Preparing Cu2O/Al2O3 Coating via an Electrochemical Method for the Degradation of Methyl Orange in the Process of Catalytic Wet Hydrogen Peroxide Oxidation
Abstract
1. Introduction
2. Results and Discussion
2.1. Microstructure of the Cu2O/Al2O3 Coating
2.2. Elements and Crystalline Structure Analysis of the Cu2O/Al2O3 Coating
2.3. Degradation of Methyl Orange Catalyzed by the Cu2O/Al2O3 Coating
3. Experiment
3.1. Experimental Materials
3.2. Experimental Process
3.2.1. Preparation of Cu2O/Al2O3 Coating
3.2.2. Degradation of Methyl Orange
3.3. Characteristics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saratale, R.; Saratale, G.; Chang, J.; Govindwar, S. Bacterial decolorization and degradation of azo dyes: A review. J. Taiwan Inst. Chem. Eng. 2011, 42, 138–157. [Google Scholar] [CrossRef]
- Chen, C.Y.; Chen, J.N.; Chen, S.D. Toxicity assessment of industrial wastewater by microbial testing method. Water Sci. Technol. 1999, 39, 139–143. [Google Scholar] [CrossRef]
- Khan, I.; Khan, I.; Usman, M.; Imran, M.; Saeed, K. Nanoclay-mediated photocatalytic activity enhancement of copper oxide nanoparticles for enhanced methyl orange photodegradation. J. Mater. Sci. Mater. Electron. 2020, 31, 8971–8985. [Google Scholar] [CrossRef]
- Tauber, M.M.; Guebitz, G.M.; Rehorek, A. Degradation of Azo Dyes by Laccase and Ultrasound Treatment. Appl. Environ. Microbiol. 2005, 71, 2600–2607. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Li, D.; Zhang, W.; Shao, Y.; Chen, T.; Sun, M.; Fu, X. Photocatalytic degradation of dyes by ZnIn2S4 microspheres under visible light irradiation. J. Phys. Chem. C 2009, 113, 4433–4440. [Google Scholar] [CrossRef]
- Uri, K.I.; Ostafe, R.; Prodanovi, O.; Delmas, A.; Popovic, N.; Fischer, R.; Schillberg, S.; Prodanociv, R. Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls. Front. Environ. Sci. Eng. 2021, 15, 1–10. [Google Scholar]
- Ain, Q.U.; Rasheed, U.; Yaseen, M.; Zhang, H.; Tong, Z. Superior dye degradation and adsorption capability of polydopamine modified Fe3O4-pillared bentonite composite. J. Hazard. Mater. 2020, 397, 122758. [Google Scholar] [CrossRef]
- Kang, Y.-G.; Yoon, H.; Lee, C.-S.; Kim, E.-J.; Chang, Y.-S. Advanced oxidation and adsorptive bubble separation of dyes using MnO2-coated Fe3O4 nanocomposite. Water Res. 2019, 151, 413–422. [Google Scholar] [CrossRef]
- Rendon, S.M.K.; Mavrynsky, D.; Meierjohann, A.; Tiihonen, A.; Miettunen, K.; Asghar, M.I.; Halme, J.; Kronberg, L.; Leino, R. Analysis of dye degradation products and assessment of the dye purity in dye-sensitized solar cells. Rapid Commun. Mass Spectrom. 2015, 29, 2245–2251. [Google Scholar] [CrossRef]
- Zhu, G.; Fang, H.; Xiao, Y.; Hursthouse, A.S. The Application of Fluorescence Spectroscopy for the Investigation of Dye Degradation by Chemical Oxidation. J. Fluoresc. 2020, 30, 1271–1279. [Google Scholar] [CrossRef]
- Syafalni; Lim, H.K.; Ismail, N.; Abustan, I.; Murshed, M.F.; Ahmad, A. Treatment of landfill leachate by using lateritic soil as a natural coagulant. J. Environ. Manag. 2012, 112, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Ovejero, G.; Sotelo, J.L.; Rodríguez, A.; Vallet, A.; Garcia, J. Wet air oxidation and catalytic wet air oxidation for dyes degradation. Environ. Sci. Pollut. Res. 2011, 18, 1518–1526. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-Q.; Han, S.-F.; Zhang, Q.-W.; Zhang, N.; Zhao, D.-D. Photocatalytic oxidation degradation mechanism study of methylene blue dye waste water with GR/iTO2. MATEC Web Conf. 2018, 238, 03006. [Google Scholar] [CrossRef]
- Varjani, S.; Rakholiya, P.; Ng, H.Y.; You, S.; Teixeira, J.A. Microbial degradation of dyes: An overview. Bioresour. Technol. 2020, 314, 123728. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Saeed, K.; Ali, N.; Khan, I.; Zhang, B.; Sadiq, M. Heterogeneous photodegradation of industrial dyes: An insight to different mechanisms and rate affecting parameters. J. Environ. Chem. Eng. 2020, 8, 104364. [Google Scholar] [CrossRef]
- Yang, Y.C.; Lu, Y.G.; Ye, Z.X.; He, L.P.; Yu, J. Phenol Degradation by Catalytic Wet Hydrogen Peroxide Oxidation on Fe/Active Carbon Catalyst. Adv. Mater. Res. 2012, 433–440, 147–152. [Google Scholar] [CrossRef]
- Abhilash, M.R.; Akshatha, G.; Srikantaswamy, S. Photocatalytic dye degradation and biological activities of the Fe2O3/Cu2O nanocomposite. RSC Adv. 2019, 9, 8557. [Google Scholar] [CrossRef]
- Liou, R.-M.; Chen, S.-H.; Hung, M.-Y.; Hsu, C.-S.; Lai, J.-Y. Fe (III) supported on resin as effective catalyst for the heterogeneous oxidation of phenol in aqueous solution. Chemosphere 2005, 59, 117–125. [Google Scholar] [CrossRef]
- Sreeja, P.; Sosamony, K. A Comparative Study of Homogeneous and Heterogeneous Photo-fenton Process for Textile Wastewater Treatment. Procedia Technol. 2016, 24, 217–223. [Google Scholar] [CrossRef]
- Sun, L.; Wang, G.; Hao, R.; Han, D.; Cao, S. Solvothermal fabrication and enhanced visible light photocatalytic activity of Cu2O-reduced graphene oxide composite microspheres for photodegradation of Rhodamine B. Appl. Surf. Sci. 2015, 358, 91–99. [Google Scholar] [CrossRef]
- Hsueh, C.; Huang, Y.; Wang, C.; Chen, C. Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system. Chemosphere 2005, 58, 1409–1414. [Google Scholar] [CrossRef] [PubMed]
- Catrinescu, C.; Arsene, D.; Dragoi, B.; Teodosiu, C. Catalytic Wet Hydrogen Peroxide Oxidation of 4-Chlorophenol over Iron-Exchanged Clays. Environ. Eng. Manag. J. 2010, 9, 7–16. [Google Scholar] [CrossRef]
- Pariente, M.I.; Melero, J.A.; Martínez, F.; Bottas, A.; Gallego, I. Catalytic wet hydrogen peroxide oxidation of a petrochemical wastewater. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 2010, 61, 1829–1836. [Google Scholar] [CrossRef] [PubMed]
- Saeed, K.; Sadiq, M.; Khan, I.; Ullah, S.; Ali, N.; Khan, A. Synthesis, characterization, and photocatalytic application of Pd/ZrO2 and Pt/ZrO2. Appl. Water Sci. 2018, 8, 60. [Google Scholar] [CrossRef]
- Jalil, E.H.B.; Rahman, S.A.; Zainol, N.; Ajit, A.; Yee, C. Sulfide removal from petrochemical wastewater using catalytic wet air oxidation (CWAO) method ScienceDirect. Mater. Today Proc. 2018, 5, 22043–22049. [Google Scholar] [CrossRef]
- Sengupta, M.; Das, S.; Bordoloi, A. Cu/Cu 2 O nanoparticle interface: Rational designing of a heterogeneous catalyst system for selective hydroamination. Mol. Catal. 2017, 440, 57–65. [Google Scholar] [CrossRef]
- Kim, S.-K.; Ihm, S.-K. Nature of carbonaceous deposits on the alumina supported transition metal oxide catalysts in the wet air oxidation of phenol. Top. Catal. 2005, 33, 171–179. [Google Scholar] [CrossRef]
- Lai, C.; He, T.; Li, X.; Chen, F.; Yue, L.; Hou, Z. Catalytic wet air oxidation of phenols over porous plate Cu-based catalysts. Appl. Clay Sci. 2019, 181, 105253. [Google Scholar] [CrossRef]
- Gaudin, P.; Fioux, P.; Dorge, S.; Nouali, H.; Vierling, M.; Fiani, E.; Molière, M.; Brilhac, J.-F.; Patarin, J. Formation and role of Cu+ species on highly dispersed CuO/SBA-15 mesoporous materials for SOx removal: An XPS study. Fuel Process. Technol. 2016, 153, 129–136. [Google Scholar] [CrossRef]
- Wang, H.; Xu, R.; Jin, Y.; Zhang, R. Zeolite structure effects on Cu active center, SCR performance and stability of Cu-zeolite catalysts. Catal. Today 2019, 327, 295–307. [Google Scholar] [CrossRef]
- Sriprom, P.; Neramittagapong, S.; Lin, C.; Wantala, K.; Neramittagapong, A.; Grisdanurak, N. Optimizing chemical oxygen demand removal from synthesized wastewater containing lignin by catalytic wet-air oxidation over CuO/Al2O3 catalysts. J. Air Waste Manag. Assoc. 2015, 65, 828–836. [Google Scholar] [CrossRef] [PubMed]
- Taran, O.; Ayusheev, A.B.; Ogorodnikova, O.L.; Prosvirin, I.; Isupova, L.A.; Parmon, V.N. Perovskite-like catalysts LaBO3 (B = Cu, Fe, Mn, Co, Ni) for wet peroxide oxidation of phenol. Appl. Catal. B Environ. 2016, 180, 86–93. [Google Scholar] [CrossRef]
- Sushma; Kumari, M.; Saroha, A.K. Performance of various catalysts on treatment of refractory pollutants in industrial wastewater by catalytic wet air oxidation: A review. J. Environ. Manag. 2018, 228, 169–188. [Google Scholar] [CrossRef]
- Zhao, M.; Shi, J.; Hou, Z. Selective hydrogenation of phenol to cyclohexanone in water over Pd catalysts supported on Amberlyst-45. Chin. J. Catal. 2016, 37, 234–239. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, C.; Yang, Y.; Zhang, H.; Kim, D.; Sugahara, T.; Nagao, S.; Suganuma, K. Low-temperature and pressureless sinter joining of Cu with micron/submicron Ag particle paste in air. J. Alloys Compd. 2018, 780, 435–442. [Google Scholar] [CrossRef]
- Armaroli, T.; Minoux, D.; Gautier, S.; Euzen, P. A DRIFTS study of Mo/alumina interaction: From Mo/boehmite solution to Mo/γAl2O3 support. Appl. Catal. A Gen. 2003, 251, 241–253. [Google Scholar] [CrossRef]
- Park, B.; Saito, M.; Mizuno, J.; Nishikawa, H. Robust shear strength of Cu–Au joint on Au surface-finished Cu disks by solid-state nanoporous Cu bonding. Microelectron. Eng. 2022, 260, 111807. [Google Scholar] [CrossRef]
- Fukuda, R.; Sakai, S.; Takagi, N.; Matsui, M.; Ehara, M.; Hosokawa, S.; Tanaka, T.; Sakaki, S. Mechanism of NO–CO reaction over highly dispersed cuprous oxide on γ-alumina catalyst using a metal–support interfacial site in the presence of oxygen: Similarities to and differences from biological systems. Catal. Sci. Technol. 2018, 8, 3833–3845. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Y.; Peng, C.; Shi, J.; Wang, Q.; He, L.; Shi, L. Enhanced activity and stability of copper oxide/γ-alumina catalyst in catalytic wet-air oxidation: Critical roles of cerium incorporation. Appl. Surf. Sci. 2018, 436, 981–988. [Google Scholar] [CrossRef]
- Cuauhtémoc, I.; Del Angel, G.; Torres, G.; Angeles-Chavez, C.; Navarrete, J.; Padilla, J. Enhancement of catalytic wet air oxidation of tert-amyl methyl ether by the addition of Sn and CeO2 to Rh/Al2O3 catalysts. Catal. Today 2011, 166, 180–187. [Google Scholar] [CrossRef]
- Abedini, S.; Parvin, N.; Ashtari, P. Preparation, characterization and microstructural optimization of a thin γ-alumina membrane on a porous stainless steel substrate. Mater. Sci. Eng. A 2012, 533, 1–8. [Google Scholar] [CrossRef]
- Rambabu, G.; Naik, D.B.; Rao, C.V.; Rao, K.S.; Reddy, G.M. Optimization of friction stir welding parameters for improved corrosion resistance of AA2219 aluminum alloy joints. Def. Technol. 2015, 8, 330–337. [Google Scholar] [CrossRef]
- Kang, H.; Seungkyu, S.; Yoon, S. A numerical study on the light-weight design of PTC heater for an electric vehicle heating system. Energies 2018, 11, 1276. [Google Scholar] [CrossRef]
- Andrievsky, G.; Klochkov, V.; Bordyuh, A.; Dovbeshko, G. Comparative analysis of two aqueous-colloidal solutions of C60 fullerene with help of FTIR reflectance and UV–Vis spectroscopy. Chem. Phys. Lett. 2002, 364, 8–17. [Google Scholar] [CrossRef]
- Thakur, S.; Gogate, P.R. Synthesis of Pd/C catalyst using formaldehyde reduction method and application for ultrasound assisted transfer hydrogenation of corn oil. Chem. Eng. Process. Intensif. 2020, 152, 107939. [Google Scholar] [CrossRef]
- Vasquez, R.P. Cu2O by XPS. Surf. Sci. Spectra 1998, 5, 257–261. [Google Scholar] [CrossRef]
- Sotelo, J.L.; Ovejero, G.; Martínez, F.; Melero, J.; Milieni, A. Catalytic wet peroxide oxidation of phenolic solutions over a LaTi1−xCuxO3 perovskite catalyst. Appl. Catal. B Environ. 2004, 47, 281–294. [Google Scholar] [CrossRef]
- Liu, D.; Jiang, B.; Liu, Z.; Ge, Y.; Wang, Y. Preparation and catalytic properties of Cu2O–CoO/Al2O3 composite coating prepared on aluminum plate by microarc oxidation. Ceram. Int. 2014, 40, 9981–9987. [Google Scholar] [CrossRef]
- Hu, L.H.; Liu, X.R.; Wang, Q.X.; Zhou, Y. Highly efficient degradation of high-loaded phenol over Ru-Cu/Al2O3 catalyst at mild conditions. RSC Adv. 2017, 7, 21507. [Google Scholar] [CrossRef]
- Leong, S.; Razmjou, A.; Wang, K.; Hapgood, K.; Zhang, X.; Wang, H. TiO2 based photocatalytic membranes: A review. J. Membr. Sci. 2014, 472, 167–184. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, Z.; Peng, F.; Wang, A.; Cai, X.; Fu, L. Growth of Cu2O nanoparticle on reduced graphene sheets with high photocatalytic activity for degradation of Rhodamine B. Full Nanotub. Carbon Nanostruct. 2015, 24, 149–153. [Google Scholar] [CrossRef]
- Ozawa, M.; Kimura, M.; Isogai, A. Thermal stability and characterization of γ-Al2O3 modified with lanthanum or cerium. J. Mater. Sci. Lett. 1990, 9, 709–711. [Google Scholar] [CrossRef]
- Dong, C.; Zhong, M.; Huang, T.; Ma, M.; Wortmann, D.; Brajdic, M.; Kelbassa, I. Photodegradation of Methyl Orange under Visible Light by Micro-Nano Hierarchical Cu2O Structure Fabricated by Hybrid Laser Processing and Chemical Dealloying. ACS Appl. Mater. Interfaces 2011, 3, 4332–4338. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.Y.; Zhou, P.W.; Guo, H.; Yang, B.; Ren, R.F. Photocatalytic Activity of CuO/ZnO Heterostructure Nanocrystals under UV-Visible Light Irradiation. Mater. Sci. Forum 2014, 787, 35–40. [Google Scholar] [CrossRef]
- Robles, M.R.G.; Bueno, J.D.J.P.; Syllas, C.S.A.; López, M.L.M.; Guerrero, F.M. Silver/Silicon nanowires/copper nanoparticles heterojunction for methyl orange degradation by heterogeneous photocatalysis under visible irradiation. MRS Adv. 2018, 3, 3933–3938. [Google Scholar] [CrossRef]
Initiation of chain | RH + O2 → R·+ HOO (RH represents organic matter) | (1) |
2RH + O2 → 2R·+ H2O2 | (2) | |
H2O2 + M → 2OH· (M represents catalyst) | (3) | |
Development or transmission of chain | RH + ·OH → R·+ H2O | (4) |
R·+ O2 → ROO· | (5) | |
ROO·+ RH → ROOH + R· | (6) | |
Termination of chain | R·+ R·→ R-R | (7) |
ROO·+ R·→ ROOR | (8) | |
ROO·+ ROO·→ ROH + RCOR2 + O2 | (9) |
Reaction Parameters | Value | Reaction Rate Equation | K | R2 |
---|---|---|---|---|
Deposition time (min) | 15 | Ln (Ct) = −10.45 + 0.71 t | 0.71 | 0.98 |
20 | Ln (Ct) = −13.65 + 0.81 t | 0.81 | 0.98 | |
25 | Ln (Ct) = −14.61 + 0.85 t | 0.85 | 0.98 | |
30 | Ln (Ct) = −15.11 + 0.89 t | 0.89 | 0.98 | |
35 | Ln (Ct) = −14.75 + 0.90 t | 0.90 | 0.98 | |
Temperature (°C) | 15 | Ln (Ct) = −6.62 + 0.59 t | 0.59 | 0.99 |
25 | Ln (Ct) = −8.17 + 0.84 t | 0.84 | 0.95 | |
40 | Ln (Ct) = −9.13 + 0.67 t | 0.67 | 0.97 | |
Catalyst dosage (g) | 3 | Ln (Ct) = −2.66 + 0.31 t | 0.31 | 1.00 |
5 | Ln (Ct) = −4.02 + 0.57 t | 0.57 | 0.98 | |
8 | Ln (Ct) = −12.12 + 0.92 t | 0.92 | 0.96 | |
10 | Ln (Ct) = −11.56 + 0.92 t | 0.92 | 0.95 | |
Reuse times | 1 | Ln (Ct) = −11.93 + 0.91 t | 0.91 | 0.96 |
2 | Ln (Ct) = −12.07 + 0.90 t | 0.90 | 0.96 | |
3 | Ln (Ct) = −12.79 + 0.88 t | 0.88 | 0.97 | |
4 | Ln (Ct) = −13.43 + 0.88 t | 0.88 | 0.96 | |
5 | Ln (Ct) = −15.14 + 0.87 t | 0.87 | 0.95 | |
6 | Ln (Ct) = −15.47 + 0.83 t | 0.83 | 0.96 | |
7 | Ln (Ct) = −16.64 + 0.81 t | 0.81 | 0.94 | |
8 | Ln (Ct) = −17.21 + 0.77 t | 0.77 | 0.95 | |
9 | Ln (Ct) = −16.99 + 0.74 t | 0.74 | 0.94 |
Catalyst | Reaction Condition | Degradation Efficiency | Reference |
---|---|---|---|
Cu2O | Dye concentration: 10 mg/L | 94.54% in 4 h | [52] |
CuO/ZnO | Dye concentration: 5 ppm pH 6.8, Catalyst dosage: 0.6 g Light source: UV-light | 54.1% in 4 h | [53] |
CuO/NC NPs | Dye concentration: 30 ppm Catalyst dosage: 0.015 g Light source: UV and visible | 97.18% in 4 min (UV) 95.96% in 4 min (Vis) | [54] |
SiNWs–CuNPs | Dye concentration: 20 ppm Dye amount: 20 mL Light source: visible (5 LEDS) | 89% in 120 min | [3] |
Cu2O/Al2O3 | Dye concentration: 20 mg/L Catalyst dosage: 8 g H2O2 concentration: 3 wt.% | 92% in 120 min | Current study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.-b.; Zhang, P.; Wang, J. Preparing Cu2O/Al2O3 Coating via an Electrochemical Method for the Degradation of Methyl Orange in the Process of Catalytic Wet Hydrogen Peroxide Oxidation. Catalysts 2022, 12, 1308. https://doi.org/10.3390/catal12111308
Liu D-b, Zhang P, Wang J. Preparing Cu2O/Al2O3 Coating via an Electrochemical Method for the Degradation of Methyl Orange in the Process of Catalytic Wet Hydrogen Peroxide Oxidation. Catalysts. 2022; 12(11):1308. https://doi.org/10.3390/catal12111308
Chicago/Turabian StyleLiu, De-bo, Ping Zhang, and Jian Wang. 2022. "Preparing Cu2O/Al2O3 Coating via an Electrochemical Method for the Degradation of Methyl Orange in the Process of Catalytic Wet Hydrogen Peroxide Oxidation" Catalysts 12, no. 11: 1308. https://doi.org/10.3390/catal12111308
APA StyleLiu, D.-b., Zhang, P., & Wang, J. (2022). Preparing Cu2O/Al2O3 Coating via an Electrochemical Method for the Degradation of Methyl Orange in the Process of Catalytic Wet Hydrogen Peroxide Oxidation. Catalysts, 12(11), 1308. https://doi.org/10.3390/catal12111308