Electro-Fenton-Based Technologies for Selectively Degrading Antibiotics in Aqueous Media
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemicals
3.2. Experimental Setup
3.3. Chemical Analysis
3.4. Microbiological Analysis
3.4.1. Toxicity
3.4.2. Antibiotic Activity
3.5. Short-Term Biochemical Oxygen Demand
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C.U.; Mohan, D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem. Rev. 2019, 119, 3510–3673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bampos, G.; Petala, A.; Frontistis, Z. Recent Trends in Pharmaceuticals Removal from Water Using Electrochemical Oxidation Processes. Environments 2021, 8, 85. [Google Scholar] [CrossRef]
- Gonzaga, I.M.D.; Moratalla, A.; Eguiluz, K.I.B.; Salazar-Banda, G.R.; Cañizares, P.; Rodrigo, M.A.; Saez, C. Novel Ti/RuO2IrO2 anode to reduce the dangerousness of antibiotic polluted urines by Fenton-based processes. Chemosphere 2021, 270, 129344. [Google Scholar] [CrossRef] [PubMed]
- Arslan-Alaton, I.; Caglayan, A.E. Toxicity and biodegradability assessment of raw and ozonated procaine penicillin G formulation effluent. Ecotoxicol. Environ. Saf. 2006, 63, 131–140. [Google Scholar] [CrossRef]
- El-Ghenymy, A.; Rodríguez, R.M.; Brillas, E.; Oturan, N.; Oturan, M.A. Electro-Fenton degradation of the antibiotic sulfanilamide with Pt/carbon-felt and BDD/carbon-felt cells. Kinetics, reaction intermediates, and toxicity assessment. Environ. Sci. Pollut. Res. 2014, 21, 8368–8378. [Google Scholar] [CrossRef]
- Goulart, L.A.; Moratalla, A.; Lanza, M.R.V.; Saez, C.; Rodrigo, M.A. Photocatalytic performance of Ti/MMO/ZnO at degradation of levofloxacin: Effect of pH and chloride anions. J. Electroanal. Chem. 2021, 880, 114894. [Google Scholar] [CrossRef]
- Paulus, G.K.; Hornstra, L.M.; Alygizakis, N.; Slobodnik, J.; Thomaidis, N.; Medema, G. The impact of on-site hospital wastewater treatment on the downstream communal wastewater system in terms of antibiotics and antibiotic resistance genes. Int. J. Hyg. Environ. Health 2019, 222, 635–644. [Google Scholar] [CrossRef]
- Hama Aziz, K.H.; Omer, K.M.; Mahyar, A.; Miessner, H.; Mueller, S.; Moeller, D. Application of Photocatalytic Falling Film Reactor to Elucidate the Degradation Pathways of Pharmaceutical Diclofenac and Ibuprofen in Aqueous Solutions. Coatings 2019, 9, 465. [Google Scholar] [CrossRef] [Green Version]
- Hama Aziz, K.H.; Miessner, H.; Mueller, S.; Kalass, D.; Moeller, D.; Khorshid, I.; Rashid, M.A.M. Degradation of pharmaceutical diclofenac and ibuprofen in aqueous solution, a direct comparison of ozonation, photocatalysis, and non-thermal plasma. Chem. Eng. J. 2017, 313, 1033–1041. [Google Scholar] [CrossRef]
- Cordeiro, S.G.; Ziem, R.; Schweizer, Y.A.; Costa, B.; Kuhn, D.; Haas, P.; Weber, A.C.; Heidrich, D.; Ethur, E.M.; Steffens, C.; et al. Degradation of micropollutant cephalexin by ultraviolet (UV) and assessment of residual antimicrobial activity of transformation products. Water Sci. Technol. 2021, 84, 374–383. [Google Scholar] [CrossRef]
- Mirzaei, A.; Chen, Z.; Haghighat, F.; Yerushalmi, L. Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes—A review. Chemosphere 2017, 174, 665–688. [Google Scholar] [CrossRef] [PubMed]
- Moratalla, Á.; Cotillas, S.; Lacasa, E.; Cañizares, P.; Rodrigo, M.A.; Sáez, C. Electrochemical Technologies to Decrease the Chemical Risk of Hospital Wastewater and Urine. Molecules 2021, 26, 6813. [Google Scholar] [CrossRef] [PubMed]
- Gonzaga, I.M.D.; Moratalla, A.; Eguiluz, K.I.B.; Salazar-Banda, G.R.; Cañizares, P.; Rodrigo, M.A.; Saez, C. Influence of the doping level of boron-doped diamond anodes on the removal of penicillin G from urine matrixes. Sci. Total Environ. 2020, 736, 139536. [Google Scholar] [CrossRef]
- Sordello, F.; Fabbri, D.; Rapa, L.; Minero, C.; Minella, M.; Vione, D. Electrochemical abatement of cefazolin: Towards a viable treatment for antibiotic-containing urine. J. Clean. Prod. 2021, 289, 125722. [Google Scholar] [CrossRef]
- Feng, L.; Serna-Galvis, E.A.; Oturan, N.; Giannakis, S.; Torres-Palma, R.A.; Oturan, M.A. Evaluation of process influencing factors, degradation products, toxicity evolution and matrix-related effects during electro-Fenton removal of piroxicam from waters. J. Environ. Chem. Eng. 2019, 7, 103400. [Google Scholar] [CrossRef]
- Bello, M.M.; Abdul Raman, A.A.; Asghar, A. A review on approaches for addressing the limitations of Fenton oxidation for recalcitrant wastewater treatment. Process Saf. Environ. Prot. 2019, 126, 119–140. [Google Scholar] [CrossRef]
- Liu, N.; Xie, H.; Wei, J.; Li, Y.; Wang, J.; Yu, N.; Zhao, N.; Zhang, L.; Chen, Z. Catalytic activity of a composite metal electrode catalyst for the degradation of real dyeing wastewater by a heterogeneous electro-Fenton process. J. Environ. Chem. Eng. 2019, 7, 102930. [Google Scholar] [CrossRef]
- Davarnejad, R.; Azizi, J. Alcoholic wastewater treatment using electro-Fenton technique modified by Fe2O3 nanoparticles. J. Environ. Chem. Eng. 2016, 4, 2342–2349. [Google Scholar] [CrossRef]
- Farshchi, M.E.; Aghdasinia, H.; Khataee, A. Modeling of heterogeneous Fenton process for dye degradation in a fluidized-bed reactor: Kinetics and mass transfer. J. Clean. Prod. 2018, 182, 644–653. [Google Scholar] [CrossRef]
- Anotai, J.; Su, C.-C.; Tsai, Y.-C.; Lu, M.-C. Effect of hydrogen peroxide on aniline oxidation by electro-Fenton and fluidized-bed Fenton processes. J. Hazard. Mater. 2010, 183, 888–893. [Google Scholar] [CrossRef]
- Pérez, J.F.; Llanos, J.; Sáez, C.; López, C.; Cañizares, P.; Rodrigo, M.A. The jet aerator as oxygen supplier for the electrochemical generation of H2O2. Electrochim. Acta 2017, 246, 466–474. [Google Scholar] [CrossRef]
- Yu, F.; Zhou, M.; Yu, X. Cost-effective electro-Fenton using modified graphite felt that dramatically enhanced on H2O2 electro-generation without external aeration. Electrochim. Acta 2015, 163, 182–189. [Google Scholar] [CrossRef]
- Pérez, J.F.; Sáez, C.; Llanos, J.; Cañizares, P.; López, C.; Rodrigo, M.A. Improving the Efficiency of Carbon Cloth for the Electrogeneration of H2O2: Role of Polytetrafluoroethylene and Carbon Black Loading. Ind. Eng. Chem. Res. 2017, 56, 12588–12595. [Google Scholar] [CrossRef]
- Pérez, J.F.; Llanos, J.; Sáez, C.; López, C.; Cañizares, P.; Rodrigo, M.A. Towards the scale up of a pressurized-jet microfluidic flow-through reactor for cost-effective electro-generation of H2O2. J. Clean. Prod. 2019, 211, 1259–1267. [Google Scholar] [CrossRef]
- Yu, F.; Chen, Y.; Pan, Y.; Yang, Y.; Ma, H. A cost-effective production of hydrogen peroxide via improved mass transfer of oxygen for electro-Fenton process using the vertical flow reactor. Sep. Purif. Technol. 2020, 241, 116695. [Google Scholar] [CrossRef]
- Ridruejo, C.; Centellas, F.; Cabot, P.L.; Sirés, I.; Brillas, E. Electrochemical Fenton-based treatment of tetracaine in synthetic and urban wastewater using active and non-active anodes. Water Res. 2018, 128, 71–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panizza, M.; Cerisola, G. Direct and mediated anodic oxidation of organic pollutants. Chem. Rev. 2009, 109, 6541–6569. [Google Scholar] [CrossRef]
- Yu, X.; Zhou, M.; Hu, Y.; Groenen Serrano, K.; Yu, F. Recent updates on electrochemical degradation of bio-refractory organic pollutants using BDD anode: A mini review. Environ. Sci. Pollut. Res. Int. 2014, 21, 8417–8431. [Google Scholar] [CrossRef] [Green Version]
- Espinoza, C.; Romero, J.; Villegas, L.; Cornejo-Ponce, L.; Salazar, R. Mineralization of the textile dye acid yellow 42 by solar photoelectro-Fenton in a lab-pilot plant. J. Hazard. Mater. 2016, 319, 24–33. [Google Scholar] [CrossRef]
- Garcia-Segura, S.; Anotai, J.; Singhadech, S.; Lu, M.-C. Enhancement of biodegradability of o-toluidine effluents by electro-assisted photo-Fenton treatment. Process Saf. Environ. Prot. 2017, 106, 60–67. [Google Scholar] [CrossRef]
- Santos, G.d.O.S.; Eguiluz, K.I.B.; Salazar-Banda, G.R.; Saez, C.; Rodrigo, M.A. Testing the role of electrode materials on the electro-Fenton and photoelectro-Fenton degradation of clopyralid. J. Electroanal. Chem. 2020, 871, 114291. [Google Scholar] [CrossRef]
- Goulart, L.A.; Moratalla, A.; Cañizares, P.; Lanza, M.R.V.; Sáez, C.; Rodrigo, M.A. High levofloxacin removal in the treatment of synthetic human urine using Ti/MMO/ZnO photo-electrocatalyst. J. Environ. Chem. Eng. 2022, 10, 107317. [Google Scholar] [CrossRef]
- Santos, G.O.S.; Gonzaga, I.M.D.; Eguiluz, K.I.B.; Salazar-Banda, G.R.; Saez, C.; Rodrigo, M.A. Improving biodegradability of clopyralid wastes by photoelectrolysis: The role of the anode material. J. Electroanal. Chem. 2020, 864, 114084. [Google Scholar] [CrossRef]
- Moratalla, Á.; Araújo, D.M.; Moura, G.O.M.A.; Lacasa, E.; Cañizares, P.; Rodrigo, M.A.; Sáez, C. Pressurized electro-Fenton for the reduction of the environmental impact of antibiotics. Sep. Purif. Technol. 2021, 276, 119398. [Google Scholar] [CrossRef]
- Cotillas, S.; Lacasa, E.; Herraiz, M.; Sáez, C.; Cañizares, P.; Rodrigo, M.A. The Role of the Anode Material in Selective Penicillin G Oxidation in Urine. ChemElectroChem 2019, 6, 1376–1384. [Google Scholar] [CrossRef]
- Herraiz-Carboné, M.; Cotillas, S.; Lacasa, E.; Moratalla, Á.; Cañizares, P.; Rodrigo, M.A.; Sáez, C. Improving the biodegradability of hospital urines polluted with chloramphenicol by the application of electrochemical oxidation. Sci. Total Environ. 2020, 725, 138430. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Xu, W.; Lin, X.; Tian, S.; Lin, W.F.; Zhou, D.; Sun, X. Electrochemical Oxygen Reduction to Hydrogen Peroxide via a Two-Electron Transfer Pathway on Carbon-Based Single-Atom Catalysts. Adv. Mater. Interfaces 2021, 8, 2001360. [Google Scholar] [CrossRef]
- Pérez, J.F.; Llanos, J.; Sáez, C.; López, C.; Cañizares, P.; Rodrigo, M.A. On the design of a jet-aerated microfluidic flow-through reactor for wastewater treatment by electro-Fenton. Sep. Purif. Technol. 2019, 208, 123–129. [Google Scholar] [CrossRef]
- Martínez-Huitle, C.A.; Panizza, M. Electrochemical oxidation of organic pollutants for wastewater treatment. Curr. Opin. Electrochem. 2018, 11, 62–71. [Google Scholar] [CrossRef]
- Cotillas, S.; de Vidales, M.J.M.; Llanos, J.; Sáez, C.; Cañizares, P.; Rodrigo, M.A. Electrolytic and electro-irradiated processes with diamond anodes for the oxidation of persistent pollutants and disinfection of urban treated wastewater. J. Hazard. Mater. 2016, 319, 93–101. [Google Scholar] [CrossRef]
- Gonzaga, I.M.D.; Dória, A.R.; Moratalla, A.; Eguiluz, K.I.B.; Salazar-Banda, G.R.; Cañizares, P.; Rodrigo, M.A.; Saez, C. Electrochemical systems equipped with 2D and 3D microwave-made anodes for the highly efficient degradation of antibiotics in urine. Electrochim. Acta 2021, 392, 139012. [Google Scholar] [CrossRef]
- Monteiro, M.K.S.; Moratalla, Á.; Sáez, C.; Dos Santos, E.V.; Rodrigo, M.A. Production of Chlorine Dioxide Using Hydrogen Peroxide and Chlorates. Catalysts 2021, 11, 1478. [Google Scholar] [CrossRef]
Compound | Electrolyte | k/min−1 |
---|---|---|
PenG | Na2SO4 | 0.0092 |
PenG | Urine | 0.0028 |
Uric Acid | Urine | 0.0064 |
Creatinine | Urine | 0.0005 |
Urea | Urine | 0.0002 |
Anode | Formula | Feasible Structure | m/z | |
---|---|---|---|---|
Pen G | - | C16H18N2O4S | 334.0987 | |
M1 | MMO/BDD | C16H18N2O5S | 353.1171 | |
M2 | MMO/BDD | C16H20N2O5S | 352.1092 | |
M3 | MMO/BDD | C16H18N2O4S | 334.0987 | |
M4 | BDD | C15H18N2O3 | 274.1317 | |
M5 | MMO/BDD | C10H15NO2S | 213.0824 | |
M6 | BDD | C14H16N2 | 212.1314 | |
M7 | BDD | C11H13NO2 | 191.0946 |
Process | k/min−1 | Synergy Coefficient /% | ∆BODst/% | ∆(Toxicity Inhibition) /% | ∆(Antibiotic Effect Inhibition) /% |
---|---|---|---|---|---|
PEF-MMO/Foam | 0.0104 | 166.67 | 57.81 | 23.08 | 89.00 |
PEF-BDD/Foam | 0.0196 | 83.18 | 37.36 | 18.75 | 55.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moratalla, Á.; Lacasa, E.; Cañizares, P.; Rodrigo, M.A.; Sáez, C. Electro-Fenton-Based Technologies for Selectively Degrading Antibiotics in Aqueous Media. Catalysts 2022, 12, 602. https://doi.org/10.3390/catal12060602
Moratalla Á, Lacasa E, Cañizares P, Rodrigo MA, Sáez C. Electro-Fenton-Based Technologies for Selectively Degrading Antibiotics in Aqueous Media. Catalysts. 2022; 12(6):602. https://doi.org/10.3390/catal12060602
Chicago/Turabian StyleMoratalla, Ángela, Engracia Lacasa, Pablo Cañizares, Manuel A. Rodrigo, and Cristina Sáez. 2022. "Electro-Fenton-Based Technologies for Selectively Degrading Antibiotics in Aqueous Media" Catalysts 12, no. 6: 602. https://doi.org/10.3390/catal12060602
APA StyleMoratalla, Á., Lacasa, E., Cañizares, P., Rodrigo, M. A., & Sáez, C. (2022). Electro-Fenton-Based Technologies for Selectively Degrading Antibiotics in Aqueous Media. Catalysts, 12(6), 602. https://doi.org/10.3390/catal12060602