81, 184. [Google Scholar] [CrossRef]
- Angeles, M.J.; Leyva, C.; Ancheyta, J.; Ramírez, S. A Review of Experimental Procedures for Heavy Oil Hydrocracking with Dispersed Catalyst. Catal. Today 2014, 220–222, 274–294. [Google Scholar] [CrossRef]
- Sahu, R.; Song, B.J.; Im, J.S.; Jeon, Y.P.; Lee, C.W. A Review of Recent Advances in Catalytic Hydrocracking of Heavy Residues. J. Ind. Eng. Chem. 2015, 27, 12–24. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, D.; Deng, W.; Que, G. A Review of Slurry-Phase Hydrocracking Heavy Oil Technology. Energy Fuels 2007, 21, 3057–3062. [Google Scholar] [CrossRef]
- Hart, A.; Greaves, M.; Wood, J. A Comparative Study of Fixed-Bed and Dispersed Catalytic Upgrading of Heavy Crude Oil Using-CAPRI. Chem. Eng. J. 2015, 282, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Prajapati, R.; Kohli, K.; Maity, S.K. Slurry Phase Hydrocracking of Heavy Oil and Residue to Produce Lighter Fuels: An Experimental Review. Fuel 2021, 288, 119686. [Google Scholar] [CrossRef]
- Nguyen, M.T.; Nguyen, N.T.; Cho, J.; Park, C.; Park, S.; Jung, J.; Lee, C.W. A Review on the Oil-Soluble Dispersed Catalyst for Slurry-Phase Hydrocracking of Heavy Oil. J. Ind. Eng. Chem. 2016, 43, 1–12. [Google Scholar] [CrossRef]
- Al-mishaal, O.F.; Suwaid, M.A.; Al-muntaser, A.A.; Khelkhal, M.A.; Varfolomeev, M.A.; Djimasbe, R.; Zairov, R.R.; Saeed, S.A.; Vorotnikova, N.A.; Shestopalov, M.A.; et al. Octahedral Cluster Complex of Molybdenum as Oil-Soluble Catalyst for Improving In Situ Upgrading of Heavy Crude Oil: Synthesis and Application. Catalystsb 2022, 12, 1125. [Google Scholar] [CrossRef]
- Du, H.; Li, M.; Liu, D.; Ren, Y.; Duan, Y. Slurry-Phase Hydrocracking of Heavy Oil and Model Reactant: Effect of Dispersed Mo Catalyst. Appl. Petrochem. Res. 2015, 5, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Furimsky, E. Catalysts for Upgrading Heavy Petroleum Feeds; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Al-Attas, T.A.; Zahir, M.H.; Ali, S.A.; Al-Bogami, S.A.; Malaibari, Z.; Razzak, S.A.; Hossain, M.M. Novel (Co-,Ni)- p- Tert-Butylcalix[4]Arenes as Dispersed Catalysts for Heavy Oil Upgrading: Synthesis, Characterization, and Performance Evaluation. Energy Fuels 2019, 33, 561–573. [Google Scholar] [CrossRef]
- Luo, H.; Sun, J.; Deng, W.; Li, C.; Du, F. Preparation of Oil-Soluble Fe-Ni Sulfide Nanoparticles for Slurry-Phase Hydrocracking of Residue. Fuel 2022, 321, 124029. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, Y.; Guan, Z.; Liu, S.; Feng, C.; Sun, G.; Liang, J.; Pan, Y.; Liu, C.; Liu, Y. Ultrafine Co-MoS2 Monolayer Catalyst Derived from Oil-Soluble Single-Molecule Polyoxometalates for Slurry Phase Hydrocracking. Fuel 2022, 315, 123134. [Google Scholar] [CrossRef]
- Jeon, S.G.; Na, J.G.; Ko, C.H.; Lee, K.B.; Rho, N.S.; Park, S. Bin A New Approach for Preparation of Oil-Soluble Bimetallic Dispersed Catalyst from Layered Ammonium Nickel Molybdate. Mater. Sci. Eng. B 2011, 176, 606–610. [Google Scholar] [CrossRef]
- Al-Attas, T.A.; Zahir, M.H.; Ali, S.A.; Al-Bogami, S.A.; Malaibari, Z.; Razzak, S.A.; Hossain, M.M. Kinetics of the Synergy Effects in Heavy Oil Upgrading Using Novel Ni-p-Tert-Butylcalix[4]Arene as a Dispersed Catalyst with a Supported Catalyst. Fuel Process. Technol. 2019, 185, 158–168. [Google Scholar] [CrossRef]
- Homden, D.M.; Redshaw, C. The Use of Calixarenes in Metal-Based Catalysis. Chem. Rev. 2008, 108, 5086–5130. [Google Scholar] [CrossRef]
- Novembre, A.; Liu, S. Chemistry and Processing of Resists for Nanolithography. In Nanolithography: The Art of Fabricating Nanoelectronic and Nanophotonic Devices and Systems; Woodhead Publishing: Sawston, UK, 2013; pp. 194–286. ISBN 9780857095008. [Google Scholar]
- Kůtek, F. Beiträge Zur Chemie Der Selteneren Elemente XXXIX. Additionsverbindungen Des N,N-Dimethylformamids Und N,N-Dimethylacetamids Mit Scandiumperchlorat. Collect. Czechoslov. Chem. Commun. 1967, 32, 3767–3770. [Google Scholar] [CrossRef]
- Krishnamurthy, S.S.; Soundararajan, S. Dimethyl and Diphenyl Formamide Complexes of Lanthanide Perchlorates. Can. J. Chem. 1969, 47, 995. [Google Scholar] [CrossRef]
- Bunzli, J.C.G.; Froidevaux, P.; Harrowfield, J.M. Complexes of Lanthanoid Salts with Macrocyclic Ligands. 41. Photophysical Properties of Lanthanide Dinuclear Complexes with p-Tert-Butylcalix[8]Arene. Inorg. Chem. 1993, 32, 3306–3311. [Google Scholar] [CrossRef]
- Rathod, N.V.; Rao, A.; Kumar, P.; Ramakumar, K.L.; Malkhede, D.D. Complexation with Calixarenes and Efficient Supercritical CO2 Extraction of Pb(Ii) from Acidic Medium. New J. Chem. 2014, 38, 5331–5340. [Google Scholar] [CrossRef]
- Sharma, N.; Kakkar, R.; Bansal, P.; SingSh, A.; Ojha, H.; Pathak, D.P.; Sharma, R.K. Host–Guest Complexation Studies of p-Tertbutylcalix[4]Arene against Ions of Interest for Radiological Decontamination. Inorganica Chim. Acta 2019, 484, 111–124. [Google Scholar] [CrossRef]
- Deligöz, H.; Karakuş, Ö.Ö.; Çilgi, G.K. A Brief Review on the Thermal Behaviors of Calixarene-Azocalixarene Derivatives and Their Complexes. J. Macromol. Sci. Part A Pure Appl. Chem. 2012, 49, 259–274. [Google Scholar] [CrossRef]
- Yang, F.; Guo, H.; Vicens, J. Mini-Review: Calixarene Liquid Crystals. J. Incl. Phenom. Macrocycl. Chem. 2014, 80, 177–186. [Google Scholar] [CrossRef]
- Bdwi, E.A.S.; Ali, S.A.; Quddus, M.R.; Al-Bogami, S.A.; Razzak, S.A.; Hossain, M.M. Kinetics of Promotional Effects of Oil-Soluble Dispersed Metal (Mo, Co, and Fe) Catalysts on Slurry Phase Hydrocracking of Vacuum Gas Oil. Energy Fuels 2017, 31, 3132–3142. [Google Scholar] [CrossRef]
- Jeon, S.G.; Na, J.G.; Ko, C.H.; Yi, K.B.; Rho, N.S.; Park, S. Bin Preparation and Application of an Oil-Soluble CoMo Bimetallic Catalyst for the Hydrocracking of Oil Sands Bitumen. Energy Fuels 2011, 25, 4256–4260. [Google Scholar] [CrossRef]
- Ortiz-Moreno, H.; Ramírez, J.; Cuevas, R.; Marroquín, G.; Ancheyta, J. Heavy Oil Upgrading at Moderate Pressure Using Dispersed Catalysts: Effects of Temperature, Pressure and Catalytic Precursor. Fuel 2012, 100, 186–192. [Google Scholar] [CrossRef]
- Ortiz-Moreno, H.; Ramírez, J.; Sanchez-Minero, F.; Cuevas, R.; Ancheyta, J. Hydrocracking of Maya Crude Oil in a Slurry-Phase Batch Reactor. II. Effect of Catalyst Load. Fuel 2014, 130, 263–272. [Google Scholar] [CrossRef]
- Puron, H.; Arcelus-Arrillaga, P.; Chin, K.K.; Pinilla, J.L.; Fidalgo, B.; Millan, M. Kinetic Analysis of Vacuum Residue Hydrocracking in Early Reaction Stages. Fuel 2014, 117, 408–414. [Google Scholar] [CrossRef]
- Purón, H.; Pinilla, J.L.; Berrueco, C.; Montoya De La Fuente, J.A.; Millán, M. Hydrocracking of Maya Vacuum Residue with NiMo Catalysts Supported on Mesoporous Alumina and Silica-Alumina. Energy Fuels 2013, 27, 3952–3960. [Google Scholar] [CrossRef]
- Martinez-Grimaldo, H.; Ortiz-Moreno, H.; Sanchez-Minero, F.; Ramírez, J.; Cuevas-Garcia, R.; Ancheyta-Juarez, J. Hydrocracking of Maya Crude Oil in a Slurry-Phase Reactor. I. Effect of Reaction Temperature. Catal. Today 2014, 220–222, 295–300. [Google Scholar] [CrossRef]
- Li, C.; Meng, H.; Yang, T.; Li, J.; Qin, Y.; Huang, Y.; Deng, W. Study on Catalytic Performance of Oil-Soluble Iron-Nickel Bimetallic Catalyst in Coal/Oil Co-Processing. Fuel 2018, 219, 30–36. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, M.; Al-Zahrani, F.A.; Diaz, F.J.; Al-Attas, T.; Zahir, H.; Ali, S.A.; Siddiqui, M.A.B.; Hossain, M.M. Experimental Investigation of Metal-Based Calixarenes as Dispersed Catalyst Precursors for Heavy Oil Hydrocracking. Catalysts 2022, 12, 1255. https://doi.org/10.3390/catal12101255
Ibrahim M, Al-Zahrani FA, Diaz FJ, Al-Attas T, Zahir H, Ali SA, Siddiqui MAB, Hossain MM. Experimental Investigation of Metal-Based Calixarenes as Dispersed Catalyst Precursors for Heavy Oil Hydrocracking. Catalysts. 2022; 12(10):1255. https://doi.org/10.3390/catal12101255
Chicago/Turabian StyleIbrahim, Mohamed, Fahad A. Al-Zahrani, Francisco J. Diaz, Tareq Al-Attas, Hasan Zahir, Syed A. Ali, Mohammed Abdul Bari Siddiqui, and Mohammad M. Hossain. 2022. "Experimental Investigation of Metal-Based Calixarenes as Dispersed Catalyst Precursors for Heavy Oil Hydrocracking" Catalysts 12, no. 10: 1255. https://doi.org/10.3390/catal12101255
APA StyleIbrahim, M., Al-Zahrani, F. A., Diaz, F. J., Al-Attas, T., Zahir, H., Ali, S. A., Siddiqui, M. A. B., & Hossain, M. M. (2022). Experimental Investigation of Metal-Based Calixarenes as Dispersed Catalyst Precursors for Heavy Oil Hydrocracking. Catalysts, 12(10), 1255. https://doi.org/10.3390/catal12101255