Insight into the Effect of Oxygen Vacancy Prepared by Different Methods on CuO/Anatase Catalyst for CO Catalytic Oxidation
Abstract
:1. Introduction
2. Results
2.1. Textural and Morphology of CuO/Anatase Catalysts
2.2. Composition and Surface Chemical State of the Catalysts
2.3. Characterization of Oxygen Vacancy
2.4. CO Catalytic Oxidation Performance
2.5. Mechanism of CO Catalytic Oxidation
3. Materials and Methods
3.1. Materials
3.1.1. Preparation of Anatase TiO2
3.1.2. Preparation of CuO/Anatase Catalysts
3.1.3. Preparation of CuO/Anatase-H Catalyst
3.1.4. Preparation of CuO/Anatase-B Catalyst
3.2. Characterization
3.3. Evaluation of Catalytic Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Soliman, N.K. Factors affecting CO oxidation reaction over nanosized materials: A review. J. Mater. Res. Technol. 2019, 8, 2395–2407. [Google Scholar] [CrossRef]
- Yuan, W.; Ma, Y.; Wu, H.; Cheng, L. Single-atom catalysts for CO oxidation, CO2 reduction, and O2 electrochemistry. J. Energy Chem. 2022, 65, 254–279. [Google Scholar] [CrossRef]
- Yang, W.; Gong, J.; Wang, X.; Bao, Z.; Guo, Y.; Wu, Z. A Review on the Impact of SO2 on the Oxidation of NO, Hydrocarbons, and CO in Diesel Emission Control Catalysis. ACS Catal. 2021, 11, 12446–12468. [Google Scholar] [CrossRef]
- Zhao, S.; Chen, F.; Duan, S.; Shao, B.; Li, T.; Tang, H.; Lin, Q.; Zhang, J.; Li, L.; Huang, J.; et al. Remarkable active-site dependent H2O promoting effect in CO oxidation. Nat. Commun. 2019, 10, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kersell, H.; Hooshmand, Z.; Yan, G.; Le, D.; Nguyen, H.; Eren, B.; Wu, C.H.; Waluyo, I.; Hunt, A.; Nemsak, S.; et al. CO Oxidation mechanisms on CoOx-Pt Thin Films. J. Am. Chem. Soc. 2020, 142, 8312–8322. [Google Scholar] [CrossRef]
- Song, J.; Yang, Y.; Liu, S.; Li, L.; Yu, N.; Fan, Y.; Chen, Z.; Kuai, L.; Geng, B. Dispersion and support dictated properties and activities of Pt/metal oxide catalysts in heterogeneous CO oxidation. Nano Res. 2021, 14, 4841–4847. [Google Scholar] [CrossRef]
- Chee, S.W.; Arce-Ramos, J.M.; Li, W.; Genest, A.; Mirsaidov, U. Structural changes in noble metal nanoparticles during CO oxidation and their impact on catalyst activity. Nat. Commun. 2020, 11, 2133. [Google Scholar] [CrossRef]
- Su, Z.; Yang, W.; Wang, C.; Xiong, S.; Cao, X.; Peng, Y.; Si, W.; Weng, Y.; Xue, M.; Li, J. Roles of oxygen vacancies in the bulk and surface of CeO2 for toluene catalytic combustion. Environ. Sci. Technol. 2020, 54, 12684–12692. [Google Scholar] [CrossRef]
- Andana, T.; Piumetti, M.; Bensaid, S.; Russo, N.; Fino, D.; Pirone, R. CO and soot oxidation over Ce-Zr-Pr oxide catalysts. Nanoscale Res. Lett. 2016, 11, 278. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Chan, S.; Chang, W.; Chen, Y. Surface enrichment in mixed oxides of Cu, Co, and Mn, and its effect on CO oxidation. J. Catal. 1991, 130, 52–61. [Google Scholar] [CrossRef]
- Dosa, M.; Marin-Figueredo, M.J.; Sartoretti, E.; Novara, C.; Giorgis, F.; Bensaid, S.; Fino, D.; Russo, N.; Piumetti, M. Cerium-copper oxides synthesized in a multi-Inlet vortex reactor as effective nanocatalysts for CO and ethene oxidation reactions. Catal. 2022, 12, 364. [Google Scholar] [CrossRef]
- Boaro, M.; de Leitenburg, C.; Dolcetti, G.; Trovarelli, A. The Dynamics of Oxygen Storage in Ceria–zirconia model catalysts measured by CO oxidation under stationary and cycling feedstream Compositions. J. Catal. 2000, 193, 338–347. [Google Scholar] [CrossRef]
- Mondelli, C.; Santo, V.D.; Trovarelli, A.; Boaro, M.; Fusi, A.; Psaro, R.; Recchia, S. An operando DRIFTS–MS study on model Ce0.5Zr0.5O2 redox catalyst: A critical evaluation of DRIFTS and MS data on CO abatement reaction. Catal. Today 2006, 113, 81–86. [Google Scholar] [CrossRef]
- Pan, C.; Liu, X.; Zhang, X.; Mao, F.; Xu, P.; Zhu, Y.; Deng, H.; Luo, Z.; Sun, H.; Zhang, L.; et al. Fabrication and excellent antibacterial activity of well-defined CuO/Graphdiyne nanostructure. Chem. Res. Chin. Univ. 2021, 37, 1341–1347. [Google Scholar] [CrossRef]
- Fang, Y.; Chi, X.; Li, L.; Yang, J.; Liu, S.; Lu, X.; Xiao, W.; Wang, L.; Luo, Z.; Yang, W.; et al. Elucidating the nature of the CuI active site in CuO/TiO2 for excellent low-temperature CO oxidation. ACS Appl. Mater. Interfaces 2020, 12, 7091–7101. [Google Scholar] [CrossRef]
- Konsolakis, M. Recent Advances on Nitrous Oxide (N2O) Decomposition over non-noble-metal oxide catalysts: Catalytic performance, mechanistic considerations, and surface chemistry aspects. ACS Catal. 2015, 5, 6397–6421. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, B.; Li, Y.; Xu, Y.; Xin, Q.; Shen, W. CuO/CeO2 catalysts: Redox features and catalytic behaviors. Appl. Catal. A 2005, 288, 116–125. [Google Scholar] [CrossRef]
- Royer, S.; Duprez, D. Catalytic oxidation of carbon monoxide over transition metal oxides. ChemCatChem 2011, 3, 24–65. [Google Scholar] [CrossRef]
- Pan, C.; Shen, H.; Liu, G.; Zhang, X.; Liu, X.; Liu, H.; Xu, P.; Chen, W.; Tian, Y.; Deng, H.; et al. CuO/TiO2 nanobelt with oxygen vacancies for visible-light-driven photocatalytic bacterial inactivation. ACS Appl. Nano Mater. 2022, 5, 10980–10990. [Google Scholar] [CrossRef]
- Yang, J.; Hu, S.; Fang, Y.; Hoang, S.; Li, L.; Yang, W.; Liang, Z.; Wu, J.; Hu, J.; Xiao, W.; et al. Oxygen vacancy promoted O2 activation over perovskite oxide for low-temperature CO oxidation. ACS Catal. 2019, 9, 9751–9763. [Google Scholar] [CrossRef]
- Gu, H.; Liu, X.; Liu, X.; Ling, C.; Wei, K.; Zhan, G.; Guo, Y.; Zhang, L. Adjacent single-atom irons boosting molecular oxygen activation on MnO2. Nat. Commun. 2021, 12, 5422. [Google Scholar] [CrossRef] [PubMed]
- Maeda, Y.; Iizuka, Y.; Kohyama, M. Generation of oxygen vacancies at a Au/TiO2 perimeter interface during CO oxidation detected by in situ electrical conductance measurement. J. Am. Chem. Soc. 2013, 135, 906–909. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Schneider, C.; Freitag, D.; Hartmann, M.; Venkatesan, U.; Muller, J.; Spiecker, E.; Schmuki, P. Black TiO2 nanotubes: Cocatalyst-free open-circuit hydrogen generation. Nano Lett. 2014, 14, 3309–3313. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Wen, D.; Leubner, S.; Oschatz, M.; Liu, W.; Holzschuh, M.; Simon, F.; Kaskel, S.; Eychmuller, A. Nickel cobalt oxide hollow nanosponges as advanced electrocatalysts for the oxygen evolution reaction. Chem. Commun. (Camb) 2015, 51, 7851–7854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, D.; Wang, C.; Yu, Y.; Zhao, B.-H.; Wang, W.; Du, Y.; Zhang, B. Understanding the nature of ammonia treatment to synthesize oxygen vacancy-enriched transition metal oxides. Chem 2019, 5, 376–389. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Zhang, Q.; Zhang, H.; Li, X.; Chen, W.; Xu, J.; Shen, H.; Yang, J.; Pan, C.; Zhu, Y.; et al. Dual activation of molecular oxygen and surface lattice oxygen in single atom Cu1/TiO2 catalyst for CO oxidation. Angew. Chem. Int. Ed. 2022, 61, e202212273. [Google Scholar] [CrossRef]
- Fang, Y.; Li, H.; Zhang, Q.; Wang, C.; Xu, J.; Shen, H.; Yang, J.; Pan, C.; Zhu, Y.; Luo, Z.; et al. Oxygen vacancy-governed opposite catalytic performance for C3H6 and C3H8 combustion: The effect of the Pt electronic structure and chemisorbed oxygen species. Environ. Sci. Technol. 2022, 56, 3245–3257. [Google Scholar] [CrossRef]
- Zhang, J.; Li, M.; Feng, Z.; Chen, J.; Li, C.; UV Raman spectroscopic study on TiO2. I. phase transformation at the surface and in the bulk. J. Phys. Chem. B. 2006, 110, 927–935. [Google Scholar] [CrossRef]
- Sun, C.; Chen, W.; Jia, X.; Liu, A.; Gao, F.; Feng, S.; Dong, L. Comprehensive understanding of the superior performance of Sm-modified Fe2O3 catalysts with regard to NO conversion and H2O/SO2 resistance in the NH3-SCR reaction. Chin. J. Catal. 2021, 42, 417–430. [Google Scholar] [CrossRef]
- Chen, W.; Yang, S.; Liu, H.; Huang, F.; Shao, Q.; Liu, L.; Sun, J.; Sun, C.; Chen, D.; Dong, L. Single-Atom Ce-Modified alpha-Fe2O3 for Selective Catalytic Reduction of NO with NH3. Environ. Sci. Technol. 2022, 56, 10442–10453. [Google Scholar] [CrossRef]
- Xie, Y.; Wu, J.; Jing, G.; Zhang, H.; Zeng, S.; Tian, X.; Zou, X.; Wen, J.; Su, H.; Zhong, C.-J.; et al. Structural origin of high catalytic activity for preferential CO oxidation over CuO/CeO2 nanocatalysts with different shapes. Appl. Catal. B 2018, 239, 665–676. [Google Scholar] [CrossRef]
- Wang, S.-P.; Zhang, T.-Y.; Su, Y.; Wang, S.-R.; Zhang, S.-M.; Zhu, B.-L.; Wu, S.-H. An Investigation of Catalytic Activity for CO Oxidation of CuO/Ce x Zr1–x O2 Catalysts. Catal. Lett. 2007, 121, 70–76. [Google Scholar] [CrossRef]
- Pan, C.; Wang, C.; Zhao, X.; Xu, P.; Mao, F.; Yang, J.; Zhu, Y.; Yu, R.; Xiao, S.; Fang, Y.; et al. Neighboring sp-Hybridized Carbon Participated Molecular Oxygen Activation on the Interface of Sub-nanocluster CuO/Graphdiyne. J. Am. Chem. Soc. 2022, 144, 4942–4951. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Dimitrijevic, N.; Chen, L.; Rajh, T.; Gray, K. Role of Surface/Interfacial Cu2+ Sites in the Photocatalytic Activity of Coupled CuO−TiO2 Nanocomposites. J. Phys. Chem. C 2008, 112, 19040–19044. [Google Scholar] [CrossRef]
- Wu, N.; Wang, J.; Tafen, D.; Wang, H.; Zheng, J.; Lewis, J.; Liu, X.; Leonard, S.; Manivannan, A. Sahpe-Enhanced Photocatalytic Activity of Single-Crystalline Anatase TiO2 (101) Nanobelts. J. Am. Chem. Soc. 2010, 132, 6679–6685. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Li, L.; Fang, Y.; Shan, Y.; Xu, J.; Shen, H.; Yu, Y.; Guo, Y.; He, H. Interfacial Structure-governed SO2 Resistance of Cu/TiO2 Catalysts in the Catalytic Oxidation of CO. Catal. Sci. Technol. 2020, 10, 1661–1674. [Google Scholar] [CrossRef]
- Harzandi, A.M.; Tiwari, J.N.; Lee, H.S.; Jeon, H.; Cho, W.J.; Lee, G.; Baik, J.; Kwak, J.H.; Kim, K.S. Efficient CO Oxidation by 50-Facet Cu2O Nanocrystals Coated with CuO Nanoparticles. ACS Appl. Mater. Inter. 2017, 9, 2495–2499. [Google Scholar] [CrossRef]
- Binder, A.J.; Toops, T.J.; Unocic, R.R.; Parks, J.E., II; Dai, S. Low-Temperature CO Oxidation over a Ternary Oxide Catalyst with High Resistance to Hydrocarbon Inhibition. Angew. Chem. Int. Ed. 2015, 54, 13263–13267. [Google Scholar] [CrossRef]
- Li, W.; Hu, Y.; Jiang, H.; Jiang, N.; Bia, W.; Li, C. Litchi-peel-like Hierarchical Hollow Copper-ceria Microspheres: Aerosol-Assisted Synthesis and High Activity and Stability for Catalytic CO Oxidation. Nanoscale 2018, 10, 22775–22786. [Google Scholar] [CrossRef]
Samples | Cu Content (wt%) | BET Surface Area (m2g−1) | Total Pore Volume (cm3g−1) |
---|---|---|---|
Anatase | - | 34.9 | 0.10 |
CuO/Anatase | 4.9 | 31.7 | 0.10 |
CuO/Anatase-B | 4.7 | 33.5 | 0.13 |
CuO/Anatase-H | 4.6 | 33.0 | 0.10 |
Catalysts | Oads/(Oads + Olat + OOH) | Cu+/(Cu+ + Cu2+) |
---|---|---|
Anatase | 18.3% | - |
CuO/Anatase | 19.0% | 37.9% |
CuO/Anatase-B | 20.8% | 46.8% |
CuO/Anatase-H | 32.7% | 57.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Shen, H.; Zhu, X.; Liu, G.; Pan, C.; Huang, F.; Fang, Y.; Guo, Y.; Luo, Z. Insight into the Effect of Oxygen Vacancy Prepared by Different Methods on CuO/Anatase Catalyst for CO Catalytic Oxidation. Catalysts 2023, 13, 70. https://doi.org/10.3390/catal13010070
Chen W, Shen H, Zhu X, Liu G, Pan C, Huang F, Fang Y, Guo Y, Luo Z. Insight into the Effect of Oxygen Vacancy Prepared by Different Methods on CuO/Anatase Catalyst for CO Catalytic Oxidation. Catalysts. 2023; 13(1):70. https://doi.org/10.3390/catal13010070
Chicago/Turabian StyleChen, Wei, Huan Shen, Xiaoxiao Zhu, Guoli Liu, Chuanqi Pan, Fajun Huang, Yarong Fang, Yanbing Guo, and Zhu Luo. 2023. "Insight into the Effect of Oxygen Vacancy Prepared by Different Methods on CuO/Anatase Catalyst for CO Catalytic Oxidation" Catalysts 13, no. 1: 70. https://doi.org/10.3390/catal13010070
APA StyleChen, W., Shen, H., Zhu, X., Liu, G., Pan, C., Huang, F., Fang, Y., Guo, Y., & Luo, Z. (2023). Insight into the Effect of Oxygen Vacancy Prepared by Different Methods on CuO/Anatase Catalyst for CO Catalytic Oxidation. Catalysts, 13(1), 70. https://doi.org/10.3390/catal13010070