Recent Development in Non-Metal-Doped Titanium Dioxide Photocatalysts for Different Dyes Degradation and the Study of Their Strategic Factors: A Review
Abstract
:1. Introduction
2. Effect of Non-Metal Doping
3. Treatment Opportunities for Dyes
3.1. Types of Dyes
3.2. Dye-Degradation Mechanisms
3.3. Technologies or Methods for the Removal of Dyes
3.4. Stability of Non-Metal-Doped Titania
4. C-Doped TiO2 (C/TiO2)
5. N-Doped TiO2 (N/TiO2)
Year of Study | Method | TiO2 Precursor | Nitrogen Source | Ref. |
---|---|---|---|---|
2017 | Addition of N source to the TiO2 precursor solution | TBOT | Tetra methyl-ethylene-diamine | [148] |
2020 | CVD | TICl4 | Tert-butylamine, benzyl amine | [149] |
2017 | Hydrothermal | TBOT | KNO3 | [150] |
2019 | Hydrolysis | TTIP | NH4Cl, pyridine | [151] |
2016 | Electrochemical | Titania nanotubes | Diethylenetriamine, ethylenediamine, hydrazine | [152] |
2019 | Sol-gel | TTIP, TBOT, TiCl4, Titanic acid | Urea, NH3, nitro methane, n-butyl amine, N2, hydrazine, HNO3, | [153] |
6. S-Doped TiO2 (S/TiO2 or SdT)
7. P-Doped TiO2 (P/TiO2 or PdT)
8. B-Doped TiO2 (B/TiO2 or BdT)
9. Halogens-Doped TiO2 (X = F, Cl, Br, and I)
10. Si-Doped TiO2 (SidTiO2)
11. Factors Affecting the Degradation of Photocatalytic Activity
11.1. Effect of pH
11.2. Effect of Dye Concentration
11.3. Photocatalyst’s Size and Structure
11.4. Pollutant Concentrations and Types
11.5. Surface Area of the Photocatalyst
11.6. Effect of the Intensity of Light and Irradiation Time
11.7. Dopants’ Impact on Dye Degradation
11.8. Effect of Mass Loading on the Catalytic Activity
12. Conclusions
13. Opportunities, Challenges and Future Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Lee, K.M.; Lai, C.W.; Ngai, K.S.; Juan, J.C. Recent developments of zinc oxide based photocatalyst in water treatment technology: A review. Water Res. 2016, 88, 428–448. [Google Scholar] [CrossRef] [PubMed]
- Etman, A.S.; Abdelhamid, H.N.; Yuan, Y.; Wang, L.; Zou, X.; Sun, J. Facile Water-Based Strategy for Synthesizing MoO3–x Nanosheets: Efficient Visible Light Photocatalysts for Dye Degradation. ACS Omega 2018, 3, 2193–2201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mittal, A.; Mittal, A.; Mari, B.; Sharma, S.; Kumari, V.; Maken, S.; Kumari, K.; Kumar, N. Non-metal modified TiO2: A step towards visible light photocatalysis. J. Mater. Sci. Mater. Electron. 2019, 30, 3186–3207. [Google Scholar] [CrossRef]
- Din, M.I.; Khalid, R.; Hussain, Z. Recent Research on Development and Modification of Nontoxic Semiconductor for Environmental Application. Sep. Purif. Rev. 2021, 50, 244–261. [Google Scholar] [CrossRef]
- Al-Mamun, M.R.; Kader, S.; Islam, M.S.; Khan, M.Z.H. Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. J. Environ. Chem. Eng. 2019, 7, 103248. [Google Scholar] [CrossRef]
- Zhu, Z.; Kao, C.T.; Tang, B.H.; Chang, W.C.; Wu, R.J. Efficient hydrogen production by photocatalytic water-splitting using Pt-doped TiO2 hollow spheres under visible light. Ceram. Int. 2016, 42, 6749–6754. [Google Scholar] [CrossRef]
- Makama, A.B.; Salmiaton, A.; Saion, E.B.; Choong, T.S.Y.; Abdullah, N. Synthesis of CdS Sensitized TiO2 Photocatalysts: Methylene Blue Adsorption and Enhanced Photocatalytic Activities. Int. J. Photoenergy 2016, 2016, 2947510. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Yu, S.; Li, B.; Lihui, D.; Zhang, F.; Fan, M.; Deng, C. Influence of preparation methods on the structure and catalytic performance of SnO2-doped TiO2 photocatalysts. Ceram. Int. 2014, 40, 13305–13312. [Google Scholar] [CrossRef]
- Hassan, S.M.; Ahmed, A.I.; Mannaa, M.A. Preparation and characterization of SnO2 doped TiO2 nanoparticles: Effect of phase changes on the photocatalytic and catalytic activity. J. Sci. Adv. Mater. Devices 2019, 4, 400–412. [Google Scholar] [CrossRef]
- Dontsova, T.A.; Kutuzova, A.S.; Bila, K.O.; Kyrii, S.O.; Kosogina, I.V.; Nechyporuk, D.O. Enhanced Photocatalytic Activity of TiO2/SnO2 Binary Nanocomposites. J. Nanomater. 2020, 2020, 8349480. [Google Scholar] [CrossRef]
- Wang, X.; Sun, M.; Murugananthan, M.; Zhang, Y.; Zhang, L. Electrochemically self-doped WO3/TiO2 nanotubes for photocatalytic degradation of volatile organic compounds. Appl. Catal. B Environ. 2020, 260, 118205. [Google Scholar] [CrossRef]
- Amouhadi, E.; Aliyan, H.; Aghaei, H.; Fazaeli, R.; Richeson, D. Photodegradation and mineralization of metronidazole by a novel quadripartite SnO2@TiO2/ZrTiO4/ZrO2 photocatalyst: Comprehensive photocatalyst characterization and kinetic study. Mater. Sci. Semicond. Process. 2022, 143, 106560. [Google Scholar] [CrossRef]
- Liu, C.; Li, X.; Wu, Y.; Sun, L.; Zhang, L.; Chang, X.; Wang, X. Enhanced photocatalytic activity by tailoring the interface in TiO2–ZrTiO4 heterostructure in TiO2–ZrTiO4–SiO2 ternary system. Ceram. Int. 2019, 45, 17163–17172. [Google Scholar] [CrossRef]
- Liu, C.; Li, X.; Wu, Y.; Zhang, L.; Chang, X.; Yuan, X.; Wang, X. Fabrication of multilayer porous structured TiO2–ZrTiO4–SiO2 heterostructure towards enhanced photo-degradation activities. Ceram. Int. 2020, 46, 476–486. [Google Scholar] [CrossRef]
- Xiang, Q.; Yu, J.; Jaroniec, M. Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 2012, 41, 782–796. [Google Scholar] [CrossRef]
- Rommozzi, E.; Zannotti, M.; Giovannetti, R.; D’Amato, C.A.; Ferraro, S.; Minicucci, M.; Di Cicco, A. Reduced Graphene Oxide/TiO2 Nanocomposite: From Synthesis to Characterization for Efficient Visible Light Photocatalytic Applications. Catalysts 2018, 8, 598. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Choudhury, F.A.; Hossain, D.; Chowdhury, N.I.; Mohsin, S.; Hasan, M.; Uddin, F.; Sarker, N.C. A Comparative study on the photocatalytic degradation of industrial dyes using modified commercial and synthesized TiO2 photocatalysts. J. Chem. Eng. 2014, 27, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Shehzad, N.; Tahir, M.; Johari, K.; Murugesan, T.; Hussain, M.A. Critical review on TiO2 based photocatalytic CO2 reduction system: Strategies to improve efficiency. J. CO2 Util. 2018, 26, 98–122. [Google Scholar] [CrossRef]
- Hussain, M.; Ceccarelli, R.; Marchisio, D.L.; Fino, D.; Russo, N.; Geobaldo, F. Synthesis, characterization, and photocatalytic application of novel TiO2 nanoparticles. Chem. Eng. J. 2010, 157, 45–51. [Google Scholar] [CrossRef]
- Siraj, Z.; Maafa, I.M.; Shafiq, I.; Shezad, N.; Akhter, P.; Yang, W.; Hussain, M. KIT-6 induced mesostructured TiO2 for photocatalytic degradation of methyl blue. Environ. Sci. Pollut. Res. 2021, 28, 53340–53352. [Google Scholar] [CrossRef]
- Rashid, R.; Shafiq, I.; Iqbal, M.J.; Shabir, M.; Akhter, P.; Hamayun, M.H.; Hussain, M. Synergistic effect of NS co-doped TiO2 adsorbent for removal of cationic dyes. J. Environ. Chem. Eng. 2021, 9, 105480. [Google Scholar] [CrossRef]
- Hlekelele, L.; Durbach, S.H.; Chauke, V.P.; Dziike, F.; Franklyn, P.J. Resin-gel incorporation of high concentrations of W6+ and Zn2+ into TiO2-anatase crystal to form quaternary mixed-metal oxides: Effect on the a lattice parameter and photodegradation efficiency. RSC Adv. 2019, 9, 36875–36883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thambiliyagodage, C. Activity enhanced TiO2 nanomaterials for photodegradation of dyes—A review. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100592. [Google Scholar] [CrossRef]
- Tryba, B.; Piszcz, M.; Morawski, A.W. Photocatalytic activity of-composites. Int. J. Photoenergy 2009, 2009, 297319. [Google Scholar] [CrossRef] [Green Version]
- Han, F.; Kambala, V.S.R.; Srinivasan, M.; Rajarathnam, D.; Naidu, R. Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: A review. Appl. Catal. A Gen. 2009, 359, 25–40. [Google Scholar] [CrossRef]
- Pragati, T.; Roshan, K.N. Synthesis of sol-gel derived TiO2 nanoparticles for the photocatalytic degradation of methyl orange dye. Res. J. Chem. Environ. 2011, 15, 145–149. [Google Scholar]
- Deng, H.; He, H.; Sun, S.; Zhu, X.; Zhou, D.; Han, F.; Pan, X. Photocatalytic degradation of dye by Ag/TiO2 nanoparticles prepared with different sol–gel crystallization in the presence of effluent organic matter. Environ. Sci. Pollut. Res. 2019, 26, 35900–35912. [Google Scholar] [CrossRef]
- Al Jitan, S.; Palmisano, G.; Garlisi, C. Synthesis and surface modification of TiO2-based photocatalysts for the conversion of CO2. Catalysts 2020, 10, 227. [Google Scholar] [CrossRef] [Green Version]
- Islam, S.Z.; Nagpure, S.; Kim, D.Y.; Rankin, S.E. Synthesis and Catalytic Applications of Non-Metal Doped Mesoporous Titania. Inorganics 2017, 5, 15. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Xing, M.; Tian, B.; Zhang, J.; Chen, F. Preparation of nitrogen and fluorine co-doped mesoporous TiO2 microsphere and photodegradation of acid orange 7 under visible light. Chem. Eng. J. 2010, 162, 710–717. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, X.; Li, B.; Liu, H.; Sun, P.; Wang, C.; Liu, Y. Photocatalytic activities of heterostructured TiO2-graphene porous microspheres prepared by ultrasonic spray pyrolysis. J. Alloys Compd. 2014, 584, 180–184. [Google Scholar] [CrossRef]
- Zhou, X.; Peng, F.; Wang, H.; Yu, H.; Yang, J. Effect of nitrogen-doping temperature on the structure and photocatalytic activity of the B, N-doped TiO2. J. Solid State Chem. 2011, 184, 134–140. [Google Scholar] [CrossRef]
- El-Sheikh, S.M.; Zhang, G.; El-Hosainy, H.M.; Ismail, A.A.; O’Shea, K.E.; Falaras, P.; Dionysiou, D.D. High performance sulfur, nitrogen and carbon doped mesoporous anatase–brookite TiO2 photocatalyst for the removal of microcystin-LR under visible light irradiation. J. Hazard. Mater. 2014, 280, 723–733. [Google Scholar] [CrossRef]
- Ao, Y.; Xu, J.; Fu, D.; Yuan, C. Synthesis of C, N, S-tridoped mesoporous titania with enhanced visible light-induced photocatalytic activity. Microporous Mesoporous Mater. 2009, 122, 1–6. [Google Scholar] [CrossRef]
- Almaev, A.V.; Yakovlev, N.N.; Kushnarev, B.O.; Kopyev, V.V.; Novikov, V.A.; Zinoviev, M.M.; Yudin, N.N.; Podzivalov, S.N.; Erzakova, N.N.; Chikiryaka, A.V.; et al. Gas Sensitivity of IBSD Deposited TiO2 Thin Films. Coatings 2022, 12, 1565. [Google Scholar] [CrossRef]
- Mele, G.; del Sole, R.; Lü, X. 18—Applications of TiO2 in sensor devices. In Titanium Dioxide (TiO2) and Its Applications; Parrino, F., Palmisano, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 527–581. [Google Scholar]
- Gogova, D.; Iossifova, A.; Ivanova, T.; Dimitrova, Z.; Gesheva, K. Electrochromic behavior in CVD grown tungsten oxide films. J. Cryst. Growth 1999, 198–199, 1230–1234. [Google Scholar] [CrossRef]
- Fan, X.; Chen, X.; Zhu, S.; Li, Z.; Yu, T.; Ye, J.; Zou, Z. The structural, physical and photocatalytic properties of the mesoporous Cr-doped TiO2. J. Mol. Catal. A Chem. 2008, 284, 155–160. [Google Scholar] [CrossRef]
- Murthy, N.S. Scattering techniques for structural analysis of biomaterials. In Characterization of Biomaterials; Elsevier: Amsterdam, The Netherlands, 2013; pp. 34–72. [Google Scholar]
- Ghumro, S.S.; Lal, B.; Pirzada, T. Visible-Light-Driven Carbon-Doped TiO2-Based Nanocatalysts for Enhanced Activity toward Microbes and Removal of Dye. ACS Omega 2022, 7, 4333–4341. [Google Scholar] [CrossRef]
- Negi, C.; Kandwal, P.; Rawat, J.; Sharma, M.; Sharma, H.; Dalapati, G.; Dwivedi, C. Carbon-doped titanium dioxide nanoparticles for visible light driven photocatalytic activity. Appl. Surf. Sci. 2021, 554, 149553. [Google Scholar] [CrossRef]
- Piątkowska, A.; Janus, M.; Szymański, K.; Mozia, S. C-, N- and S-Doped TiO2 Photocatalysts: A Review. Catalysts 2021, 11, 144. [Google Scholar] [CrossRef]
- Bergamonti, L.; Predieri, G.; Paz, Y.; Fornasini, L.; Lottici, P.P.; Bondioli, F. Enhanced self-cleaning properties of N-doped TiO2 coating for Cultural Heritage. Microchem. J. 2017, 133, 1–12. [Google Scholar] [CrossRef]
- Chen, X.; Kuo, D.-H.; Lu, D. N-doped mesoporous TiO2 nanoparticles synthesized by using biological renewable nanocrystalline cellulose as template for the degradation of pollutants under visible and sun light. Chem. Eng. J. 2016, 295, 192–200. [Google Scholar] [CrossRef]
- Hwang, Y.J.; Yang, S.; Lee, H. Surface analysis of N-doped TiO2 nanorods and their enhanced photocatalytic oxidation activity. Appl. Catal. B Environ. 2017, 204, 209–215. [Google Scholar] [CrossRef]
- Chung, K.-H.; Kim, B.J.; Park, Y.K.; Kim, S.C.; Jung, S.C. Photocatalytic Properties of Amorphous N-Doped TiO2 Photocatalyst under Visible Light Irradiation. Catalysts 2021, 11, 1010. [Google Scholar] [CrossRef]
- Shabir, M.; Shezad, N.; Shafiq, I.; Maafa, I.M.; Akhter, P.; Azam, K.; Hussain, M. Carbon nanotubes loaded N, S-codoped TiO2: Heterojunction assembly for enhanced integrated adsorptive-photocatalytic performance. J. Ind. Eng. Chem. 2022, 105, 539–548. [Google Scholar] [CrossRef]
- Li, T.; Abdelhaleem, A.; Chu, W.; Pu, S.; Qi, F.; Zou, J. S-doped TiO2 photocatalyst for visible LED mediated oxone activation: Kinetics and mechanism study for the photocatalytic degradation of pyrimethanil fungicide. Chem. Eng. J. 2021, 411, 128450. [Google Scholar] [CrossRef]
- Grabowska, E.; Zaleska, A.; Sobczak, J.W.; Gazda, M.; Hupka, J. Boron-doped TiO2: Characteristics and photoactivity under visible light. Procedia Chem. 2009, 1, 1553–1559. [Google Scholar] [CrossRef] [Green Version]
- Koli, V.B.; Ke, S.-C.; Dodamani, A.G.; Deshmukh, S.P.; Kim, J.-S. Boron-Doped TiO2-CNT Nanocomposites with Improved Photocatalytic Efficiency toward Photodegradation of Toluene Gas and Photo-Inactivation of Escherichia coli. Catalysts 2020, 10, 632. [Google Scholar] [CrossRef]
- Su, Y.; Xiao, Y.; Fu, X.; Deng, Y.; Zhang, F. Photocatalytic properties and electronic structures of iodine-doped TiO2 nanotubes. Mater. Res. Bull. 2009, 44, 2169–2173. [Google Scholar] [CrossRef]
- Xu, J.; Yang, B.; Wu, M.; Fu, Z.; Lv, Y.; Zhao, Y. Novel N−F-Codoped TiO2 Inverse Opal with a Hierarchical Meso-/Macroporous Structure: Synthesis, Characterization, and Photocatalysis. J. Phys. Chem. C 2010, 114, 15251–15259. [Google Scholar] [CrossRef]
- Morales-Torres, S.; Pastrana-Martínez, L.M.; Figueiredo, J.L.; Faria, J.L.; Silva, A.M. Design of graphene-based TiO2 photocatalysts—A review. Environ. Sci. Pollut. Res. 2012, 19, 3676–3687. [Google Scholar] [CrossRef]
- Suárez, S.; Jansson, I.; Ohtani, B.; Sánchez, B. From titania nanoparticles to decahedral anatase particles: Photocatalytic activity of TiO2/zeolite hybrids for VOCs oxidation. Catal. Today 2019, 326, 2–7. [Google Scholar] [CrossRef]
- Liang, H.; Wang, Z.; Liao, L.; Chen, L.; Li, Z.; Feng, J. High performance photocatalysts: Montmorillonite supported-nano TiO2 composites. Optik 2017, 136, 44–51. [Google Scholar] [CrossRef]
- Shao, J.; Sheng, W.; Wang, M.; Li, S.; Chen, J.; Zhang, Y.; Cao, S. In situ synthesis of carbon-doped TiO2 single-crystal nanorods with a remarkably photocatalytic efficiency. Appl. Catal. B Environ. 2017, 209, 311–319. [Google Scholar] [CrossRef]
- Saiful Amran, S.N.B.; Wongso, V.; Abdul Halim, N.S.; Husni, M.K.; Sambudi, N.S.; Wirzal, M.D.H. Immobilized carbon-doped TiO2 in polyamide fibers for the degradation of methylene blue. J. Asian Ceram. Soc. 2019, 7, 321–330. [Google Scholar] [CrossRef] [Green Version]
- Habibi, S.; Jamshidi, M. Sol–gel synthesis of carbon-doped TiO2 nanoparticles based on microcrystalline cellulose for efficient photocatalytic degradation of methylene blue under visible light. Environ. Technol. 2020, 41, 3233–3247. [Google Scholar] [CrossRef]
- Ji, L.; Liu, X.; Xu, T.; Gong, M.; Zhou, S. Preparation and photocatalytic properties of carbon/carbon-doped TiO2 double-layer hollow microspheres. J. Sol-Gel Sci. Technol. 2020, 93, 380–390. [Google Scholar] [CrossRef]
- Bhosale, R.R.; Pujari, S.R.; Muley, G.G.; Patil, S.H.; Patil, K.R.; Shaikh, M.F.; Gambhire, A.B. Solar photocatalytic degradation of methylene blue using doped TiO2 nanoparticles. J. Sol. Energy. 2014, 103, 473–479. [Google Scholar] [CrossRef]
- Cong, Y.; Zhang, J.; Chen, F.; Anpo, M. Synthesis and Characterization of Nitrogen-Doped TiO2 Nanophotocatalyst with High Visible Light Activity. J. Phys. Chem. C 2007, 111, 6976–6982. [Google Scholar] [CrossRef]
- Senthilnathan, J.; Philip, L. Photocatalytic degradation of lindane under UV and visible light using N-doped TiO2. Chem. Eng. J. 2010, 161, 83–92. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Y.; Cao, C.; Xu, J.; Qian, Q.; Luo, Y.; Chen, Q. Electrospun nitrogen and carbon co-doped porous TiO2 nanofibers with high visible light photocatalytic activity. N. J. Chem. 2015, 39, 6944–6950. [Google Scholar] [CrossRef]
- Pu, X.; Hu, Y.; Cui, S.; Cheng, L.; Jiao, Z. Preparation of N-doped and oxygen-deficient TiO2 microspheres via a novel electron beam-assisted method. Solid State Sci. 2017, 70, 66–73. [Google Scholar] [CrossRef]
- Panghulan, G.R.; Vasquez Jr, M.R.; Edañol, Y.D.; Chanlek, N.; Payawan Jr, L.M. Synthesis of TiN/N-doped TiO2 composite films as visible light active photocatalyst. J. Vac. Sci. Technol. B 2020, 38, 062203. [Google Scholar] [CrossRef]
- Ji, L.; Zhou, S.; Liu, X.; Gong, M.; Xu, T. Synthesis of carbon- and nitrogen-doped TiO2/carbon composite fibers by a surface-hydrolyzed PAN fiber and their photocatalytic property. J. Mater. Sci. 2020, 55, 2471–2481. [Google Scholar] [CrossRef]
- Divyasri, Y.V.; Reddy, N.L.; Lee, K.; Sakar, M.; Rao, V.N.; Venkatramu, V.; Reddy, N.C. GOptimization of N doping in TiO2 nanotubes for the enhanced solar light mediated photocatalytic H2 production and dye degradation. Environ. Pollut. 2021, 269, 116170. [Google Scholar] [CrossRef]
- Tian, H.; Ma, J.; Li, K.; Li, J. Hydrothermal synthesis of S-doped TiO2 nanoparticles and their photocatalytic ability for degradation of methyl orange. Ceram. Int. 2009, 35, 1289–1292. [Google Scholar] [CrossRef]
- Birben, N.C.; Uyguner-Demirel, C.S.; Sen-Kavurmaci, S.; Gurkan, Y.Y.; Turkten, N.; Cinar, Z.; Bekbolet, M. Comparative evaluation of anion doped photocatalysts on the mineralization and decolorization of natural organic matter. Catal. Today 2015, 240, 125–131. [Google Scholar] [CrossRef]
- Syafiuddin, A.; Hadibarata, T.; Zon, N.F. Characterization of Titanium Dioxide Doped with Nitrogen and Sulfur and Its Photocatalytic Appraisal for Degradation of Phenol and Methylene Blue. J. Chin. Chem. Soc. 2017, 64, 1333–1339. [Google Scholar] [CrossRef]
- Gao, H.-T.; Liu, Y.Y.; Ding, C.H.; Dai, D.M.; Liu, G.J. Synthesis, characterization, and theoretical study of N, S-codoped nano-TiO2 with photocatalytic activities. Int. J. Miner. Metall. Mater. 2011, 18, 606. [Google Scholar] [CrossRef]
- Raj, K.J.A.; Ramaswamy, A.; Viswanathan, B. Surface area, pore size, and particle size engineering of titania with seeding technique and phosphate modification. J. Phys. Chem. C 2009, 113, 13750–13757. [Google Scholar] [CrossRef]
- Ghafoor, S.; Aftab, F.; Rauf, A.; Duran, H.; Kirchhoff, K.; Arshad, S.N. P-doped TiO2 Nanofibers Decorated with Ag Nanoparticles for Enhanced Photocatalytic Activity under Simulated Solar Light. ChemistrySelect 2020, 5, 14078–14085. [Google Scholar] [CrossRef]
- Sarker, D.R.; Uddin, M.N.; Elias, M.; Rahman, Z.; Paul, R.K.; Siddiquey, I.A.; Uddin, J. P-doped TiO2-MWCNTs nanocomposite thin films with enhanced photocatalytic activity under visible light exposure. Clean. Eng. Technol. 2022, 6, 100364. [Google Scholar] [CrossRef]
- Xiao, J.; Pan, Z.; Zhang, B.; Liu, G.; Zhang, H.; Song, X.; Zheng, Y. The research of photocatalytic activity on Si doped TiO2 nanotubes. Mater. Lett. 2017, 188, 66–68. [Google Scholar] [CrossRef]
- Ajmal, A.; Majeed, I.; Malik, R.N.; Idriss, H.; Nadeem, M.A. Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: A comparative overview. RSC Adv. 2014, 4, 37003–37026. [Google Scholar] [CrossRef]
- O’Neill, C.; Hawkes, F.R.; Hawkes, D.L.; Lourenço, N.D.; Pinheiro, H.M.; Delée, W. Colour in textile effluents–sources, measurement, discharge consents and simulation: A review. J. Chem. Technol. Biotechnol. Int. Res. Process Environ. Clean Technol. 1999, 74, 1009–1018. [Google Scholar] [CrossRef]
- Tehrani-Bagha, A.; Mahmoodi, N.M.; Menger, F. Degradation of a persistent organic dye from colored textile wastewater by ozonation. Desalination 2010, 260, 34–38. [Google Scholar] [CrossRef]
- Andriantsiferana, C.; Mohamed, E.F.; Delmas, H. Photocatalytic degradation of an azo-dye on TiO2/activated carbon composite material. Environ. Technol. 2014, 35, 355–363. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Yang, B.; Wang, Q. Biodegradation and decolorization of dye wastewater: A review. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018. [Google Scholar]
- Reza, K.M.; Kurny, A.; Gulshan, F. Parameters affecting the photocatalytic degradation of dyes using TiO2: A review. Appl. Water Sci. 2017, 7, 1569–1578. [Google Scholar] [CrossRef] [Green Version]
- Madhavan, J.; Maruthamuthu, P.; Murugesan, S.; Anandan, S. Kinetic studies on visible light-assisted degradation of acid red 88 in presence of metal-ion coupled oxone reagent. Appl. Catal. B Environ. 2008, 83, 8–14. [Google Scholar] [CrossRef]
- Baran, W.; Makowski, A.; Wardas, W. The influence of FeCl3 on the photocatalytic degradation of dissolved azo dyes in aqueous TiO2 suspensions. Chemosphere 2003, 53, 87–95. [Google Scholar] [CrossRef]
- Rauf, M.; Meetani, M.; Hisaindee, S. An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination 2011, 276, 13–27. [Google Scholar] [CrossRef]
- Zhang, T.; ki Oyama, T.; Horikoshi, S.; Hidaka, H.; Zhao, J.; Serpone, N. Photocatalyzed N-demethylation and degradation of methylene blue in titania dispersions exposed to concentrated sunlight. Sol. Energy Mater. Sol. Cells 2002, 73, 287–303. [Google Scholar] [CrossRef]
- Suteu, D.; Malutan, T. Industrial cellolignin wastes as adsorbent for removal of methylene blue dye from aqueous solutions. BioResources 2013, 8, 427–446. [Google Scholar] [CrossRef] [Green Version]
- Christie, R. Carbonyl Dyes and Pigments; RSC Publishing: London, UK, 2001. [Google Scholar]
- Thung, W.-E.; Ong, S.A.; Ho, L.N.; Wong, Y.S.; Ridwan, F.; Oon, Y.L.; Lehl, H.K. A highly efficient single chambered up-flow membrane-less microbial fuel cell for treatment of azo dye Acid Orange 7-containing wastewater. Bioresour. Technol. 2015, 197, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Houas, A.; Lachheb, H.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J.M. Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B Environ. 2001, 31, 145–157. [Google Scholar] [CrossRef]
- Konstantinou, I.K.; Albanis, T.A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A review. Appl. Catal. B Environ. 2004, 49, 1–14. [Google Scholar] [CrossRef]
- Anwer, H.; Mahmood, A.; Lee, J.; Kim, K.H.; Park, J.W.; Yip, A.C. Photocatalysts for degradation of dyes in industrial effluents: Opportunities and challenges. Nano Res. 2019, 12, 955–972. [Google Scholar] [CrossRef]
- Chu, C.-Y.; Huang, M.H. Facet-dependent photocatalytic properties of Cu2O crystals probed by using electron, hole and radical scavengers. J. Mater. Chem. A 2017, 5, 15116–15123. [Google Scholar] [CrossRef]
- Meng, L.; Chen, Z.; Ma, Z.; He, S.; Hou, Y.; Li, H.H.; Long, J. Gold plasmon-induced photocatalytic dehydrogenative coupling of methane to ethane on polar oxide surfaces. Energy Environ. Sci. 2018, 11, 294–298. [Google Scholar] [CrossRef]
- Wang, S.; Boyjoo, Y.; Choueib, A. A comparative study of dye removal using fly ash treated by different methods. Chemosphere 2005, 60, 1401–1407. [Google Scholar] [CrossRef]
- Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. [Google Scholar] [CrossRef]
- Mondal, S. Methods of Dye Removal from Dye House Effluent—An Overview. Environ. Eng. Sci. 2008, 25, 383–396. [Google Scholar] [CrossRef]
- Kaykhaii, M.; Sasani, M.; Marghzari, S. Removal of dyes from the environment by adsorption process. Chem. Mater. Eng. 2018, 6, 31–35. [Google Scholar] [CrossRef] [Green Version]
- Piaskowski, K.; Świderska-Dąbrowska, R.; Zarzycki, P.K. Dye Removal from Water and Wastewater Using Various Physical, Chemical, and Biological Processes. J. AOAC Int. 2019, 101, 1371–1384. [Google Scholar] [CrossRef]
- El-Desouky, M.G.; El-Bindary, M.A.; El-Bindary, A.A. Effective adsorptive removal of anionic dyes from aqueous solution. Vietnam J. Chem. 2021, 59, 341–361. [Google Scholar]
- Alhujaily, A.; Yu, H.; Zhang, X.; Ma, F. Adsorptive removal of anionic dyes from aqueous solutions using spent mushroom waste. Appl. Water Sci. 2020, 10, 183. [Google Scholar] [CrossRef]
- Pavithra, K.G.; Jaikumar, V. Removal of colorants from wastewater: A review on sources and treatment strategies. J. Ind. Eng. Chem. 2019, 75, 1–19. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, X.; Lou, T. Simultaneous adsorption for cationic and anionic dyes using chitosan/electrospun sodium alginate nanofiber composite sponges. Carbohydr. Polym. 2022, 276, 118728. [Google Scholar] [CrossRef]
- Mallakpour, S.; Rashidimoghadam, S. 9—Carbon nanotubes for dyes removal. In Composite Nanoadsorbents; Kyzas, G.Z., Mitropoulos, A.C., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 211–243. [Google Scholar]
- Velusamy, S.; Roy, A.; Sundaram, S.; Kumar Mallick, T. A Review on Heavy Metal Ions and Containing Dyes Removal through Graphene Oxide-Based Adsorption Strategies for Textile Wastewater Treatment. Chem. Rec. 2021, 21, 1570–1610. [Google Scholar] [CrossRef]
- Ling, C.; Yimin, D.; Qi, L.; Chengqian, F.; Zhiheng, W.; Yaqi, L.; Li, W. Novel High-efficiency adsorbent consisting of magnetic Cellulose-based ionic liquid for removal of anionic dyes. J. Mol. Liq. 2022, 353, 118723. [Google Scholar] [CrossRef]
- Rahman, F.; Akter, M. Removal of dyes form textile wastewater by adsorption using shrimp shell. Int. J. Waste Resour. 2016, 6, 2–5. [Google Scholar]
- Ledakowicz, S.; Paździor, K. Recent Achievements in Dyes Removal Focused on Advanced Oxidation Processes Integrated with Biological Methods. Molecules 2021, 26, 870. [Google Scholar] [CrossRef] [PubMed]
- Bal, G.; Thakur, A. Distinct approaches of removal of dyes from wastewater: A review. Mater. Today Proc. 2022, 50, 1575–1579. [Google Scholar] [CrossRef]
- Raval, N.P.; Shah, P.U.; Shah, N.K. Malachite green “a cationic dye” and its removal from aqueous solution by adsorption. Appl. Water Sci. 2017, 7, 3407–3445. [Google Scholar] [CrossRef] [Green Version]
- Ruan, W.; Hu, J.; Qi, J.; Hou, Y.; Zhou, C.; Wei, X. Removal of dyes from wastewater by nanomaterials: A review. Adv. Mater. Lett. 2019, 10, 9–20. [Google Scholar] [CrossRef]
- Sleiman, M.; Vildozo, D.; Ferronato, C.; Chovelon, J.M. Photocatalytic degradation of azo dye Metanil Yellow: Optimization and kinetic modeling using a chemometric approach. Appl. Catal. B Environ. 2007, 77, 1–11. [Google Scholar] [CrossRef]
- Basavarajappa, P.S.; Patil, S.B.; Ganganagappa, N.; Reddy, K.R.; Raghu, A.V.; Reddy, C. Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. Int. J. Hydrog. Energy 2020, 45, 7764–7778. [Google Scholar] [CrossRef]
- Guo, W.; Wu, L.; Chen, Z.; Boschloo, G.; Hagfeldt, A.; Ma, T. Highly efficient dye-sensitized solar cells based on nitrogen-doped titania with excellent stability. J. Photochem. Photobiol. A Chem. 2011, 219, 180–187. [Google Scholar] [CrossRef]
- Wu, Y.; Xing, M.; Zhang, J. Gel-hydrothermal synthesis of carbon and boron co-doped TiO2 and evaluating its photocatalytic activity. J. Hazard. Mater. 2011, 192, 368–373. [Google Scholar] [CrossRef]
- Boikanyo, D.; Masheane, M.L.; Nthunya, L.N.; Mishra, S.B.; Mhlanga, S.D. Carbon-supported photocatalysts for organic dye photodegradation. In New Polymer Nanocomposites for Environmental Remediation; Elsevier: Amsterdam, The Netherlands, 2018; pp. 99–138. [Google Scholar]
- Liu, J.; Zhu, W.; Yu, S.; Yan, X. Three dimensional carbogenic dots/TiO2 nanoheterojunctions with enhanced visible light-driven photocatalytic activity. Carbon 2014, 79, 369–379. [Google Scholar] [CrossRef]
- Matos, J.; Miralles-Cuevas, S.; Ruíz-Delgado, A.; Oller, I.; Malato, S. Development of TiO2-C photocatalysts for solar treatment of polluted water. Carbon 2017, 122, 361–373. [Google Scholar] [CrossRef]
- Shi, Z.-J.; Ma, M.-G.; Zhu, J.-F. Recent Development of Photocatalysts Containing Carbon Species: A Review. Catalysts 2018, 9, 20. [Google Scholar] [CrossRef] [Green Version]
- Noorimotlagh, Z.; Kazeminezhad, I.; Jaafarzadeh, N.; Ahmadi, M.; Ramezani, Z.; Martinez, S.S. The visible-light photodegradation of nonylphenol in the presence of carbon-doped TiO2 with rutile/anatase ratio coated on GAC: Effect of parameters and degradation mechanism. J. Hazard. Mater. 2018, 350, 108–120. [Google Scholar] [CrossRef]
- Shaban, Y.A.; El Maradny, A.A.; Al Farawati, R.K. Photocatalytic reduction of nitrate in seawater using C/TiO2 nanoparticles. J. Photochem. Photobiol. A Chem. 2016, 328, 114–121. [Google Scholar] [CrossRef]
- Ananpattarachai, J.; Seraphin, S.; Kajitvichyanukul, P. Formation of hydroxyl radicals and kinetic study of 2-chlorophenol photocatalytic oxidation using C-doped TiO2, N-doped TiO2, and C, N Co-doped TiO2 under visible light. Environ. Sci. Pollut. Res. 2016, 23, 3884–3896. [Google Scholar] [CrossRef]
- Rajamanickam, A.; Thirunavukkarasu, P.; Dhanakodi, K. A simple route to synthesis of carbon doped TiO2 nanostructured thin film for enhanced visible-light photocatalytic activity. J. Mater. Sci. Mater. Electron. 2015, 26, 4038–4045. [Google Scholar] [CrossRef]
- Shi, J.-W.; Liu, C.; He, C.; Li, J.; Xie, C.; Yang, S.; Chen, J.-W.; Li, S.; Niu, C. Carbon-doped titania nanoplates with exposed {001} facets: Facile synthesis, characterization and visible-light photocatalytic performance. RSC Adv. 2015, 5, 17667–17675. [Google Scholar] [CrossRef]
- Shaban, Y.A.; Fallata, H.M. Sunlight-induced photocatalytic degradation of acetaminophen over efficient carbon doped TiO2 (CTiO2) nanoparticles. Res. Chem. Intermed. 2019, 45, 2529–2547. [Google Scholar] [CrossRef]
- De Luna, M.D.G.; Chun-Te Lin, J.; Gotostos, M.J.N.; Lu, M.C. Photocatalytic oxidation of acetaminophen using carbon self-doped titanium dioxide. Sustain. Environ. Res. 2016, 26, 161–167. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Qian, X.; Han, H.; Chen, Y. Synthesis of carbon modified TiO2 photocatalysts with high photocatalytic activity by a facile calcinations assisted solvothermal method. J. Mater. Sci. Mater. Electron. 2017, 28, 10028–10034. [Google Scholar] [CrossRef]
- Kuang, L.; Zhang, W. Enhanced hydrogen production by carbon-doped TiO2 decorated with reduced graphene oxide (rGO) under visible light irradiation. RSC Adv. 2016, 6, 2479–2488. [Google Scholar] [CrossRef]
- An, N.; Ma, Y.; Liu, J.; Ma, H.; Yang, J.; Zhang, Q. Enhanced visible-light photocatalytic oxidation capability of carbon-doped TiO2 via coupling with fly ash. Chin. J. Catal. 2018, 39, 1890–1900. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, G.F.; Li, D.; Zhou, B.X.; Chang, S.; Pan, A.; Huang, W.Q. Facile route to fabricate carbon-doped TiO2 nanoparticles and its mechanism of enhanced visible light photocatalytic activity. Appl. Phys. A 2016, 122, 994. [Google Scholar] [CrossRef]
- Noorimotlagh, Z.; Kazeminezhad, I.; Jaafarzadeh, N.; Ahmadi, M.; Ramezani, Z. Improved performance of immobilized TiO2 under visible light for the commercial surfactant degradation: Role of carbon doped TiO60and anatase/rutile ratio. Catal. Today 2020, 348, 277–289. [Google Scholar] [CrossRef]
- Saharudin, K.A.; Sreekantan, S.; Lai, C.W. Fabrication and photocatalysis of nanotubular C-doped TiO2 arrays: Impact of annealing atmosphere on the degradation efficiency of methyl orange. Mater. Sci. Semicond. Process. 2014, 20, 1–6. [Google Scholar] [CrossRef]
- Wang, X.; Lim, T.-T. Solvothermal synthesis of C–N codoped TiO2 and photocatalytic evaluation for bisphenol A degradation using a visible-light irradiated LED photoreactor. Appl. Catal. B Environ. 2010, 100, 355–364. [Google Scholar] [CrossRef]
- Wu, D.; Wang, L. Low-temperature synthesis of anatase C-N-TiO2 photocatalyst with enhanced visible-light-induced photocatalytic activity. Appl. Surf. Sci. 2013, 271, 357–361. [Google Scholar] [CrossRef]
- Wang, M.; Han, J.; Hu, Y.; Guo, R. Mesoporous C, N-codoped TiO2 hybrid shells with enhanced visible light photocatalytic performance. RSC Adv. 2017, 7, 15513–15520. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhang, Y.; Zhou, L.; Li, X.; Guo, X. In situ C,N-codoped mesoporous TiO2 nanocrystallites with high surface areas and worm-like structure for efficient photocatalysis. J. Porous Mater. 2018, 25, 571–579. [Google Scholar] [CrossRef]
- Ohtani, B. Photocatalysis A to Z—What we know and what we do not know in a scientific sense. J. Photochem. Photobiol. C Photochem. Rev. 2010, 11, 157–178. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; Jing, W.; Chen, J.; Zhang, S.; Zhu, Y.; Xiong, J. High reusability and durability of carbon-doped TiO2/carbon nanofibrous film as visible-light-driven photocatalyst. J. Mater. Sci. 2019, 54, 3795–3804. [Google Scholar] [CrossRef]
- Lavand, A.B.; Bhatu, M.N.; Malghe, Y.S. Visible light photocatalytic degradation of malachite green using modified titania. J. Mater. Res. Technol. 2019, 8, 299–308. [Google Scholar] [CrossRef]
- Fang, Y.; Liu, Y.; Qi, L.; Xue, Y.; Li, Y. 2D graphdiyne: An emerging carbon material. Chem. Soc. Rev. 2022, 51, 2681–2709. [Google Scholar] [CrossRef]
- Zheng, Z.; Xue, Y.; Li, Y. A new carbon allotrope: Graphdiyne. Trends Chem. 2022, 4, 754–768. [Google Scholar] [CrossRef]
- Wang, W.; Chen, M.; Huang, D.; Zeng, G.; Zhang, C.; Lai, C.; Wang, Z. An overview on nitride and nitrogen-doped photocatalysts for energy and environmental applications. Compos. Part B Eng. 2019, 172, 704–723. [Google Scholar] [CrossRef]
- Ansari, S.A.; Khan, M.M.; Ansari, M.O.; Cho, M.H. Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. N. J. Chem. 2016, 40, 3000–3009. [Google Scholar] [CrossRef]
- Gomathi Devi, L.; Kavitha, R. Review on modified N–TiO2 for green energy applications under UV/visible light: Selected results and reaction mechanisms. RSC Adv. 2014, 4, 28265–28299. [Google Scholar] [CrossRef]
- Samokhvalov, A. Hydrogen by photocatalysis with nitrogen codoped titanium dioxide. Renew. Sustain. Energy Rev. 2017, 72, 981–1000. [Google Scholar] [CrossRef]
- Peng, F.; Cai, L.; Yu, H.; Wang, H.; Yang, J. Synthesis and characterization of substitutional and interstitial nitrogen-doped titanium dioxides with visible light photocatalytic activity. J. Solid State Chem. 2008, 181, 130–136. [Google Scholar] [CrossRef]
- Sacco, O.; Stoller, M.; Vaiano, V.; Ciambelli, P.; Chianese, A.; Sannino, D. Photocatalytic degradation of organic dyes under visible light on N-doped TiO2 photocatalysts. Int. J. Photoenergy 2012, 2012, 626759. [Google Scholar] [CrossRef] [Green Version]
- Thambiliyagodage, C.; Usgodaarachchi, L. Photocatalytic activity of N, Fe and Cu co-doped TiO2 nanoparticles under sunlight. Curr. Res. Green Sustain. Chem. 2021, 4, 100186. [Google Scholar] [CrossRef]
- Preethi, L.K.; Antony, R.P.; Mathews, T.; Walczak, L.; Gopinath, C.S. A study on doped heterojunctions in TiO2 nanotubes: An efficient photocatalyst for solar water splitting. Sci. Rep. 2017, 7, 14314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirivallop, A.; Areerob, T.; Chiarakorn, S. Enhanced visible light photocatalytic activity of N and Ag doped and co-doped TiO2 synthesized by using an in-situ solvothermal method for gas phase ammonia removal. Catalysts 2020, 10, 251. [Google Scholar] [CrossRef]
- Xu, X.; Song, W. Enhanced H2 production activity under solar irradiation over N-doped TiO2 prepared using pyridine as a precursor: A typical sample of N-doped TiO2 series. Mater. Technol. 2017, 32, 52–63. [Google Scholar] [CrossRef]
- Ariza-Tarazona, M.C.; Villarreal-Chiu, J.F.; Barbieri, V.; Siligardi, C.; Cedillo-González, E.I. New strategy for microplastic degradation: Green photocatalysis using a protein-based porous N-TiO2 semiconductor. Ceram. Int. 2019, 45, 9618–9624. [Google Scholar] [CrossRef]
- Cheng, Z.-L.; Han, S. Preparation and photoelectrocatalytic performance of N-doped TiO2/NaY zeolite membrane composite electrode material. Water Sci. Technol. 2016, 73, 486–492. [Google Scholar] [CrossRef]
- Marques, J.; Gomes, T.D.; Forte, M.A.; Silva, R.F.; Tavares, C.J. A new route for the synthesis of highly-active N-doped TiO2 nanoparticles for visible light photocatalysis using urea as nitrogen precursor. Catal. Today 2019, 326, 36–45. [Google Scholar] [CrossRef]
- Cao, Y.; Xing, Z.; Shen, Y.; Li, Z.; Wu, X.; Yan, X.; Zhou, W. Mesoporous black Ti3+/N-TiO2 spheres for efficient visible-light-driven photocatalytic performance. Chem. Eng. J. 2017, 325, 199–207. [Google Scholar] [CrossRef]
- Xing, X.; Du, Z.; Zhuang, J.; Wang, D. Removal of ciprofloxacin from water by nitrogen doped TiO2 immobilized on glass spheres: Rapid screening of degradation products. J. Photochem. Photobiol. A Chem. 2018, 359, 23–32. [Google Scholar] [CrossRef]
- Mohammadalipour, Z.; Rahmati, M.; Khataee, A.; Moosavi, M.A. Differential effects of N-TiO2 nanoparticle and its photo-activated form on autophagy and necroptosis in human melanoma A375 cells. J. Cell. Physiol. 2020, 235, 8246–8259. [Google Scholar] [CrossRef]
- Zangeneh, H.; Mousavi, S.A.; Eskandari, P. Comparison the visible photocatalytic activity and kinetic performance of amino acids (non-metal doped) TiO2 for degradation of colored wastewater effluent. Mater. Sci. Semicond. Process. 2022, 140, 106383. [Google Scholar] [CrossRef]
- Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269–271. [Google Scholar] [CrossRef]
- Umebayashi, T.; Yamaki, T.; Tanaka, S.; Asai, K. Visible light-induced degradation of methylene blue on S-doped TiO2. Chem. Lett. 2003, 32, 330–331. [Google Scholar] [CrossRef]
- Ho, W.; Jimmy, C.Y.; Lee, S. Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity. J. Solid State Chem. 2006, 179, 1171–1176. [Google Scholar] [CrossRef]
- Niu, Y.; Xing, M.; Tian, B.; Zhang, J. Improving the visible light photocatalytic activity of nano-sized titanium dioxide via the synergistic effects between sulfur doping and sulfation. Appl. Catal. B Environ. 2012, 115, 253–260. [Google Scholar] [CrossRef]
- Bakar, S.A.; Ribeiro, C. An insight toward the photocatalytic activity of S doped 1-D TiO2 nanorods prepared via novel route: As promising platform for environmental leap. J. Mol. Catal. A Chem. 2016, 412, 78–92. [Google Scholar] [CrossRef]
- Yan, X.; Yuan, K.; Lu, N.; Xu, H.; Zhang, S.; Takeuchi, N.; Kobayashi, H.; Li, R. The interplay of sulfur doping and surface hydroxyl in band gap engineering: Mesoporous sulfur-doped TiO2 coupled with magnetite as a recyclable, efficient, visible light active photocatalyst for water purification. Appl. Catal. B Environ. 2017, 218, 20–23. [Google Scholar] [CrossRef]
- Lv, Y.; Yuan, K.; Lu, N.; Xu, H.; Zhang, S.; Takeuchi, N.; Li, R. P-doped TiO2 nanoparticles film coated on ground glass substrate and the repeated photodegradation of dye under solar light irradiation. Appl. Surf. Sci. 2011, 257, 5715–5719. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Y.; Zhou, J.; Wang, K.; Zheng, Y.Z.; Tao, X. Uniformly assembling n-type metal oxide nanostructures (TiO2 nanoparticles and SnO2 nanowires) onto P doped g-C3N4 nanosheets for efficient photocatalytic water splitting. Appl. Catal. B Environ. 2020, 278, 119301. [Google Scholar] [CrossRef]
- Zhang, G.; Ji, S.; Zhang, Y.; Wei, Y. Facile synthesis of pn heterojunction of phosphorus doped TiO2 and BiOI with enhanced visible-light photocatalytic activity. Solid State Commun. 2017, 259, 34–39. [Google Scholar] [CrossRef]
- Gopal, N.O.; Lo, H.H.; Ke, T.F.; Lee, C.H.; Chou, C.C.; Wu, J.D.; Ke, S.C. Visible light active phosphorus-doped TiO2 nanoparticles: An EPR evidence for the enhanced charge separation. J. Phys. Chem. C 2012, 116, 16191–16197. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, J.; Dong, C.L.; Ren, J.; Huang, Y.C.; Zhao, D.; Yang, D. Red phosphorus decorated and doped TiO2 nanofibers for efficient photocatalytic hydrogen evolution from pure water. Appl. Catal. B Environ. 2019, 255, 117764. [Google Scholar] [CrossRef]
- Peng, Y.; He, J.; Liu, Q.; Sun, Z.; Yan, W.; Pan, Z.; Wei, S. Impurity concentration dependence of optical absorption for phosphorus-doped anatase TiO2. J. Phys. Chem. C 2011, 115, 8184–8188. [Google Scholar] [CrossRef]
- Olhero, S.M.; Ganesh, I.; Torres, P.M.; Ferreira, J.M. Surface passivation of MgAl2O4 spinel powder by chemisorbing H3PO4 for easy aqueous processing. Langmuir 2008, 24, 9525–9530. [Google Scholar] [CrossRef] [PubMed]
- Mendiola-Alvarez, S.Y.; Hernández-Ramírez, A.; Guzmán-Mar, J.L.; Maya-Treviño, M.L.; Caballero-Quintero, A.; Hinojosa-Reyes, L. A novel P-doped Fe2O3-TiO2 mixed oxide: Synthesis, characterization and photocatalytic activity under visible radiation. Catal. Today. 2019, 328, 91–98. [Google Scholar] [CrossRef]
- Xia, Y.; Jiang, Y.; Li, F.; Xia, M.; Xue, B.; Li, Y. Effect of calcined atmosphere on the photocatalytic activity of P-doped TiO2. Appl. Surf. Sci. 2014, 289, 306–315. [Google Scholar] [CrossRef]
- Li, F.; Jiang, Y.; Xia, M.; Sun, M.; Xue, B.; Liu, D.; Zhang, X. Effect of the P/Ti ratio on the visible-light photocatalytic activity of P-doped TiO2. J. Phys. Chem. C 2009, 113, 18134–18141. [Google Scholar] [CrossRef]
- Valentin, C.; Pacchioni, G. Trends in non-metal doping of anatase TiO2: B, C, N and F. Catal. Today 2013, 206, 12–18. [Google Scholar] [CrossRef]
- Dozzi, M.V.; Selli, E. Doping TiO2 with p-block elements: Effects on photocatalytic activity. J. Photochem. Photobiol. C Photochem. Rev. 2013, 14, 13–28. [Google Scholar] [CrossRef]
- Kuo, C.-Y.; Jheng, H.-K.; Syu, S.-E. Effect of non-metal doping on the photocatalytic activity of titanium dioxide on the photodegradation of aqueous bisphenol A. Environ. Technol. 2021, 42, 1603–1611. [Google Scholar] [CrossRef]
- Zheng, J.; Liu, Z.; Liu, X.; Yan, X.; Li, D.; Chu, W. Facile hydrothermal synthesis and characteristics of B-doped TiO2 hybrid hollow microspheres with higher photo-catalytic activity. J. Alloys Compd. 2011, 509, 3771–3776. [Google Scholar] [CrossRef]
- Bessegato, G.G.; Cardoso, J.C.; Zanoni, M.V.B. Enhanced photoelectrocatalytic degradation of an acid dye with boron-doped TiO2 nanotube anodes. Catal. Today 2015, 240, 100–106. [Google Scholar] [CrossRef]
- Yadav, V.; Verma, P.; Sharma, H.; Tripathy, S.; Saini, V.K. Photodegradation of 4-nitrophenol over B-doped TiO2 nanostructure: Effect of dopant concentration, kinetics, and mechanism. Environ. Sci. Pollut. Res. 2020, 27, 10966–10980. [Google Scholar] [CrossRef]
- Gao, Q.; Si, F.; Zhang, S.; Fang, Y.; Chen, X.; Yang, S. Hydrogenated F-doped TiO2 for photocatalytic hydrogen evolution and pollutant degradation. Int. J. Hydrogen Energy 2019, 44, 8011–8019. [Google Scholar] [CrossRef]
- Filippatos, P.-P.; Soultati, A.; Kelaidis, N.; Petaroudis, C.; Alivisatou, A.A.; Drivas, C.; Chroneos, A. Preparation of hydrogen, fluorine and chlorine doped and co-doped titanium dioxide photocatalysts: A theoretical and experimental approach. Sci. Rep. 2021, 11, 5700. [Google Scholar] [CrossRef]
- Samsudin, E.M.; Hamid, S.B.A. Effect of band gap engineering in anionic-doped TiO2 photocatalyst. Appl. Surf. Sci. 2017, 391, 326–336. [Google Scholar] [CrossRef]
- Yu, W.; Liu, X.; Pan, L.; Li, J.; Liu, J.; Zhang, J.; Li, P.L.; Chen, C.; Sun, Z. Enhanced visible light photocatalytic degradation of methylene blue by F-doped TiO2. Appl. Surf. Sci. 2014, 319, 107–112. [Google Scholar] [CrossRef]
- Wang, X.-K.; Wang, C.; Jiang, W.Q.; Guo, W.L.; Wang, J.G. Sonochemical synthesis and characterization of Cl-doped TiO2 and its application in the photodegradation of phthalate ester under visible light irradiation. Chem. Eng. J. 2012, 189, 288–294. [Google Scholar] [CrossRef]
- Long, M.; Cai, W.; Chen, H.; Xu, J. Preparation, characterization and photocatalytic activity of visible light driven chlorine-doped TiO2. Front. Chem. China 2007, 2, 278–282. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, S.; Liang, Y.; Cui, Z.; Yang, X.; Liang, C.; Inoue, A. Synthesis of Br-doped TiO2 hollow spheres with enhanced photocatalytic activity. J. Nanoparticle Res. 2017, 19, 72. [Google Scholar] [CrossRef]
- Shen, Y.; Xiong, T.; Du, H.; Jin, H.; Shang, J.; Yang, K. Investigation of Br–N Co-doped TiO2 photocatalysts: Preparation and photocatalytic activities under visible light. J. Sol-Gel Sci. Technol. 2009, 52, 41–48. [Google Scholar] [CrossRef]
- Luo, H.; Takata, T.; Lee, Y.; Zhao, J.; Domen, K.; Yan, Y. Photocatalytic activity enhancing for titanium dioxide by co-doping with bromine and chlorine. Chem. Mater. 2004, 16, 846–849. [Google Scholar] [CrossRef]
- Barkul, R.P.; Patil, M.K.; Patil, S.M.; Shevale, V.B.; Delekar, S.D. Sunlight-assisted photocatalytic degradation of textile effluent and Rhodamine B by using iodine doped TiO2 nanoparticles. J. Photochem. Photobiol. A Chem. 2017, 349, 138–147. [Google Scholar] [CrossRef]
- Gai, H.; Wang, H.; Liu, L.; Feng, B.; Xiao, M.; Tang, Y.; Qu, X.; Song, H.; Huang, T. Potassium and iodide codoped mesoporous titanium dioxide for enhancing photocatalytic degradation of phenolic compounds. Chem. Phys. Lett. 2021, 767, 138367. [Google Scholar] [CrossRef]
- Van Viet, P.; Huy, T.H.; Sang, T.T.; Nguyet, H.M.; Thi, C.M. One-pot hydrothermal synthesis of Si doped TiO2 nanotubes from commercial material sources for visible light-driven photocatalytic activity. Mater. Res. Express 2019, 6, 055006. [Google Scholar] [CrossRef]
- Kim, M.G.; Kang, J.M.; Lee, J.E.; Kim, K.S.; Kim, K.H.; Cho, M.; Lee, S.G. Effects of calcination temperature on the phase composition, photocatalytic degradation, and virucidal activities of TiO2 nanoparticles. ACS Omega 2021, 6, 10668–10678. [Google Scholar] [CrossRef]
- Gaya, U.I.; Abdullah, A.H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. J. Photochem. Photobiol. C Photochem. Rev. 2008, 9, 1–12. [Google Scholar] [CrossRef]
- Guettaï, N.; Amar, H.A. Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part I: Parametric study. Desalination 2005, 185, 427–437. [Google Scholar] [CrossRef]
- Kinsinger, N.M.; Dudchenko, A.; Wong, A.; Kisailus, D. Synergistic effect of pH and phase in a nanocrystalline titania photocatalyst. ACS Appl. Mater. Interfaces 2013, 5, 6247–6254. [Google Scholar] [CrossRef]
- Sun, J.; Wang, X.; Sun, J.; Sun, R.; Sun, S.; Qiao, L. Photocatalytic degradation and kinetics of Orange G using nano-sized Sn (IV)/TiO2/AC photocatalyst. J. Mol. Catal. A Chem. 2006, 260, 241–246. [Google Scholar] [CrossRef]
- Sun, J.; Qiao, L.; Sun, S.; Wang, G. Photocatalytic degradation of Orange G on nitrogen-doped TiO2 catalysts under visible light and sunlight irradiation. J. Hazard. Mater. 2008, 155, 312–319. [Google Scholar] [CrossRef]
- Baran, W.; Makowski, A.; Wardas, W. The effect of UV radiation absorption of cationic and anionic dye solutions on their photocatalytic degradation in the presence TiO2. Dye. Pigment. 2008, 76, 226–230. [Google Scholar] [CrossRef]
- Nhu, V.T.T.; QuangMinh, D.; Duy, N.N.; QuocHien, N. Photocatalytic Degradation of Azo Dye (Methyl Red) In Water under Visible Light Using AgNi/TiO2 Sythesized by γ Irradiation Method. Int. J. Environ. Agric. Biotechnol. (IJEAB) 2017, 2, 529–538. [Google Scholar]
- Kovalev, I.S. Stealth moths: The multi-plumed wings of the moth alucita hexadactyla may decrease the intensity of their echo to simulated bat echolocation cries. Entomol. News 2016, 126, 204–212. [Google Scholar] [CrossRef]
- Ali, A.H. Study on the photocatalytic degradation of indigo carmine dye by TiO2 photocatalyst. J. Kerbala Univ. 2013, 11, 145–153. [Google Scholar]
- Viswanathan, B. Photocatalytic degradation of dyes: An overview. Curr. Catal. 2018, 7, 99–121. [Google Scholar] [CrossRef]
- Đokić, V.R.; Vujović, J.; Marinković, A.; Petrović, R.; Janaćković, Đ.; Onjia, A.; Mijin, D. A study of the photocatalytic degradation of the textile dye CI Basic Yellow 28 in water using a P160 TiO2-based catalyst. J. Serb. Chem. Soc. 2012, 77, 1747–1757. [Google Scholar] [CrossRef]
- Mohabansi, N.; Patil, V.; Yenkie, N. A comparative study on photo degradation of methylene blue dye effluent by advanced oxidation process by using TiO2/ZnO photo catalyst. Rasayan J. Chem. 2011, 4, 814–819. [Google Scholar]
- Samsudin, E.M.; Goh, S.N.; Wu, T.Y.; Ling, T.T.; Hamid, S.A.; Juan, J.C. Evaluation on the photocatalytic degradation activity of reactive blue 4 using pure anatase nano-TiO2. Sains Malays. 2015, 44, 1011–1019. [Google Scholar] [CrossRef]
- Ram, C.; Pareek, R.K.; Singh, V. Photocatalytic degradation of textile dye by using titanium dioxide nanocatalyst. Int. J. Theor. Appl. Sci. 2012, 4, 82–88. [Google Scholar]
- Meeti, M.; Sharma, T. Photo catalytic degradation of two commercial dyes in aqueous phase using photo catalyst TiO2. Adv. Appl. Sci. Res. 2012, 3, 849–853. [Google Scholar]
- Nagaraja, R.; Kottam, N.; Girija, C.R.; Nagabhushana, B.M. Photocatalytic degradation of Rhodamine B dye under UV/solar light using ZnO nanopowder synthesized by solution combustion route. Powder Technol. 2012, 215, 91–97. [Google Scholar] [CrossRef]
- Choi, Y.; Koo, M.S.; Bokare, A.D.; Kim, D.H.; Bahnemann, D.W.; Choi, W. Sequential process combination of photocatalytic oxidation and dark reduction for the removal of organic pollutants and Cr (VI) using Ag/TiO2. Environ. Sci. Technol. 2017, 51, 3973–3981. [Google Scholar] [CrossRef]
- Guillard, C.; Disdier, J.; Monnet, C.; Dussaud, J.; Malato, S.; Blanco, J.; Maldonado, M.; Herrmann, J.-M. Solar efficiency of a new deposited titania photocatalyst: Chlorophenol, pesticide and dye removal applications. Appl. Catal. B Environ. 2003, 46, 319–332. [Google Scholar] [CrossRef]
- Zhang, A.-Y.; Wang, W.K.; Pei, D.N.; Yu, H.Q. Degradation of refractory pollutants under solar light irradiation by a robust and self-protected ZnO/CdS/TiO2 hybrid photocatalyst. Water Res. 2016, 92, 78–86. [Google Scholar] [CrossRef] [Green Version]
- Azad, K.; Gajanan, P. Photodegradation of methyl orange in aqueous solution by the visible light active Co: La: TiO2 nanocomposite. Chem. Sci. J. 2017, 8, 1000164. [Google Scholar]
- Bhandari, S.; Vardia, J.; Malkani, R.K.; Ameta, S.C. Effect of transition metal ions on photocatalytic activity of ZnO in bleaching of some dyes. Toxicol. Environ. Chem. 2006, 88, 35–44. [Google Scholar] [CrossRef]
- Kumar, A.; Pandey, G. A review on the factors affecting the photocatalytic degradation of hazardous materials. Mater. Sci. Eng. Int. J. 2017, 1, 106–114. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Hitkari, G.; Gautam, M.; Singh, S.; Pandey, G. Synthesis, characterization and application of Cu-TiO2 nanaocomposites in photodegradation of methyl red (MR). Int. Adv. Res. J. Sci. Eng. Technol. 2015, 2, 50–55. [Google Scholar] [CrossRef]
- Hasanpour, M.; Hatami, M. Photocatalytic performance of aerogels for organic dyes removal from wastewaters: Review study. J. Mol. Liq. 2020, 309, 113094. [Google Scholar] [CrossRef]
- Hinojosa–Reyes, M.; Camposeco–Solis, R.; Ruiz, F.; Rodríguez–González, V.; Moctezuma, E. Promotional effect of metal doping on nanostructured TiO2 during the photocatalytic degradation of 4-chlorophenol and naproxen sodium as pollutants. Mater. Sci. Semicond. Process. 2019, 100, 130–139. [Google Scholar] [CrossRef]
- Vorontsov, A.; Kabachkov, E.N.; Balikhin, I.L.; Kurkin, E.N.; Troitskii, V.N.; Smirniotis, P.G. Correlation of surface area with photocatalytic activity of TiO2. J. Adv. Oxid. Technol. 2018, 21, 127–137. [Google Scholar] [CrossRef]
- Ameen, S.; Seo, H.K.; Akhtar, M.S.; Shin, H.S. Novel graphene/polyaniline nanocomposites and its photocatalytic activity toward the degradation of rose Bengal dye. Chem. Eng. J. 2012, 210, 220–228. [Google Scholar] [CrossRef]
- Cassano, A.E.; Alfano, O.M. Reaction engineering of suspended solid heterogeneous photocatalytic reactors. Catal. Today 2000, 58, 167–197. [Google Scholar] [CrossRef]
- Muruganandham, M.; Swaminathan, M. TiO2–UV photocatalytic oxidation of Reactive Yellow 14: Effect of operational parameters. J. Hazard. Mater. 2006, 135, 78–86. [Google Scholar] [CrossRef]
- Elaziouti, A.; Ahmed, B. ZnO-assisted photocatalytic degradation of congo Red and benzopurpurine 4B in aqueous solution. J. Chem. Eng. Process. Technol. 2011, 2, 1000106. [Google Scholar]
- Rafiq, A.; Ikram, M.; Ali, S.; Niaz, F.; Khan, M.; Khan, Q.; Maqbool, M. Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution. J. Ind. Eng. Chem. 2021, 97, 111–128. [Google Scholar] [CrossRef]
- Kaur, S.; Singh, V. TiO2 mediated photocatalytic degradation studies of Reactive Red 198 by UV irradiation. J. Hazard. Mater. 2007, 141, 230–236. [Google Scholar] [CrossRef]
- Shabir, M.; Yasin, M.; Hussain, M.; Shafiq, I.; Akhter, P.; Nizami, A.-S.; Jeon, B.-H.; Park, Y.-K. A review on recent advances in the treatment of dye-polluted wastewater. J. Ind. Eng. Chem. 2022, 112, 1–19. [Google Scholar] [CrossRef]
- Muruganandham, M.; Swaminathan, M. Solar photocatalytic degradation of a reactive azo dye in TiO2-suspension. Solar Energy Mater. Sol. Cells 2004, 81, 439–457. [Google Scholar] [CrossRef]
- Litter, M.; Navio, J.A. Photocatalytic properties of iron-doped titania semiconductors. J. Photochem. Photobiol. A Chem. 1996, 98, 171–181. [Google Scholar] [CrossRef]
- Leung, D.Y.; Fu, X.; Wang, C.; Ni, M.; Leung, M.K.; Wang, X.; Fu, X. Hydrogen production over titania-based photocatalysts. ChemSusChem 2010, 3, 681–694. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Akiyama, M.; Abe, E.; Imai, I. High-efficiency dye-sensitized solar cell based on a nitrogen-doped nanostructured titania electrode. Nano Lett. 2005, 5, 2543–2547. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, M.; Ismail, A.A.; Sanad, M. Developing a cost-effective synthesis of active iron oxide doped titania photocatalysts loaded with palladium, platinum or silver nanoparticles. Chem. Eng. J. 2012, 187, 96–103. [Google Scholar] [CrossRef]
- Han, X.; Kuang, Q.; Jin, M.; Xie, Z.; Zheng, L. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 2009, 131, 3152–3153. [Google Scholar] [CrossRef]
- Ikem, V.O.; Menner, A.; Bismarck, A. High-porosity macroporous polymers sythesized from titania-particle-stabilized medium and high internal phase emulsions. Langmuir 2010, 26, 8836–8841. [Google Scholar] [CrossRef]
- Bartl, M.H.; Boettcher, S.W.; Frindell, K.L.; Stucky, G.D. 3-D molecular assembly of function in titania-based composite material systems. Acc. Chem. Res. 2005, 38, 263–271. [Google Scholar] [CrossRef]
- Lindstrom, H.; Wootton, R.; Iles, A. High surface area titania photocatalytic microfluidic reactors. AICHE J. 2007, 53, 695–702. [Google Scholar] [CrossRef]
- Peiris, S.; de Silva, H.B.; Ranasinghe, K.N.; Bandara, S.V.; Perera, I.R. Recent development and future prospects of TiO2 photocatalysis. J. Chin. Chem. Soc. 2021, 68, 738–769. [Google Scholar] [CrossRef]
Year of Study | Type of Non-Metal Dopants | Synthesis Route/Method | Type of Dye | Characterization Techniques | Ref. |
---|---|---|---|---|---|
2017 | C-TiO2 | Hydrothermal | Methylene blue, Rhodamine B, p nitrophenol | XRD, SEM, TEM, STEM, XPS, UV-vis | [56] |
2019 | C-TiO2 | Hydrothermal | Methylene blue | XRD, FTIR, N2 adsorption-desorption isotherm, SEM, UV-vis | [57] |
2020 | C-TiO2 | Sol-gel | Methylene blue | EDX, UV-vis DRS analysis, SEM | [58] |
2020 | C-TiO2 double-layer hollow microsphere | Hydrolysis of thermal expandable microsphere | Rhodamine B | XRD, FTIR, TGA, SEM, Raman N2 adsorption-desorption isotherm, XPS, UV-vis | [59] |
2021 | Carbon-doped TiO2 nanoparticles | Sol-gel | Methylene blue | XRD, TEM, XPS, DRS,138 | [60] |
2022 | C-TiO2 nanoflakes (C-TNFs) | Facile hydrothermal | Methylene blue | XRD, FTIR, SEM, UV-vis | [40] |
2007 | N-TiO2 | Microemulsion-hydrothermal | Rhodamine B | XRD, Raman, XPS, PL emission spectra | [61] |
2010 | N-TiO2 | Sol-gel/acidic media | Lindane | XRD, SEM, TEM, Raman, XPS, GC-MS | [62] |
2015 | N and C-co-doped porous TiO2 nanofibers | Electrospinning and calcination | Methylene blue | XRD, FESEM, TEM, XPS, DRS, | [63] |
2017 | N-TiO2 | Solvothermal | Rhodamine B | XRD, SEM, TEM, BET, XPS, UV-vis | [64] |
2020 | TiN/N-doped TiO2 composites | Sputtering process | Methylene blue | Raman, XPS, UV-vis | [65] |
2020 | C-N-TiO2 composite fibers | Hydrolysis and calcination | Rhodamine B | XRD, SEM, TEM, FTIR, Raman, XPS, UV-vis | [66] |
2021 | N-TiO2 nanotubes | Hydrothermal | Methyl orange | XRD, SEM, XPS, UV-vis | [67] |
2009 | S-TiO2 | Hydrothermal | Methylene orange | XRD, TEM | [68] |
2015 | S-TiO2 | Wet-impregnation method. | Humic acid Humic acid | EDX, SEM, EEM fluorescence | [69] |
2016 | (S–TiO2), (N–S–TiO2) | Sol-gel | Phenol and MB | BET, FESEM, FTIR, XPS, DRS | [70] |
2011 | S-TiO2, N-S-TiO2 | Sol-gel | Methyl orange | XRD, TEM, UV-vis DRS | [71] |
2021 | NS/TiO2 | Sol-gel | Methylene blue, methyl red | XRD, BET, SEM, FTIR, Raman, UV-vis | [21] |
P/TiO2 | Hydrothermal/sol-gel | [72] | |||
Ag-P/TiO2 nanofibers | One-pot electrospinning | Methylene blue | XRD, XPS, FE-SEM, TEM, UV-vis | [73] | |
2022 | P/TiO2/MWCNTs | Sol-gel | Methylene blue | XRD, FE-SEM, FTIR, UV-vis | [74] |
2017 | Si/TiO2 | Solvothermal | Methyl orange | XRD, SEM, EDS, BET, XPS | [75] |
Category of Dye | Features | Fiber | Pollutant | Dyes Fixation |
---|---|---|---|---|
Acidic | Water-soluble anionic compounds | Wool, nylon, cotton blends, acrylic, and protein fibers | Organic acids, unfixed dyes, color | 80–93 |
Basic | Water-soluble, applied in weakly acidic dye baths, very bright dyes | Acrylic, cationic, polyester, nylon, cellulosic, and protein fibers | NA | 97–98 |
Direct | Water-soluble, anionic compounds, applied without mordant | Cotton, rayon, and other cellulosic fibers | Surfactant, defoamer, leveling and retarding agents, finish, diluents | 70–95 |
Dispersive | Insoluble in water | Polyester, acetate, modacrylic, nylon, polyester, triacetate, and olefin fibers | Phosphates, defoamer, lubricants, dispersants, diluents | 80–92 |
Val | Oldest dyes, chemically complex, water-insoluble | Cotton, wool, and other cellulosic fibers | Alkali, oxidizing agents, reducing agents, color | 60–70 |
Strategies | Methods | Advantages | Disadvantages | Ref. |
---|---|---|---|---|
Chemical | Electro-Fenton reagent Ozonation Photocatalysis | Effective decolorization of soluble or insoluble dyes No sludge production initiates and accelerates Azo bond cleavages | No diminution of COD values by extra costs Sludge formation Formation of byproducts release of aromatic amines High costs | [108,111] |
Physical | Ion exchange Adsorption Filtration/coagulation | Good removal of wide variety of dyes Regeneration No absorbent loss Good elimination of insoluble dyes Low-pressure process | Non-selective to absorbate Non-effective for all dyes High costs of sludge treatment Quality not high enough for re-using the flood | [103,104,105] |
Biological | Enzymes Microbes Aerobic and anaerobic degradation Biosorption | Reduces the amount of waste that is delivered to landfills or incinerators Manufacturing requires less energy When it breaks down, it releases less hazardous compounds | Low biodegradability of dye Salt concentration stays constant | [98] |
Methods | TiO2 Precursor | Carbon Source | References |
---|---|---|---|
Chemical bath deposition (CBD) | Titanium isopropoxide (TTIP) | Melamine borate | [122] |
Sol-gel | Titanium isopropoxide (TTIP) | Microcrystalline cellulose (MCC) | [58] |
Hydrothermal | TiC | - | [123] |
Sol-gel | TTIP, TBOT, TiCl4, TiCl3 | Ethanolamine (ETA), glycine, polyacrylonitrile (PAN), polystyrene (PS), starch, TBOT | [124,125] |
Solvothermal treatment and calcinations | TiCl4 | Alcohols (benzyl alcohol and anhydrous ethanol) | [126] |
Solvothermal | TTIP | Acetone | [127] |
Electrospinning followed by heat treatment | TTIP | Acetic acid | [128] |
Hydrolysis | TBOT | Glucose | [129] |
Sol-gel | Titanium butoxide | - | [30] |
Hydrothermal route | - | Various carbon sources | [42] |
Year of Study | Method | TiO2 Precursor | Sulfur Source | Ref. |
---|---|---|---|---|
2003 | Oxidative heating | Anatase | TiS2 | [159] |
2006 | Low-temp hydrothermal | Anatase | TiS2 powder with HCl solution | [160] |
2012 | Solvothermal | TBOT | Potassium per sulfate | [161] |
2016 | Free oxidant peroxide method | Anatase | Thiourea (ThU) | [162] |
2018 | HT | Titanium sulfate (TiOSO4) | TiOSO4 | [163] |
Year of Study | Method | TiO2 Precursor | Fluorine Source | Ref. |
2020 | Oxidative annealing | Titanium isopropoxide | NH4F | [181] |
2019 | Physicochemical | TTIP | NH4F | [180] |
2017 | Sol-gel | Titanium isopropoxide | Trifluroacetic acid | [182] |
2014 | Sol-gel | Tetrabutyl titanate | NH4F | [183] |
Year of Study | Method | TiO2 Precursor | Chloride Source | Ref. |
2020 | Oxidative annealing | Titanium isopropoxide | NH4Cl | [181] |
2012 | Sonochemical synthesis | Tetraisopropyl titanate | NaCl | [184] |
2008 | Hydrolysis | Tetrabutyl titanate | HCl | [185] |
Year of Study | Method | TiO2 Precursor | Bromide Source | Ref. |
2017 | HT | TBOT | NH4Br | [186] |
2009 | Sol-gel | TBOT | Cetyl trimethyl Ammonium bromide (CTAB) | [187] |
2004 | HT | Titanium chloride | Hydrobromic acid | [188] |
Year of Study | Method | TiO2 Precursor | Iodide Source | Ref. |
2017 | Sol-gel | Titanium (IV) ter-butoxide | Potassium iodide | [189,190] |
Year of Study | Method | TiO2 Precursor | Silicon Source | Ref. |
---|---|---|---|---|
2019 | Hydrothermal | Commercial TiO2 | SiO2 commercial | [191] |
2017 | Solvothermal | Titanium oxysulfate | Tetraethoxysilane | [75] |
Dye Type | Light Source | Photocatalyst | pH Range | Optimum pH | Ref. |
---|---|---|---|---|---|
Orange G (OG) | UV | Sn/TiO2/Ac | 1.0–12.0 | 2.0 | [196] |
(OG) | Visible | N-TiO2 | 1.5–6.5 | 2.0 | [197] |
Bromo-cresol purple (BCP) | UV | TiO2 | 4.5 & 8.0 | 4.5 | [198,199] |
Methyl Red (MR) | Visible | 3%Ag+1.5%Ni-TiO2 | 3–10 | 4 | [199] |
Malachite Green (MC) | Sun light | Ni/MgFe2O4 | 2.0–10.0 | 4 | [200] |
Indigo Carmine (IC) | UV | TiO2 | 4.0–11.0 | 4 | [201] |
Textile dye (TD) | UV | TiO2 | 3.0–7.0 | 5 | [202] |
Basic Yellow 28 (BY28) | UV | TiO2 | 3.0–9.0 | 5 | [203] |
Methylene Blue (MB) | UV | TiO2ZnO | 1.0–6.0 | 2 | [204] |
Reactive Blue 4 (RB4) | UV | Anatase TiO2 | 3.0–13.0 | 3–7 | [205] |
Procion Yellow (PY) | UV | TiO2 | 2.0–10.0 | 7.8 | [206] |
Acid Orange (AO) | UV | WO3-TiO2 | 1.0–9.0 | 3 | [84] |
Methyl Orange (MO) | UV | TiO2 | 2.0–10.0 | 8 | [207] |
Rhodamine B (RhB) | UV | ZnO | 2.0–12.0 | 12 | [208] |
MO, RhB | UV | ZnO | 2.0–10.0 | Basic medium | [209] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhter, P.; Arshad, A.; Saleem, A.; Hussain, M. Recent Development in Non-Metal-Doped Titanium Dioxide Photocatalysts for Different Dyes Degradation and the Study of Their Strategic Factors: A Review. Catalysts 2022, 12, 1331. https://doi.org/10.3390/catal12111331
Akhter P, Arshad A, Saleem A, Hussain M. Recent Development in Non-Metal-Doped Titanium Dioxide Photocatalysts for Different Dyes Degradation and the Study of Their Strategic Factors: A Review. Catalysts. 2022; 12(11):1331. https://doi.org/10.3390/catal12111331
Chicago/Turabian StyleAkhter, Parveen, Abdullah Arshad, Aimon Saleem, and Murid Hussain. 2022. "Recent Development in Non-Metal-Doped Titanium Dioxide Photocatalysts for Different Dyes Degradation and the Study of Their Strategic Factors: A Review" Catalysts 12, no. 11: 1331. https://doi.org/10.3390/catal12111331
APA StyleAkhter, P., Arshad, A., Saleem, A., & Hussain, M. (2022). Recent Development in Non-Metal-Doped Titanium Dioxide Photocatalysts for Different Dyes Degradation and the Study of Their Strategic Factors: A Review. Catalysts, 12(11), 1331. https://doi.org/10.3390/catal12111331