The Effect of Arsenic on the Photocatalytic Removal of Methyl Tet Butyl Ether (MTBE) Using Fe2O3/MgO Catalyst, Modeling, and Process Optimization
Abstract
:1. Introduction
2. Results
2.1. Specification of the Catalyst
2.1.1. SEM–EDX Analysis
2.1.2. XRD Analysis
2.2. Photocatalytic Removal of MTBE
The Simultaneous Effect of the Concentration of Fe2O3/MgO and Initial MTBE
3. Materials and Methods
3.1. Materials
3.2. Preparation of the Catalyst
3.3. Stability and Reusability of the Catalyst
3.4. Sample Preparation
3.5. Chemical Reactor and Optimization
3.6. MTBE Extraction Method
3.7. Data Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Jorfi, S.; Samaei, M.R.; Soltani, R.D.C.; Talaiekhozani, A.; Ahmadi, M.; Barzegar, G.; Reshadatian, N.; Mehrabi, N. Enhancement of the bioremediation of pyrene-contaminated soils using a hematite nanoparticle-based modified Fenton oxidation in a sequenced approach. Soil Sediment Contam. Int. J. 2017, 26, 141–156. [Google Scholar] [CrossRef]
- Ekinci, E.K. Mesoporous magnesia sorbent for removal of organic contaminant methyl tert -butyl ether (MTBE) from water. Sep. Sci. Technol. 2022, 57, 843–853. [Google Scholar] [CrossRef]
- Shamim, M.; Aalam, C.S.; Manivannan, D.; Kumar, S. Characterization of Gasoline Engine Using MTBE and DIE Additives. Int. Res. J. Eng. Technol. 2017, 4, 191–199. [Google Scholar]
- International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 1994; pp. 389–433. [Google Scholar]
- Mahmoodsaleh, F.; Ardakani, M.R. Methyl tertiary butyl ether biodegradation by the bacterial consortium isolated from petrochemical wastewater and contaminated soils of Imam Khomeini Port Petrochemical Company (Iran). Bioremed. J. 2021, 26, 127–137. [Google Scholar] [CrossRef]
- Zhang, Y.; Jin, F.; Shen, Z.; Lynch, R.; Al-Tabbaa, A. Kinetic and equilibrium modelling of MTBE (methyl tert-butyl ether) adsorption on ZSM-5 zeolite: Batch and column studies. J. Hazard. Mater. 2018, 347, 461–469. [Google Scholar] [CrossRef]
- Samaei, M.R.; Maleknia, H.; Azhdarpoor, A. A comparative study of removal of methyl tertiary-butyl ether (MTBE) from aquatic environments through advanced oxidation methods of H2O2/nZVI, H2O2/nZVI/ultrasound, and H2O2/nZVI/UV. Desalination Water Treat. 2016, 57, 21417–21427. [Google Scholar] [CrossRef]
- Beryani, A.; Pardakhti, A.; Ardestani, M.; Zahed, M.A. Benzene and MTBE removal by Fenton’s process using stabilized Nano Zero-Valent Iron particles. J. Appl. Res. Water Wastewater 2017, 4, 343–348. [Google Scholar]
- Lindsey, D.; Ayotte, J.D.; Jurgens, B.C.; Desimone, L.A. Using groundwater age distributions to understand changes in methyl tert-butyl ether (MtBE) concentrations in ambient groundwater, northeastern United States. Sci. Total Environ. 2017, 579, 579–587. [Google Scholar] [CrossRef]
- Khademi, S.M.S.; Tabrizchi, M.; Telgheder, U.; Valadbeigi, Y.; Ilbeigi, V. Determination of MTBE in drinking water using corona discharge ion mobility spectrometry. Int. J. Ion Mobil. Spectrom. 2017, 20, 15–21. [Google Scholar] [CrossRef]
- Abbas, A.; Sallam, A.S.; Usman, A.R.A.; Al-Wabel, M.I. Organoclay-based nanoparticles from montmorillonite and natural clay deposits: Synthesis, characteristics, and application for MTBE removal. Appl. Clay Sci. 2017, 142, 21–29. [Google Scholar] [CrossRef]
- Pirsaheb, M.; Dargahi, A.; Khamutian, R.; Asadi, F.; Atafar, Z. A survey of methyl tertiary butyl ether concentration in water resources and its control procedures. J. Maz. Univ. Med. Sci. 2014, 24, 119–128. [Google Scholar]
- Iraji, G.; Givianrad, M.H.; Tehrani, M.S. Highly efficient degradation of MTBE by γ-Al2O3/NiO/TiO2 core-shell nanocomposite under visible light irradiation. Int. J. New Chem. 2021, 8, 222–228. [Google Scholar] [CrossRef]
- Andreozzi, R.; Caprio, V.; Insola, A.; Marotta, R. Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today 1999, 53, 51–59. [Google Scholar] [CrossRef]
- Tsimas, E.S.; Tyrovola, K.; Xekoukoulotakis, N.P.; Nikolaidis, N.P.; Diamadopoulos, E.; Mantzavinos, D. Simultaneous photocatalytic oxidation of As (III) and humic acid in aqueous TiO2 suspensions. J. Hazard. Mater. 2009, 169, 376–385. [Google Scholar] [CrossRef]
- López-Muñoz, M.J.; Arencibia, A.; Segura, Y.; Raez, J.M. Removal of As (III) from aqueous solutions through simultaneous photocatalytic oxidation and adsorption by TiO2 and zero-valent iron. Catal. Today 2017, 280, 149–154. [Google Scholar] [CrossRef]
- Barkoula, N.-M.; Alcock, B.; Cabrera, N.O.; Peijs, T. Fatigue properties of highly oriented polypropylene tapes and all-polypropylene composites. Polym. Polym. Compos. 2008, 16, 101–113. [Google Scholar] [CrossRef]
- Pal, D.; Lavania, R.; Srivastava, P.; Singh, P.; Srivastava, K.; Madhav, S.; Mishra, P. Photocatalytic degradation of methyl tertiary butyl ether from wastewater using CuO/CeO2 composite nanofiber catalyst. J. Environ. Chem. Eng. 2018, 6, 2577–2587. [Google Scholar] [CrossRef]
- Tawabini, B.; Makkawi, M. Remediation of MTBE-contaminated groundwater by integrated circulation wells and advanced oxidation technologies. Water Sci. Technol. Water Supply 2018, 18, 399–407. [Google Scholar] [CrossRef]
- Smedley, P.L.; Kinniburgh, D.G. Source and behaviour of arsenic in natural waters. In United Nations Synthesis Report on Arsenic in Drinking Water; World Health Organization: Geneva, Switzerland, 2001; pp. 1–61. [Google Scholar]
- Ghayurdoost, F.; Assadi, A.; Mehrasbi, M.R. Removal of MTBE From Groundwater Using A PRB of ZVI/Sand Mixtures: Role of Nitrate And Hardness. Res. Square, 2021. [Google Scholar] [CrossRef]
- Azhdarpoor; Nikmanesh, R.; Samaei, M.R. Removal of arsenic from aqueous solutions using waste iron columns inoculated with iron bacteria. Environ. Technol 2015, 36, 2525–2531. [Google Scholar] [CrossRef]
- Eslami, H.; Ehrampoush, M.H.; Esmaeili, A.; Ebrahimi, A.A.; Salmani, M.H.; Ghaneian, M.T.; Falahzadeh, H. Efficient photocatalytic oxidation of arsenite from contaminated water by Fe2O3-Mn2O3 nanocomposite under UVA radiation and process optimization with experimental design. Chemosphere 2018, 207, 303–312. [Google Scholar] [CrossRef]
- Balakrishnan, J.; Sreeshma, D.; Siddesh, B.M.; Jagtap, A.; Abhale, A.; Rao, K.K. Ternary alloyed HgCdTe nanocrystals for short-wave and mid-wave infrared region optoelectronic applications. Nano Express 2020, 1, 020015. [Google Scholar] [CrossRef]
- Beltrán, D.E.; Uddin, A.; Xu, X.; Dunsmore, L.; Ding, S.; Xu, H.; Zhang, H.; Liu, S.; Wu, G.; Litster, S. Elucidation of Performance Recovery for Fe-Based Catalyst Cathodes in Fuel Cells. Adv. Energy Sustain. Res. 2021, 2, 2100123. [Google Scholar] [CrossRef]
- Chan, S.H.S.; Wu, T.Y.; Juan, J.C.; Teh, C.Y. Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water. J. Chem. Technol. Biotechnol. 2011, 86, 1130–1158. [Google Scholar] [CrossRef]
- Sierra-Fernandez, A.; De la Rosa-García, S.C.; Yañez-Macías, R.; Guerrero-Sanchez, C.; Gomez-Villalba, L.S.; Gómez-Cornelio, S.; Rabanal, M.E.; Schubert, U.S.; Fort, R.; Quintana, P. Sol-gel synthesis of Mg(OH)2 and Ca(OH)2 nanoparticles: A comparative study of their antifungal activity in partially quaternized p(DMAEMA) nanocomposite films. J. Sol-Gel Sci. Technol. 2019, 89, 310–321. [Google Scholar] [CrossRef]
- Popov, A.; Shirmane, L.; Pankratov, V.; Lushchik, A.; Kotlov, A.; Serga, V.; Kulikova, L.; Chikvaidze, G.; Zimmermann, J. Comparative study of the luminescence properties of macro- and nanocrystalline MgO using synchrotron radiation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2013, 310, 23–26. [Google Scholar] [CrossRef]
- Zheng, S.; Zhou, Q.; Chen, C.; Yang, F.; Cai, Z.; Li, D.; Geng, Q.; Feng, Y.; Wang, H. Role of extracellular polymeric substances on the behavior and toxicity of silver nanoparticles and ions to green algae Chlorella vulgaris. Sci. Total Environ. 2019, 660, 1182–1190. [Google Scholar] [CrossRef] [PubMed]
- Aghamohammadi, S.; Haghighi, M.; Karimipour, S. A comparative synthesis and physicochemical characterizations of Ni/Al2O3–MgO nanocatalyst via sequential impregnation and sol-gel methods used for CO2 reforming of methane. J. Nanosci. Nanotechnol. 2013, 13, 4872–4882. [Google Scholar] [CrossRef]
- Berijani, S.; Assadi, Y.; Anbia, M.; Hosseini, M.-R.M.; Aghaee, E. Dispersive liquid-liquid microextraction combined with gas chromatography-flame photometric detection: A very simple, rapid and sensitive method for the determination of organophosphorus pesticides in water. J. Chromatogr. A 2006, 1123, 1–9. [Google Scholar] [CrossRef]
- Khuri, I. Response Surface Methodology and Related Topics; World Scientific: Singapore, 2006. [Google Scholar]
- Salmani, M.H.; Mokhtari, M.; Raeisi, Z.; Ehrampoush, M.H.; Sadeghian, H.A. Evaluation of removal efficiency of residual diclofenac in aqueous solution by nanocomposite tungsten-carbon using design of experiment. Water Sci. Technol. 2017, 76, 1466–1473. [Google Scholar] [CrossRef]
- Habibi, M.H.; Mosavi, V. Synthesis and characterization of Fe2O3/Mn2O3/FeMn2O4 nanocomposite alloy coated glass for photocatalytic degradation of Reactive Blue 222. J. Mater. Sci. Mater. Electron. 2017, 28, 11078–11083. [Google Scholar] [CrossRef]
- Akyol, A.; Can, O.T.; Demirbas, E.; Kobya, M. A comparative study of electrocoagulation and electro-Fenton for treatment of wastewater from the liquid organic fertilizer plant. Sep. Purif. Technol. 2013, 112, 11–19. [Google Scholar] [CrossRef]
- Garcia, J.C.; Takashima, K. Photocatalytic degradation of imazaquin in an aqueous suspension of titanium dioxide. J. Photochem. Photobiol. A Chem. 2003, 155, 215–222. [Google Scholar] [CrossRef]
- Nikazar, M.; Gholivand, K.; Mahanpoor, K. Photocatalytic degradation of azo dye Acid Red 114 in water with TiO2 supported on clinoptilolite as a catalyst. Desalination 2008, 219, 293–300. [Google Scholar] [CrossRef]
Source | Sum of Squares | df | Mean Squares | F-Value | p-Value |
---|---|---|---|---|---|
Model | 5624.73 | ||||
A—MTBE | 5122.75 | 20 | 281.24 | 45.84 | |
B—Arsenic | 15.89 | 1 | 5122.75 | 834.92 | <0.0001 |
C—Catalyst | 31.60 | 1 | 15.89 | 2.59 | <0.0001 |
D—pH | 5.23 | 1 | 31.60 | 5.15 | 0.1184 |
E—Time | 9.19 | 1 | 5.23 | 0.85 | 0.0309 |
AB | 6.53 | 1 | 9.19 | 1.50 | 0.3633 |
AC | 9.26 | 1 | 6.53 | 1.06 | 0.2309 |
AD | 0.043 | 1 | 9.26 | 1.51 | 0.3109 |
AE | 8.09 | 1 | 0.043 | 6.972 | 0.2292 |
BC | 33.97 | 1 | 8.09 | 1.32 | 0.9340 |
BD | 4.34 | 1 | 33.97 | 5.54 | 0.2602 |
BE | 0.10 | 1 | 4.34 | 0.71 | 0.0256 |
CD | 23.27 | 1 | 0.10 | 0.016 | 0.4070 |
CE | 8.85 | 1 | 23.27 | 3.79 | 0.8992 |
DE | 65.24 | 1 | 8.85 | 1.44 | 0.0612 |
A2 | 14.39 | 1 | 65.24 | 10.63 | 0.2394 |
B2 | 60.78 | 1 | 14.39 | 2.35 | 0.0028 |
C2 | 183.26 | 1 | 60.78 | 9.91 | 0.1365 |
D2 | 21.88 | 1 | 183.26 | 29.87 | 0.0038 |
E2 | 0.078 | 1 | 21.88 | 3.57 | <0.0001 |
Residual | 177.93 | 1 | 0.078 | 0.013 | 0.0690 |
Lack of Fit | 159.44 | 29 | 6.14 | 0.9111 | |
Pure Error | 18.49 | 22 | 7.25 | 2.74 | |
Cor Total | 5802.67 | 7 | 2.64 | 0.0868 | |
49 |
Time (min) | 0 | 10 | 20 | 30 | 40 | 50 |
Mg (mg/L) | 0 | 2.02 | 3 | 3.9 | 4.3 | 6.1 |
Fe (mg/L) | 0 | 5.7 | 12.6 | 17.2 | 21.4 | 26.3 |
Independent Variable | Symbol | Coded Level | ||||
---|---|---|---|---|---|---|
−2 | −1 | 0 | 1 | 2 | ||
Natural Level | ||||||
MTBE (mg/L) | A | 0 | 37.5 | 75 | 112.5 | 150 |
Arsenic (mg/L) | B | 0 | 0.25 | 0.5 | 0.75 | 1 |
Catalyst (g/L) | C | 0 | 1 | 2 | 3 | 4 |
pH | D | 3 | 5 | 7 | 9 | 11 |
Time (min) | E | 10 | 20 | 30 | 40 | 50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehdizadeh, A.; Derakhshan, Z.; Abbasi, F.; Samaei, M.R.; Baghapour, M.A.; Hoseini, M.; Lima, E.C.; Bilal, M. The Effect of Arsenic on the Photocatalytic Removal of Methyl Tet Butyl Ether (MTBE) Using Fe2O3/MgO Catalyst, Modeling, and Process Optimization. Catalysts 2022, 12, 927. https://doi.org/10.3390/catal12080927
Mehdizadeh A, Derakhshan Z, Abbasi F, Samaei MR, Baghapour MA, Hoseini M, Lima EC, Bilal M. The Effect of Arsenic on the Photocatalytic Removal of Methyl Tet Butyl Ether (MTBE) Using Fe2O3/MgO Catalyst, Modeling, and Process Optimization. Catalysts. 2022; 12(8):927. https://doi.org/10.3390/catal12080927
Chicago/Turabian StyleMehdizadeh, Akbar, Zahra Derakhshan, Fariba Abbasi, Mohammad Reza Samaei, Mohammad Ali Baghapour, Mohammad Hoseini, Eder Claudio Lima, and Muhammad Bilal. 2022. "The Effect of Arsenic on the Photocatalytic Removal of Methyl Tet Butyl Ether (MTBE) Using Fe2O3/MgO Catalyst, Modeling, and Process Optimization" Catalysts 12, no. 8: 927. https://doi.org/10.3390/catal12080927
APA StyleMehdizadeh, A., Derakhshan, Z., Abbasi, F., Samaei, M. R., Baghapour, M. A., Hoseini, M., Lima, E. C., & Bilal, M. (2022). The Effect of Arsenic on the Photocatalytic Removal of Methyl Tet Butyl Ether (MTBE) Using Fe2O3/MgO Catalyst, Modeling, and Process Optimization. Catalysts, 12(8), 927. https://doi.org/10.3390/catal12080927