Interface Synergistic Effect from Hierarchically Porous Cu(OH)2@FCN MOF/CF Nanosheet Arrays Boosting Electrocatalytic Oxygen Evolution
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Synthesis of Cu(OH)2@CF NWs
3.2. Surface Modification of Cu(OH)2@CF
3.3. Synthesis of Cu(OH)2@FCN MOF/CF
3.4. Synthesis of Powder FCN MOF
3.5. Characterization
3.6. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, K.; Zou, R. Advanced Transition Metal-Based OER Electrocatalysts: Current Status, Opportunities, and Challenges. Small 2021, 17, 2100129. [Google Scholar] [CrossRef]
- Zhang, A.; Zheng, W.; Yuan, Z.; Tian, J.; Yue, L.; Zheng, R.; Wei, D.; Liu, J. Hierarchical NiMn-layered double hydroxides@CuO core-shell heterostructure in-situ generated on Cu(OH)2 nanorod arrays for high performance supercapacitors. Chem. Eng. J. 2020, 380, 122486. [Google Scholar] [CrossRef]
- Xie, L.; Tang, C.; Wang, K.; Du, G.; Asiri, A.; Sun, X. Cu(OH)2@CoCO3(OH)2·nH2O Core-Shell Heterostructure Nanowire Array:An Efficient 3D Anodic Catalyst for Oxygen Evolution and Methanol Electrooxidation. Small 2017, 13, 1602755. [Google Scholar] [CrossRef] [PubMed]
- Chae, S.; Alagan, M.; Kim, T.; Kim, J.S.; Khil, M.S.; Lee, M.; Kim, H.; Lee, J.Y.; Kim, H.Y. Templated fabrication of perfectly aligned metal-organic framework-supported iron-doped copper-cobalt selenide nanostructure on hollow carbon nanofibers for an efficient trifunctional electrode material. Appl. Catal. B Environ. 2021, 293, 120209. [Google Scholar] [CrossRef]
- Lin, H.; Raja, D.S.; Chuah, X.; Hsieh, C.; Chen, Y.; Lu, S. Bi-metallic MOFs possessing hierarchical synergistic effects as high performance electrocatalysts for overall water splitting at high current densities. Appl. Catal. B Environ. 2019, 258, 118023. [Google Scholar] [CrossRef]
- Li, J.; Sun, H.; Lv, L.; Li, Z.; Ao, X.; Xu, C.; Li, Y.; Wang, C. Metal-Organic Framework-Derived Hierarchical (Co,Ni)Se2@NiFe LDH Hollow Nanocages for Enhanced Oxygen Evolution. ACS Appl. Mater. Interfaces 2019, 11, 8106–8114. [Google Scholar] [CrossRef]
- Ding, J.; Fan, T.; Shen, K.; Li, Y. Electrochemical synthesis of amorphous metal hydroxide microarrays with rich defects from MOFs for efficient electrocatalytic water oxidation. Appl. Catal. B Environ. 2021, 292, 120174. [Google Scholar] [CrossRef]
- Yin, L.; Du, X.; Di, C.; Wang, M.; Su, K.; Li, Z. In-situ transformation obtained defect-rich porous hollow CuO@CoZn-LDH nanoarrays as self-supported electrode for highly efficient overall water splitting. Chem. Eng. J. 2021, 414, 128809. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, C.; Zhang, Y.; Li, Z.; Shao, M. Host Modification of Layered Double Hydroxide Electrocatalyst to Boost the Thermodynamic and Kinetic Activity of Oxygen Evolution Reaction. Adv. Funct. Mater. 2021, 31, 2009743. [Google Scholar] [CrossRef]
- Yang, D.; Chen, Y.; Su, Z.; Zhang, X.; Zhang, W.; Srinivas, K. Organic carboxylate-based MOFs and derivatives for electrocatalytic water oxidation. Coord. Chem. Rev. 2021, 428, 213619. [Google Scholar] [CrossRef]
- Dai, T.; Zhang, X.; Sun, M.; Huang, B.; Zhang, N.; Da, P.; Yang, R.; He, Z.; Wang, W.; Xi, P.; et al. Uncovering the Promotion of CeO2/CoS1.97 Heterostructure with Specific Spatial Architectures on Oxygen Evolution Reaction. Adv. Mater. 2021, 33, 2102593. [Google Scholar] [CrossRef]
- Zhang, B.; Zheng, Y.; Ma, T.; Yang, C.; Peng, Y.; Zhou, Z.; Zhou, M.; Li, S.; Wang, Y.; Cheng, C. Designing MOF Nanoarchitectures for Electrochemical Water Splitting. Adv. Mater. 2021, 33, 2006042. [Google Scholar] [CrossRef]
- Chen, C.; Tuo, Y.; Lu, Q.; Lu, H.; Zhang, S.; Zhou, Y.; Zhang, J.; Liu, Z.; Kang, Z.; Feng, X.; et al. Hierarchical trimetallic Co-Ni-Fe oxides derived from core-shell structured metal-organic frameworks for highly efficient oxygen evolution reaction. Appl. Catal. B Environ. 2021, 287, 119953. [Google Scholar] [CrossRef]
- Liang, J.; Gao, X.; Guo, B.; Ding, Y.; Yan, J.; Guo, Z.; Tse, E.C.; Liu, J. Ferrocene-Based Metal-Organic Framework Nanosheets as a Robust Oxygen Evolution Catalyst. Angew. Chem. Int. Ed. 2021, 133, 12880–12884. [Google Scholar] [CrossRef]
- Kang, J.; Sheng, J.; Xie, J.; Ye, H.; Chen, J.; Fu, X.; Du, G.; Sun, R.; Wong, C. Tubular Cu(OH)2 arrays decorated with nanothorny Co-Ni bimetallic carbonate hydroxide supported on Cu foam: A 3D hierarchical core shell efficient electrocatalyst for the oxygen evolution reaction. J. Mater. Chem. A 2018, 6, 10064–10073. [Google Scholar] [CrossRef]
- Liu, P.; Ng, V.M.H.; Yao, Z.; Zhou, J.; Lei, Y.; Yang, Z.; Kong, L.B. Facile synthesis and hierarchical assembly of flowerlike NiO structures with enhanced dielectric and microwave absorption properties. ACS Appl. Mater. Interfaces 2017, 9, 16404–16416. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Peng, J.; Chen, Y.; Liu, M.; Tang, W.; Guo, Z.H.; Yue, K. A general and robust strategy for in-situ templated synthesis of patterned inorganic nanoparticle assemblies. Giant 2021, 8, 100076. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; He, F.; Yang, H.; Li, Z.; Zhou, Q.; Tang, K. In situ grown Cu-Based metal-organic framework on copper foam as high-performance electrocatalysts for oxygen evolution reaction. Int. J. Hydrogen Energy 2020, 45, 21540–21546. [Google Scholar] [CrossRef]
- Battiato, S.; Urso, M.; Cosentino, S.; Pellegrino, A.L.; Mirabella, S.; Terrasi, A. Optimization of Oxygen Evolution Reaction with Electroless Deposited Ni–P Catalytic Nanocoating. Nanomaterials 2021, 11, 3010. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Yao, Z.; Zhou, J.; Yang, Z.; Kong, L.B. Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance. J. Mater. Chem. C 2016, 4, 9738–9749. [Google Scholar] [CrossRef]
- Li, S.; Gao, Y.; Li, N.; Ge, L.; Bu, X.; Feng, P. Transition metal-based bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction. Energy Environ. Sci. 2021, 14, 1897–1927. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, B.; Shen, X.; Arandiyan, H.; Zhao, T.; Li, Y.; Zhao, C. Engineering the Activity and Stability of MOF-Nanocomposites for Efficient Water Oxidation. Adv. Energy Mater. 2021, 11, 2003759. [Google Scholar] [CrossRef]
- Qian, Q.; Li, Y.; Liu, Y.; Yu, L.; Zhang, G. Ambient Fast Synthesis and Active Sites Deciphering of Hierarchical Foam-Like Trimetal-Organic Framework Nanostructures as a Platform for Highly Efficient Oxygen Evolution Electrocatalysis. Adv. Mater. 2019, 31, 1901139. [Google Scholar] [CrossRef]
- Ken, I.; Kenji, O.; Yasuaki, T.; Takashi, T.; Paolo, F.; Christian, J.D.; Masahide, T. MOF-on-MOF: Oriented Growth of Multiple Layered Thin Films of Metal-Organic Frameworks. Angew. Chem. Int. Ed. 2019, 58, 6960–6964. [Google Scholar]
- Zhou, J.; Dou, Y.; Zhou, A.; Shu, L.; Chen, Y.; Li, J.R. Layered Metal–Organic Framework-Derived Metal Oxide/Carbon Nanosheet Arrays for Catalyzing the Oxygen Evolution Reaction. ACS Energy Lett. 2018, 3, 1655–1661. [Google Scholar] [CrossRef]
- Qin, Y.; Han, X.; Li, Y.; Han, A.; Liu, W.; Xu, H.; Liu, J. Hollow Mesoporous Metal–Organic Frameworks with Enhanced Diffusion for Highly Efficient Catalysis. ACS Catal. 2020, 10, 5973–5978. [Google Scholar] [CrossRef]
- Li, D.J.; Li, Q.H.; Gu, Z.G.; Zhang, J. A surface-mounted MOF thin film with oriented nanosheet arrays for enhancing the oxygen evolution reaction. J. Mater. Chem. A 2019, 7, 18519–18528. [Google Scholar] [CrossRef]
- Raja, D.S.; Huang, C.L.; Chen, Y.A.; Choi, Y.M.; Lu, S.Y. Composition-balanced trimetallic MOFs as ultra-efficient electrocatalysts for oxygen evolution reaction at high current densities. Appl. Catal. B Environ. 2020, 279, 127111. [Google Scholar]
- Raja, D.S.; Chuah, X.F.; Lu, S.Y. In Situ Grown Bimetallic MOF-Based Composite as Highly Efficient Bifunctional Electrocatalyst for Overall Water Splitting with Ultrastability at High Current Densities. Adv. Energy Mater. 2018, 8, 1801065. [Google Scholar] [CrossRef]
- Ye, L.; Zhang, Y.; Wang, L.; Zhao, L.; Gong, Y. Assembly of ZIF-67 nanoparticles and in situ grown Cu(OH)2 nanowires serves as an effective electrocatalyst for oxygen evolution. Dalton Trans. 2021, 50, 7256–7264. [Google Scholar] [CrossRef] [PubMed]
- Xiong, D.; Gu, M.; Chen, C.; Lu, C.; Yi, F.; Ma, X. Rational design of bimetallic metal–organic framework composites and their derived sulfides with superior electrochemical performance to remarkably boost oxygen evolution and supercapacitors. Chem. Eng. J. 2021, 404, 127111. [Google Scholar] [CrossRef]
- Li, F.L.; Wang, P.; Huang, X.; Young, D.J.; Wang, H.F.; Braunstein, P.; Lang, J.P. Large-Scale, Bottom-Up Synthesis of Binary Metal-Organic Framework Nanosheets for Efficient Water Oxidation. Angew. Chem. Int. Ed. 2019, 58, 7051–7056. [Google Scholar] [CrossRef] [PubMed]
- Adel, M.; Bernard, M.; Thomas, M.; Romain, S.; Michel, F. Location of metallic elements in (Co1−xFex)2(OH)2(C8H4O4): Use of MAD, neutron diffraction and 57Fe Mössbauer spectroscopy. CrystEngComm 2010, 12, 3126–3131. [Google Scholar]
- Huang, Z.L.; Drillon, M.; Masciocchi, N.; Sironi, A.; Zhao, J.T.; Rabu, P.; Panissod, P. Ab-initio XRPD crystal structure and giant hysteretic effect (Hc = 5.9 t) of a new hybrid terephthalate-based cobalt(II) magnet. Chem. Mater. 2000, 12, 2805–2812. [Google Scholar] [CrossRef]
- Sun, Q.; Liu, M.; Li, K.; Han, Y.; Zuo, Y.; Chai, F.; Song, C.; Zhang, G.; Guo, X. Synthesis of Fe/M (M = Mn, Co, Ni) bimetallic metal organic frameworks and their catalytic activity for phenol degradation under mild conditions. Inorg. Chem. Front. 2017, 4, 144–153. [Google Scholar] [CrossRef]
- Nouar, F.; Devic, T.; Chevreau, H.; Guillou, N.; Gibson, E.; Clet, G.; Daturi, M.; Vimont, A.; Grenèche, J.M.; Breeze, M.I.; et al. Tuning the breathing behaviour of MIL-53 by cation mixing. Chem. Commun. 2012, 48, 10237–10239. [Google Scholar] [CrossRef]
- Yaqoob, L.; Noor, T.; Iqbal, N.; Nasir, H.; Zaman, N.; Talha, K. Electrochemical synergies of Fe–Ni bimetallic MOF CNTs catalyst for OER in water splitting. J. Alloys Compd. 2021, 850, 156583. [Google Scholar] [CrossRef]
- McIntyre, N.S.; Zetaruk, D.G. X-ray photoelectron spectroscopic studies of iron oxides. Anal. Chem. 2002, 49, 1521–1529. [Google Scholar] [CrossRef]
- Tang, Y.J.; Wang, Y.; Zhu, H.J.; Zhou, K.; Lan, Y.Q. In situ growth of a POMOF-derived nitride based composite on Cu foam to produce hydrogen with enhanced water dissociation kinetics. J. Mater. Chem. A 2019, 7, 13559–13566. [Google Scholar] [CrossRef]
- Tan, B.J.; Klabunde, K.J.; Sherwood, P.M. XPS studies of solvated metal atom dispersed (SMAD) catalysts. Evidence for layered cobalt-manganese particles on alumina and silica. J. Am. Chem. Soc. 1991, 3, 855–861. [Google Scholar] [CrossRef]
- Bonnelle, J.P.; Grimblot, J.; D’huysser, A. Influence de la polarisation des liaisons sur les spectres esca des oxydes de cobalt. J. Electron. Spectrosc. Relat. Phenom. 1975, 7, 151–162. [Google Scholar] [CrossRef]
- Strydom, C.A.; Strydom, H.J. X-ray photoelectron spectroscopy studies of some cobalt (II) nitrate complexes. Inorg. Chim. Acta. 1989, 159, 191–195. [Google Scholar] [CrossRef]
- Yuan, C.Z.; Sun, Z.T.; Jiang, Y.F.; Yang, Z.K.; Jiang, N.; Zhao, Z.W.; Qazi, U.Y.; Zhang, W.H.; Xu, A.W. One-Step In Situ Growth of Iron-Nickel Sulfide Nanosheets on FeNi Alloy Foils: High-Performance and Self-Supported Electrodes for Water Oxidation. Small 2017, 13, 1604161. [Google Scholar] [CrossRef] [PubMed]
- Thenuwara, A.C.; Cerkez, E.B.; Shumlas, S.L.; Attanayake, N.H.; McKendry, I.G.; Frazer, L.; Strongin, D.R. Nickel confined in the interlayer region of birnessite: An active electrocatalyst for water oxidation. Angew. Chem. Int. Ed. 2016, 128, 10537–10541. [Google Scholar] [CrossRef]
- Jadhav, H.S.; Bandal, H.A.; Ramakrishna, S.; Kim, H. Critical Review, Recent Updates on Zeolitic Imidazolate Framework-67 (ZIF-67) and Its Derivatives for Electrochemical Water Splitting. Adv. Mater. 2022, 34, 2107072. [Google Scholar] [CrossRef]
- Anantharaj, S.; Ede, S.R.; Karthick, K.; Sankar, S.S.; Sangeetha, K.; Karthik, P.E.; Kundu, S. Precision and correctness in the evaluation of electrocatalytic water splitting: Revisiting activity parameters with a critical assessment. Energy Environ. Sci. 2018, 11, 744–771. [Google Scholar] [CrossRef]
- Chang, Y.; Zhai, P.; Hou, J.; Zhao, J.; Gao, J. Excellent HER and OER Catalyzing Performance of Se-Vacancies in Defects-Engineered PtSe2: From Simulation to Experiment. Adv. Energy Mater. 2022, 12, 2102359. [Google Scholar] [CrossRef]
- Gong, W.; Zhang, H.; Yang, L.; Yang, Y.; Wang, J.; Liang, H. Core@shell MOFs derived Co2P/CoP@NPGC as a highly-active bifunctional electrocatalyst for ORR/OER. J. Ind. Eng. Chem. 2022, 106, 492–502. [Google Scholar] [CrossRef]
- Liu, Z.; Wan, J.; Li, M.; Shi, Z.; Liu, J.; Tang, Y. Synthesis of Co/CeO2 hetero-particles with abundant oxygen-vacancies supported by carbon aerogels for ORR and OER. Nanoscale 2022, 14, 1997–2003. [Google Scholar] [CrossRef]
- Silva, V.D.; Ferreira, L.S.; Simões, T.A.; Medeiros, E.S.; Macedo, D.A. 1D hollow MFe2O4 (M= Cu, Co, Ni) fibers by Solution Blow Spinning for oxygen evolution reaction. J. Colloid Interface Sci. 2019, 540, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Swathi, S.; Yuvakkumar, R.; Ravi, G.; Al-Sehemibc, A.G.; Velauthapillai, D. Rare earth metal (Sm)-doped NiMnO3 nanostructures for highly competent alkaline oxygen evolution reaction. Nanscale Adv. 2022, 4, 2235–2358. [Google Scholar] [CrossRef]
- Yang, B.; Chang, X.; Ding, X.; Ma, X.; Zhang, M. One-dimensional Ni2P/Mn2O3 nanostructures with enhanced oxygen evolution reaction activity. J. Colloid Interface Sci. 2022, 625, 196–204. [Google Scholar] [CrossRef]
- Jiang, H.; He, Q.; Li, X.; Su, X.; Zhang, Y.; Chen, S.; Zhang, S.M.; Zhang, G.; Jiang, J.; Luo, Y.; et al. Tracking Structural Self-Reconstruction and Identifying True Active Sites toward Cobalt Oxychloride Precatalyst of Oxygen Evolution Reaction. Adv. Mater. 2019, 31, 1805127. [Google Scholar] [CrossRef]
- Guo, Y.; Sun, Q.; Huang, Q.; Hu, Y.; Su, K.; Li, T.T.; Qian, J. Variable HOF-derived carbon-coated cobalt phosphide for electrocatalytic oxygen evolution. Carbon 2022, 196, 457–465. [Google Scholar] [CrossRef]
- Huang, Q.Q.; Zhang, L.L.; Wu, P.; Zhang, M.C.; Liu, J.L.; Wu, J.S.; Ren, X.M. The morphology, crystal structure and oxygen evolution reaction electrocatalysis performance of scandium-doped MIL-101 (Fe). J. Solid State Chem. 2022, 312, 123202. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zheng, Y.; Yao, H.; Bai, J.; Yue, S.; Guo, X. Interface Synergistic Effect from Hierarchically Porous Cu(OH)2@FCN MOF/CF Nanosheet Arrays Boosting Electrocatalytic Oxygen Evolution. Catalysts 2022, 12, 625. https://doi.org/10.3390/catal12060625
Li X, Zheng Y, Yao H, Bai J, Yue S, Guo X. Interface Synergistic Effect from Hierarchically Porous Cu(OH)2@FCN MOF/CF Nanosheet Arrays Boosting Electrocatalytic Oxygen Evolution. Catalysts. 2022; 12(6):625. https://doi.org/10.3390/catal12060625
Chicago/Turabian StyleLi, Xue, Yinan Zheng, Hu Yao, Jiayu Bai, Siliang Yue, and Xiaohui Guo. 2022. "Interface Synergistic Effect from Hierarchically Porous Cu(OH)2@FCN MOF/CF Nanosheet Arrays Boosting Electrocatalytic Oxygen Evolution" Catalysts 12, no. 6: 625. https://doi.org/10.3390/catal12060625
APA StyleLi, X., Zheng, Y., Yao, H., Bai, J., Yue, S., & Guo, X. (2022). Interface Synergistic Effect from Hierarchically Porous Cu(OH)2@FCN MOF/CF Nanosheet Arrays Boosting Electrocatalytic Oxygen Evolution. Catalysts, 12(6), 625. https://doi.org/10.3390/catal12060625