Novel Complex Titanium NASICON-Type Phosphates as Acidic Catalysts for Ethanol Dehydration
Abstract
:1. Introduction
2. Results and Discussion
2.1. X-ray Diffraction Study
2.2. Raman Spectroscopy
2.3. Microscopic Morphology and Porosity
2.4. Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFT) Study of Adsorbed CO and C6H6
2.5. Catalytic Tests in Ethanol Conversion
3. Materials and Methods
3.1. Synthesis of the Catalysts
3.2. Characterization of the Catalysts
3.3. Catalytic Tests
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jamil, F.; Aslam, M.; Al-Muhtaseb, A.H.; Bokhari, A.; Rafiq, S.; Khan, Z.; Inayat, A.; Ahmed, A.; Hossain, S.; Khurram, M.S.; et al. Greener and Sustainable Production of Bioethylene from Bioethanol: Current Status, Opportunities and Perspectives. Rev. Chem. Eng. 2022, 38, 185–207. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Hong, H.Y.; Kafalas, J.A. Fast Na+-ion Transport in Skeleton Structures. Mater. Res. Bull. 1976, 11, 77843. [Google Scholar] [CrossRef]
- Essehli, R.; El Bali, B.; Benmokhtar, S.; Fejfarová, K.; Dusek, M. Hydrothermal Synthesis, Structural and Physico-Chemical Characterizations of Two Nasicon Phosphates: M0.50IITi2(PO4)3 (M = Mn, Co). Mater. Res. Bull. 2009, 44, 1502–1510. [Google Scholar] [CrossRef]
- Anantharamulu, N.; Koteswara Rao, K.; Rambabu, G.; Vijaya Kumar, B.; Radha, V.; Vithal, M. A Wide-Ranging Review on Nasicon Type Materials. J. Mater. Sci. 2011, 46, 2821–2837. [Google Scholar] [CrossRef]
- Sadykov, V.A.; Pavlova, S.N.; Zabolotnaya, G.V.; Chaikina, M.V.; Maksimovskaya, R.I.; Tsybulya, S.V.; Burgina, E.B.; Zaikovskii, V.I.; Litvak, G.S.; Frolova, Y.V.; et al. Scientific Bases for the Synthesis of Highly Dispersed Framework Zirconium Phosphate Catalysts for Paraffin Isomerization and Selective Oxidation. Kinet. Catal. 2001, 42, 432–441. [Google Scholar] [CrossRef]
- Ziyad, M.; Arsalane, S.; Kacimi, M.; Coudurier, G.; Millet, J.M.; Védrine, J.C. Behavior of Silver-Thorium Phosphate AgTh2(PO4)3 in Butan-2-Ol Conversion. Appl. Catal. A Gen. 1996, 147, 363–373. [Google Scholar] [CrossRef]
- Yamamoto, K.; Abe, Y. Enhanced Catalytic Activity of Microporous Glass-Ceramics with a Skeleton of NASICON-Type Copper(I) Titanium Phosphate Crystal. Mater. Res. Bull. 2000, 35, 211–216. [Google Scholar] [CrossRef]
- Pylinina, A.I.; Akhmedova, L.S.; Knyazeva, E.I.; Fionov, Y.A.; Sokolova, E.A. Acid Properties of Cesium-Nickel-Zirconium Complex Phosphates: Effect on Isobutanol Dehydration. Pet. Chem. 2020, 60, 592–596. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Y. Recent Advances in Catalytic Conversion of Ethanol to Chemicals. ACS Catal. 2014, 4, 1078–1090. [Google Scholar] [CrossRef]
- Fan, D.; Dai, D.J.; Wu, H.S. Ethylene Formation by Catalytic Dehydration of Ethanol with Industrial Considerations. Materials 2013, 6, 101–115. [Google Scholar] [CrossRef]
- Luts, T.; Katz, A. Chemisorption and Dehydration of Ethanol on Silica: Effect of Temperature on Selectivity. Top. Catal. 2012, 55, 84–92. [Google Scholar] [CrossRef]
- Müller, J.M.; Mesquita, G.C.; Franco, S.M.; Borges, L.D.; De Macedo, J.L.; Dias, J.A.; Dias, S.C.L. Solid-State Dealumination of Zeolites for Use As Catalysts in Alcohol Dehydration; Elsevier Inc.: Amsterdam, The Netherlands, 2015; Volume 204, ISBN 5561310739. [Google Scholar]
- Glukhova, I.O.; Asabina, E.A.; Pet’kov, V.I.; Mironova, E.Y.; Zhilyaeva, N.A.; Kovalskii, A.M.; Yaroslavtsev, A.B. Zirconium D-Transition Metal Phosphates As Catalysts for Selective Dehydration of Methanol to Dimethyl Ether. Inorg. Mater. 2020, 56, 395–401. [Google Scholar] [CrossRef]
- Ilin, A.B.; Orekhova, N.V.; Ermilova, M.M.; Yaroslavtsev, A.B. Catalytic Activity of LiZr2(PO4)3 Nasicon-Type Phosphates in Ethanol Conversion Process in Conventional and Membrane Reactors. Catal. Today 2016, 268, 29–36. [Google Scholar] [CrossRef]
- Ilin, A.B.; Ermilova, M.M.; Orekhova, N.V.; Cretin, M.; Yaroslavtsev, A.B. Conversion of Aliphatic C1–C2 Alcohols on In– Nb– Mo-Doped Complex Lithium Phosphates and HZr2(PO4)3 with NASICON-Type Structure. J. Alloys Compd. 2018, 748, 583–590. [Google Scholar] [CrossRef]
- Pylinina, A.I.; Mikhalenko, I.I. Catalytic Activity of Thermally Treated Li3Fe2(PO4)3 in the Conversion of Butan-1-Ol. Mendeleev Commun. 2012, 22, 150–151. [Google Scholar] [CrossRef]
- Povarova, E.I.; Pylinina, A.I.; Mikhalenko, I.I. Catalytic Dehydrogenation of Propanol-2 on Na-Zr Phosphates Containing Cu, Co, and Ni. Russ. J. Phys. Chem. A 2012, 86, 935–941. [Google Scholar] [CrossRef]
- Ermilova, M.M.; Sukhanov, M.V.; Borisov, R.S.; Orekhova, N.V.; Pet’Kov, V.I.; Novikova, S.A.; Il’In, A.B.; Yaroslavtsev, A.B. Synthesis of the New Framework Phosphates and Their Catalytic Activity in Ethanol Conversion into Hydrocarbons. Catal. Today 2012, 193, 37–41. [Google Scholar] [CrossRef]
- Novikova, S.A.; Il’in, A.B.; Zhilyaeva, N.A.; Yaroslavtsev, A.B. Catalytic Activity of Li1 + XHf2–XInx(PO4)3-Based NASICON-Type Materials for Ethanol Conversion Reactions. Inorg. Mater. 2018, 54, 676–682. [Google Scholar] [CrossRef]
- Moshareva, M.A.; Il’in, A.B.; Zhilyaeva, N.A.; Novikova, S.A.; Yaroslavtsev, A.B. Catalytic Activity of Materials Based on Complex Hafnium Phosphates with the NASICON Structure in Ethanol Conversion. Nanotechnologies Russ. 2017, 12, 514–519. [Google Scholar] [CrossRef]
- Ziyad, M.; Rouimi, M.; Portefaix, J. Activity in Hydrotreatment Processes of Ni-Mo Loaded Zirconium Phosphate Zr3(PO4)4. Appl. Catal. A: Gen. 1999, 183, 93–105. [Google Scholar] [CrossRef]
- Nguyen, T.T.N.; Ruaux, V.; Massin, L.; Lorentz, C.; Afanasiev, P.; Maugé, F.; Bellière-Baca, V.; Rey, P.; Millet, J.M.M. Synthesis, Characterization and Study of Lanthanum Phosphates as Light Alcohols Dehydration Catalysts. Appl. Catal. B Environ. 2015, 166–167, 432–444. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, R.; Yang, X.; Zhang, F. Comparison of Four Catalysts in the Catalytic Dehydration of Ethanol to Ethylene. Microporous Mesoporous Mater. 2008, 116, 210–215. [Google Scholar] [CrossRef]
- Zhan, N.; Hu, Y.; Li, H.; Yu, D.; Han, Y.; Huang, H. Lanthanum-Phosphorous Modified HZSM-5 Catalysts in Dehydration of Ethanol to Ethylene: A Comparative Analysis. Catal. Commun. 2010, 11, 633–637. [Google Scholar] [CrossRef]
- Asabina, E.A.; Glukhova, I.O.; Pet’kov, V.I.; Borovikova, E.Y.; Koval’skii, A.M. Synthesis and Structure of Phosphates M0.5Ti2(PO4)3. Russ. J. Gen. Chem. 2017, 87, 684–689. [Google Scholar] [CrossRef]
- Mitran, G.; Mieritz, D.G.; Seo, D.K. Highly Selective Solid Acid Catalyst H1-XTi2(PO4)3-x(SO4)x for Non-Oxidative Dehydrogenation of Methanol and Ethanol. Catalysts 2017, 7, 95. [Google Scholar] [CrossRef] [Green Version]
- Aatiq, A.; Ménétrier, M.; El Jazouli, A.; Delmas, C. Structural and Lithium Intercalation Studies of Mn(0.5-x)CaxTi2(PO4)3 Phases (0 ≤ x ≤ 0.50). Solid State Ion. 2002, 150, 391–405. [Google Scholar] [CrossRef]
- Junaid Bushiri, M.; Antony, C.J.; Aatiq, A. Raman and FTIR Studies of the Structural Aspects of Nasicon-Type Crystals; AFeTi(PO4)3 [A = Ca, Cd]. J. Phys. Chem. Solids 2008, 69, 1985–1989. [Google Scholar] [CrossRef]
- Mieritz, D.; Davidowski, S.K.; Seo, D.K. Accessing Alkali-Free NASICON-Type Compounds through Mixed Oxoanion Sol–Gel Chemistry: Hydrogen Titanium Phosphate Sulfate, H1−xTi2(PO4)3−x(SO4)x (X = 0.5–1). J. Solid State Chem. 2016, 242, 116–125. [Google Scholar] [CrossRef] [Green Version]
- Chimie, L.D.; Idriss, B.; Harti, E.; Casablanca, S.O.B.P. Vibrational Spectra and Factor Group Analysis of Li2xMn0.5-XTi2(PO4)3 {x = 0, 0.25, 0.50}. Mater. Res. 1998, 33, 955–961. [Google Scholar]
- Golubina, E.V.; Kaplin, I.Y.; Maslakov, K.I.; Gorodnova, A.V.; Lokteva, E.S.; Isaikina, O.Y. Non-Oxidative Propane Dehydrogenation on CrOx-ZrO2-SiO2 Catalyst Prepared by One-Pot Template-Assisted Method. Molecules 2022, 27, 6095. [Google Scholar] [CrossRef]
- Alothman, Z.A. A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials 2012, 5, 2874–2902. [Google Scholar] [CrossRef]
- Manzoli, M. Boosting the Characterization of Heterogeneous Catalysts for H2O2 Direct Synthesis by Infrared Spectroscopy. Catalysts 2019, 9, 30. [Google Scholar] [CrossRef] [Green Version]
- Bonelli, B.; Cozzolino, M.; Tesser, R.; Di Serio, M.; Piumetti, M.; Garrone, E.; Santacesaria, E. Study of the Surface Acidity of TiO2/SiO2 Catalysts by Means of FTIR Measurements of CO and NH3 Adsorption. J. Catal. 2007, 246, 293–300. [Google Scholar] [CrossRef]
- Pekounov, Y.; Chakarova, K.; Hadjiivanov, K. Surface Acidity of Calcium Phosphate and Calcium Hydroxyapatite: FTIR Spectroscopic Study of Low-Temperature CO Adsorption. Mater. Sci. Eng. C 2009, 29, 1178–1181. [Google Scholar] [CrossRef]
- Davydov, A. Molecular Spectroscopy of Oxide Catalyst Surfaces; Wiley: Chichester, UK, 2003; Volume 33, ISBN 047198731X. [Google Scholar]
- Liu, Y.; Chen, Y.; Tian, Y.; Sakthivel, T.; Liu, H.; Guo, S.; Zeng, H.; Dai, Z. Synergizing Hydrogen Spillover and Deprotonation by Internal Polarization Field in a MoS2/NiPS3 Vertical Heterostructure for Boosted Water Electrolysis. Adv. Mat. 2022, 34, 2203615. [Google Scholar] [CrossRef] [PubMed]
- Paukshtis, E.A.; Kotsarenko, N.S.; Karakchiev, L. G Investigation of Proton—Acceptor Properties of Oxide Surfaces by IR Spectroscopy of Hydrogen-Bonded Complexes. React. Kinet. Catal. Lett. 1979, 12, 315–319. [Google Scholar] [CrossRef]
- Paukshtis, E.A. IR Spectroscopy for Heterogeneous Acid–Base Catalysis, Nauka, Novosibirsk, 1992. In Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 1992. (In Russian) [Google Scholar]
- Phillips, C.B.; Datta, R. Production of Ethylene from Hydrous Ethanol on H-ZSM-5 under Mild Conditions. Ind. Eng. Chem. Res. 1997, 36, 4466–4475. [Google Scholar] [CrossRef]
- Mayorov, P.; Asabina, E.; Zhukova, A.; Osaulenko, D.; Pet’kov, V.; Lavrenov, D.; Kovalskii, A.; Fionov, A. Catalytic Properties of the Framework-Structured Zirconium-Containing Phosphates in Ethanol Conversion. Res. Chem. Intermed. 2021, 47, 3645–3659. [Google Scholar] [CrossRef]
- Chaichana, E.; Boonsinvarothai, N.; Chitpong, N.; Jongsomjit, B. Catalytic Dehydration of Ethanol to Ethylene and Diethyl Ether over Alumina Catalysts Containing Different Phases with Boron Modification. J. Porous Mater. 2019, 26, 599–610. [Google Scholar] [CrossRef]
- Takahara, I.; Saito, M.; Inaba, M.; Murata, K. Dehydration of Ethanol into Ethylene over Solid Acid Catalysts. Catal. Lett. 2005, 105, 249–252. [Google Scholar] [CrossRef]
- Badmaev, S.D.; Smorygina, A.S.; Paukshtis, E.A.; Belyaev, V.D.; Sobyanin, V.A.; Parmon, V.N. Gas-Phase Carbonylation of Dimethoxymethane to Methyl Methoxyacetate on Solid Acids: The Effect of Acidity on the Catalytic Activity. Kinet. Catal. 2018, 59, 99–103. [Google Scholar] [CrossRef]
- Zheng, K.; Gao, Q.; Li, C.; Zhang, C.; Wu, Y.; Zhang, Q.; Wang, X.; Zhang, J.; Han, Y.; Tan, Y. A novel and environmentally friendly NASICON-type material: Efficient catalyst for condensation of formaldehyde and acetic acid to acrylic acid and methyl acrylate. Chem. Ing. J. 2022, 446, 137324. [Google Scholar] [CrossRef]
Composition | a, Å | c, Å |
---|---|---|
MnTiP | 8.515(4) | 21.06(2) |
MnAlTiP | 8.516(5) | 21.05(3) |
NiTiP | 8.478(5) | 21.14(4) |
NiAlTiP | 8.478(1) | 20.97(8) |
Composition | BET Surface (m2/g) | Pore Volume (cm3/g) | Average Pore Diameter (nm) |
---|---|---|---|
MnTiP | 20.0 | 0.11 | 23 |
MnAlTiP | 33.6 | 0.25 | 23 |
NiTiP | 13.6 | 0.06 | 17 |
NiAlTiP | 16.6 | 0.13 | 20 |
Composition | ν(OH), cm−1 | ν(OH…C6H6), cm−1 | Δν, cm−1 | PA, kJ/mol ± 25 |
---|---|---|---|---|
NiAlTiP | 3745 | 3602 | 143 | 1340 |
3678 | 3500 | 178 | 1230 | |
MnAlTiP | 3745 | 3601 | 144 | 1340 |
3711 | - | - | - | |
3677 | 3487 | 190 | 1285 | |
NiTiP | 3743 | 3595 | 148 | 1335 |
3697 | - | - | ||
3663 | 3492 | 171 | 1305 | |
MnTiP | 3744 | 3601 | 143 | 1340 |
3698 | - | - | - | |
3667 | 3505 | 162 | 1315 |
Composition of the Catalysis | Selectivity to Ethylene (%) | Ethylene Yield (%) | Reference |
---|---|---|---|
NiAlTiP | 58 | 34 | This work |
MnAlTiP | 80 | 51 | This work |
NiTiP | 68 | 39 | This work |
MnTiP | 50 | 27 | This work |
Mn0.5Zr2(PO4)3 | 17 | 6 | [41] |
MnNi0.5Zr1.5(PO4)3 | 10 | 4 | [41] |
LiHf2(PO4)3 | 55 | 40 | [19] |
LiZr2(PO4)3 | 38 | 38 | [14] |
Li1.1Hf1.9In0.1(PO4)3 | 40 | 32 | [19] |
HTPS-650 | 60 | 55 | [26] |
NH4Hf2(PO4)3 | 60 | 48 | [20] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhukova, A.I.; Asabina, E.A.; Kharlanov, A.N.; Osaulenko, D.A.; Chuklina, S.G.; Zhukov, D.Y.; Pet’kov, V.I.; Deyneko, D.V. Novel Complex Titanium NASICON-Type Phosphates as Acidic Catalysts for Ethanol Dehydration. Catalysts 2023, 13, 185. https://doi.org/10.3390/catal13010185
Zhukova AI, Asabina EA, Kharlanov AN, Osaulenko DA, Chuklina SG, Zhukov DY, Pet’kov VI, Deyneko DV. Novel Complex Titanium NASICON-Type Phosphates as Acidic Catalysts for Ethanol Dehydration. Catalysts. 2023; 13(1):185. https://doi.org/10.3390/catal13010185
Chicago/Turabian StyleZhukova, Anna I., Elena A. Asabina, Andrey N. Kharlanov, Diana A. Osaulenko, Sofia G. Chuklina, Dmitry Yu. Zhukov, Vladimir I. Pet’kov, and Dina V. Deyneko. 2023. "Novel Complex Titanium NASICON-Type Phosphates as Acidic Catalysts for Ethanol Dehydration" Catalysts 13, no. 1: 185. https://doi.org/10.3390/catal13010185
APA StyleZhukova, A. I., Asabina, E. A., Kharlanov, A. N., Osaulenko, D. A., Chuklina, S. G., Zhukov, D. Y., Pet’kov, V. I., & Deyneko, D. V. (2023). Novel Complex Titanium NASICON-Type Phosphates as Acidic Catalysts for Ethanol Dehydration. Catalysts, 13(1), 185. https://doi.org/10.3390/catal13010185