Two-Dimensional Fe-N-C Nanosheets for Efficient Oxygen Reduction Reaction
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Synthesis of Fe/NCNSs
3.2. Preparation of Modified Electrodes
3.3. Electrochemical Measurement
3.4. Zinc-Air Battery Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ge, H.Y.; Li, G.D.; Shen, J.; Ma, W.; Meng, X.; Xu, L. Co4N nanoparticles encapsulated in N-doped carbon box as tri-functional catalyst for Zn-air battery and overall water splitting. Appl. Catal. B 2018, 275, 119104. [Google Scholar] [CrossRef]
- Huang, L.B.; Zhao, L.; Zhang, Y.; Luo, H.; Zhang, X.; Zhang, J.; Pan, H.; Hu, J.S. Engineering carbon-shells of M@NC bifunctional oxygen electrocatalyst towards stable aqueous rechargeable Zn-air batteries. Chem. Eng. J. 2021, 418, 129409. [Google Scholar] [CrossRef]
- Yu, X.; Zhou, T.; Ge, J.; Wu, C. Recent Advances on the Modulation of Electrocatalysts Based on Transition Metal Nitrides for the Rechargeable Zn-Air Battery. ACS Appl. Mater. Interfaces 2020, 11, 1423–1434. [Google Scholar] [CrossRef]
- Jiang, S.; Suo, H.; Zhang, T.; Liao, C.; Wang, Y.; Zhao, Q.; Lai, W. Recent advances in seawater electrolysis. Catalysts 2022, 12, 123. [Google Scholar] [CrossRef]
- Ji, Q.; Bi, L.; Zhang, J.; Cao, H.; Zhao, X.S. The role of oxygen vacancies of ABO3 perovskite oxides in the oxygen reduction reaction. Environ. Eng. Sci. 2020, 13, 1408–1428. [Google Scholar] [CrossRef]
- Tian, W.; Gao, Q.; Vahid Mohammadi, A.; Dang, J.; Li, Z.; Liang, X.; Hamedi, M.M.; Zhang, L. Liquid-phase exfoliation of layered biochars into multifunctional heteroatom (Fe, N, S) Co-doped graphene-like carbon nanosheets. Chem. Eng. J. 2021, 420, 127601. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, Y.; Lai, W.-H.; Xiao, F.; Lyu, Y.; Liao, C.; Shao, M. Approaching a high-rate and sustainable production of hydrogen peroxide: Oxygen reduction on Co–N–C single-atom electrocatalysts in simulated seawater. Energy Environ. Sci. 2021, 1410, 5444–5456. [Google Scholar] [CrossRef]
- Jorge, A.B.; Jervis, R.; Periasamy, A.P.; Qiao, M.; Feng, J.; Tran, L.N.; Titirici, M.M. 3D Carbon materials for efficient oxygen and hydrogen electrocatalysis. Adv. Energy Mater. 2020, 10, 1902494. [Google Scholar] [CrossRef]
- Li, H.; Di, S.; Niu, P.; Wang, S.; Wang, J.; Li, L. A durable half-metallic diatomic catalyst for efficient oxygen reduction. Energy Environ. Sci. 2022, 15, 1601–1610. [Google Scholar] [CrossRef]
- Xu, H.; Wang, D.; Yang, P.; Du, L.; Lu, X.; Li, R.; Liu, L.; Zhang, J.; An, M. A hierarchically porous Fe-N-C synthesized by dual melt-salt-mediated template as advanced electrocatalyst for efficient oxygen reduction in zinc-air battery. Appl. Catal. B 2022, 305, 121040. [Google Scholar] [CrossRef]
- Liang, L.; Jin, H.; Zhou, H.; Liu, B.; Hu, C.; Chen, D.; Wang, Z.; Hu, Z.; Zhao, Y.; Li, H.W.; et al. Cobalt single atom site isolated Pt nanoparticles for efficient ORR and HER in acid media. Nano 2021, 88, 106221. [Google Scholar] [CrossRef]
- Kong, F.; Cui, X.; Huang, Y.; Yao, H.; Chen, Y.; Tian, H.; Meng, G.; Chen, C.; Chang, Z.; Shi, J. N-Doped carbon electrocatalyst: Marked ORR activity in acidic media without the contribution from metal sites? Angew. Chem. Int. Ed. 2022, 61, 15. [Google Scholar] [CrossRef]
- Zhang, B.; Qi, Z.; Wu, Z.; Lui, Y.H.; Kim, T.-H.; Tang, X.; Zhou, L.; Huang, W.; Hu, S. Defect-rich 2D material networks for advanced oxygen evolution catalysts. ACS Energy Lett. 2018, 41, 328–336. [Google Scholar] [CrossRef]
- Guan, Y.; Li, Y.; Luo, S.; Ren, X.; Deng, L.; Sun, L.; Mi, H.; Zhang, P.; Liu, J. Rational design of positive-hexagon-shaped two-dimensional ZIF-derived materials as improved bifunctional oxygen electrocatalysts for use as long-lasting rechargeable Zn-Air batteries. Appl. Catal. B 2019, 256, 117923. [Google Scholar] [CrossRef]
- Wu, G.; Shao, C.; Cui, B.; Chu, H.; Qiu, S.; Zou, Y.; Xu, F.; Sun, L. Honeycomb-like Fe/Fe3C-doped porous carbon with more Fe-Nx active sites for promoting the electrocatalytic activity of oxygen reduction. Sustain. Energy Fuels 2021, 520, 5295–5304. [Google Scholar] [CrossRef]
- Luo, M.; Ortiz, A.L.; Shaw, L.L. Enhancing the electrochemical performance of NaCrO2 through structural defect control. ACS Appl. Energy Mater. 2020, 3, 7216–7227. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, X.; Yu, L.; Hou, J.; Zhou, Z.; Lv, R. Edge-site engineering of atomically dispersed Fe-N4 by selective C-N bond cleavage for enhanced ORR activities. J. Am. Chem. Soc. 2018, 140, 11594–11598. [Google Scholar]
- Zhu, Y.; Wang, X.; Shi, J.; Gan, L.; Huang, B.; Tao, L.; Wang, S. Neuron-inspired design of hierarchically porous carbon networks embedded with single-iron sites for efficient oxygen reduction. Sci. China Chem. 2022, 657, 1445–1452. [Google Scholar] [CrossRef]
- Fang, J.; Zhang, X.; Wang, X.; Liu, D.; Xue, Y.; Xu, Z.; Zhang, Y.; Song, C.; Zhu, W.; Zhuang, Z. A metal and nitrogen doped carbon composite with both oxygen reduction and evolution active sites for rechargeable zinc–air batteries. J. Mater. Chem. A 2020, 831, 15752–15759. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, Y.; Zhang, L.; Wu, H.; Jin, Y.; Li, Y.; Shi, Y.; Zhu, T.; Mao, H.; Liu, J.; et al. Simultaneously realizing rapid electron transfer and mass transport in jellyfish-like Mott–Schottky nanoreactors for oxygen reduction reaction. Adv. Mater. 2020, 3015, 1910482. [Google Scholar] [CrossRef]
- Hu, C.; Jin, H.; Liu, B.; Liang, L.; Wang, Z.; Chen, D.; He, D.; Mu, S. Propagating Fe-N4 active sites with vitamin C to efficiently drive oxygen electrocatalysis. Nano 2021, 82, 105714. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, M.; Wang, K.; Chen, J.; Yu, T.; Song, S. Fe3O4@N-Doped Interconnected hierarchical porous carbon and its 3D integrated electrode for oxygen reduction in acidic media. Adv. Sci. 2020, 7, 2000407. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Bian, J.; Zhu, Y.; Sun, C. FeCo Nanoparticles encapsulated in N-doped carbon nanotubes coupled with layered double (Co, Fe) hydroxide as an efficient bifunctional catalyst for rechargeable zinc-air batteries. Small 2021, 17, 2103737. [Google Scholar] [CrossRef] [PubMed]
- Kordek, K.; Jiang, L.; Fan, K.; Zhu, Z.; Xu, L.; Al-Mamun, M.; Dou, Y.; Chen, S.; Liu, P.; Yin, H.; et al. Two-step activated carbon cloth with oxygen-rich functional groups as a high-performance additive-free air electrode for flexible zinc-air batteries. Adv. Energy Mater. 2019, 9, 1802936. [Google Scholar] [CrossRef]
- Luo, X.; Wei, X.; Wang, H.; Gu, W.; Kaneko, T.; Yoshida, Y.; Zhao, X.; Zhu, C. Secondary-atom-doping enables robust Fe-N-C single-atom catalysts with enhanced oxygen reduction reaction. Nanomicro. Lett. 2020, 12, 163. [Google Scholar] [CrossRef]
- Wang, J.; Liu, W.; Luo, G.; Li, Z.; Zhao, C.; Zhang, H.; Zhu, M.; Xu, Q.; Wang, X.; Zhao, C.; et al. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. Energy Environ. Sci. 2018, 11, 3375–3379. [Google Scholar] [CrossRef]
- Su, Y.; Li, C.; Yao, C.; Xu, L.; Xue, J.; Yuan, W.; Liu, J.; Cheng, M.; Hou, S. Palladium nanoparticles immobilized in B, N doped porous carbon as electrocatalyst for ethanol oxidation reaction. Mater. Today Energy 2021, 20, 100628. [Google Scholar] [CrossRef]
- Liu, D.; Li, J.C.; Ding, S.; Lu, Z.; Feng, S.; Tian, H.; Huyan, C.; Xu, M.; Li, T.; Du, D.; et al. 2D Single-atom catalyst with optimized iron sites produced by thermal melting of metal-organic frameworks for oxygen reduction reaction. Small Methods 2020, 4, 1900827. [Google Scholar] [CrossRef]
- Tang, C.; Chen, L.; Li, H.; Li, L.; Jiao, Y.; Zheng, Y.; Xu, H.; Davey, K.; Qiao, S.Z. Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres. J. Am. Chem. Soc. 2021, 143, 7819–7827. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Jin, X.; Zhu, C.; Liu, Y.; Tan, H.; Ku, R.; Zhang, Y.; Zhou, L.; Liu, Z.; Hang, S.J.; et al. Atomically dispersed Co2-N6 and Fe-N4 costructures boost oxygen reduction reaction in both alkaline and acidic media. Adv. Mater. 2021, 33, 2104718. [Google Scholar] [CrossRef]
- Fu, X.; Gao, R.; Jiang, G.; Li, M.; Li, S.; Luo, D.; Hu, Y.; Yuan, Q.; Huang, W.; Zhu, N.; et al. Evolution of atomic-scale dispersion of FeNx in hierarchically porous 3D air electrode to boost the interfacial electrocatalysis of oxygen reduction in PEMFC. Nano 2021, 83, 105734. [Google Scholar] [CrossRef]
- Zhang, N.; Zhou, T.; Chen, M.; Feng, H.; Yuan, R.; Zhong, C.A.; Yan, W.; Tian, Y.; Wu, X.; Chu, W.; et al. High-purity pyrrole-type FeN4 sites as a superior oxygen reduction electrocatalyst. Energy Environ. Sci. 2020, 13, 111–118. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, J.; Wang, F.; Dai, L. Efficient oxygen reduction reaction (ORR) catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework. Angew. Chem. Int. Ed. Engl. 2018, 57, 9038–9043. [Google Scholar] [CrossRef]
- Yi, J.D.; Xu, R.; Wu, Q.; Zhang, T.; Zang, K.T.; Luo, J.; Liang, Y.L.; Huang, Y.B.; Cao, R. Atomically dispersed iron–nitrogen active sites within porphyrinic triazine-based frameworks for oxygen reduction reaction in both alkaline and acidic media. ACS Energy Lett. 2018, 3, 883–889. [Google Scholar] [CrossRef]
- Qiao, M.; Wang, Y.; Wang, Q.; Hu, G.; Mamat, X.; Zhang, S.; Wang, S. Hierarchically ordered porous carbon with atomically dispersed fen4 for ultraefficient oxygen reduction reaction in proton-exchange membrane fuel cells. Angew. Chem. Int. Ed. 2020, 59, 2688–2694. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, N.; Shen, K.; Xie, Y.; Tan, Y.; Li, Y. Mof-derived isolated fe atoms implanted in N-doped 3d hierarchical carbon as an efficient orr electrocatalyst in both alkaline and acidic media. ACS Appl. Mater. Interfaces 2019, 11, 25976–25985. [Google Scholar] [CrossRef]
- Huo, L.L.; Liu, B.C.; Zhang, G.; Zhang, J. 2D Layered non-precious metal mesoporous electrocatalysts for enhanced oxygen reduction reaction. J. Mater. Chem. A 2017, 5, 4868–4878. [Google Scholar] [CrossRef]
- Qiao, M.; Wang, Y.; Mamat, X.; Chen, A.; Zou, G.; Li, L.; Hu, G.; Zhang, S.; Hu, X.; Voiry, D. Rational design of hierarchical, porous, Co-supported, N-doped carbon architectures as electrocatalyst for oxygen reduction. ChemSusChem 2020, 13, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Liu, Q.; Sarnello, E.; Tang, C.; Chng, M.; Shui, J.; Li, T.; Pennycook, S.J.; Han, M.; Zhao, D. Mof-derived carbon networks with atomically dispersed Fe–Nx sites for oxygen reduction reaction catalysis in acidic media. ACS Appl. Mater. Interfaces 2019, 1, 37–43. [Google Scholar] [CrossRef]
- Deng, Y.; Chi, B.; Tian, X.; Cui, Z.; Liu, E.; Jia, Q.; Fan, W.; Wang, G.; Dang, D.; Li, M.; et al. g-C3N4 promoted mof derived hollow carbon nanopolyhedra doped with high density/fraction of single fe atoms as an ultra-high performance non-precious catalyst towards acidic orr and pem fuel cells. J. Mater. Chem. A 2019, 7, 5020–5030. [Google Scholar] [CrossRef]
- Liu, X.; Liu, H.; Chen, C.; Zou, L.; Li, Y.; Zhang, Q.; Yang, B.; Zou, Z.; Yang, H. Fe2N nanoparticles boosting FeNx moieties for highly efficient oxygen reduction reaction in Fe-N-C porous catalyst. J. Nano Res. 2019, 12, 1651–1657. [Google Scholar] [CrossRef]
- Zhu, Z.-H.; Yu, B.; Sun, W.; Chen, S.; Wang, Y.; Li, X.; Lv, L.P. Triazine organic framework derived Fe single-atom bifunctional electrocatalyst for high performance zinc air batteries. J. Power Sources 2022, 542, 231583. [Google Scholar] [CrossRef]
- Wang, W.; Rui, K.; Wu, K.; Wang, Y.; Ke, L.; Wang, X.; Xu, F.; Lu, Y.; Zhu, J. Molecular Bridging Enables Isolated Iron Atoms on Stereoassembled Carbon Framework to Boost Oxygen Reduction for Zinc-Air Batteries. Chemistry 2022, 2840, e202200789. [Google Scholar] [CrossRef] [PubMed]
- Sheng, J.; Sun, S.; Jia, G.; Zhu, S.; Li, Y. Doping Effect on Mesoporous Carbon-Supported Single-Site Bifunctional Catalyst for Zinc-Air Batteries. ACS Nano 2022, in press. [CrossRef] [PubMed]
- Wu, D.; Hu, X.; Yang, Z.; Yang, T.; Wen, J.; Lu, G.; Zhao, Q.; Li, Z.; Jiang, X.; Xu, C. NiFe LDH Anchoring on Fe/N-Doped Carbon Nanofibers as a Bifunctional Electrocatalyst for Rechargeable Zinc–Air Batteries. Ind. Eng. Chem. Res. 2022, 6122, 7523–7528. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, P.; Sun, F.; Zhang, G.; Liu, X.; Wang, L. The cooperation of Fe3C nanoparticles with isolated single iron atoms to boost the oxygen reduction reaction for Zn-air batteries. J. Mater. Chem. A 2021, 911, 6831–6840. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Xie, W.; Liu, X.; Liu, X.; Zhao, Q. Two-Dimensional Fe-N-C Nanosheets for Efficient Oxygen Reduction Reaction. Catalysts 2022, 12, 1276. https://doi.org/10.3390/catal12101276
Wu X, Xie W, Liu X, Liu X, Zhao Q. Two-Dimensional Fe-N-C Nanosheets for Efficient Oxygen Reduction Reaction. Catalysts. 2022; 12(10):1276. https://doi.org/10.3390/catal12101276
Chicago/Turabian StyleWu, Xin, Wenke Xie, Xuanhe Liu, Xiaoming Liu, and Qinglan Zhao. 2022. "Two-Dimensional Fe-N-C Nanosheets for Efficient Oxygen Reduction Reaction" Catalysts 12, no. 10: 1276. https://doi.org/10.3390/catal12101276
APA StyleWu, X., Xie, W., Liu, X., Liu, X., & Zhao, Q. (2022). Two-Dimensional Fe-N-C Nanosheets for Efficient Oxygen Reduction Reaction. Catalysts, 12(10), 1276. https://doi.org/10.3390/catal12101276