Recent Innovative Progress of Metal Oxide Quantum-Dot-Integrated g-C3N4 (0D-2D) Synergistic Nanocomposites for Photocatalytic Applications
Abstract
:1. Introduction
2. Synthesis Protocols of g-C3N4
3. Metal Oxide QD-g-C3N4 Nanocomposites
3.1. Wide-Bandgap Metal Oxide QD-g-C3N4 Nanocomposites
3.2. Bi-Based QD-g-C3N4 Nanocomposites
3.3. Other Metal Oxide QD-g-C3N4 Nanocomposites
4. Conclusions and Perspectives
5. Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Opoku, E.E.O.; Boachie, M.K. The environmental impact of industrialization and foreign direct investment. Energy Policy 2020, 137, 111178. [Google Scholar] [CrossRef]
- Tran, V.V.; Park, D.; Lee, Y.-C. Indoor Air Pollution, Related Human Diseases, and Recent Trends in the Control and Improvement of Indoor Air Quality. Int. J. Environ. Res. Public Health 2020, 17, 2927. [Google Scholar] [CrossRef] [PubMed]
- Antoci, A.; Galeotti, M.; Sordi, S. Environmental pollution as engine of industrialization. Commun. Nonlinear Sci. Numer. Simul. 2018, 58, 262–273. [Google Scholar] [CrossRef]
- Siddiqua, A.; Hahladakis, J.N.; Al-Attiya, W.A.K.A. An overview of the environmental pollution and health effects associated with waste landfilling and open dumping. Environ. Sci. Pollut. Res. 2022, 29, 58514–58536. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef]
- He, J.; Kumar, A.; Khan, M.; Lo, I.M.C. Critical review of photocatalytic disinfection of bacteria: From noble metals- and carbon nanomaterials-TiO2 composites to challenges of water characteristics and strategic solutions. Sci. Total Environ. 2021, 758, 143953. [Google Scholar] [CrossRef]
- Wei, Z.; Liu, J.; Shangguan, W. A review on photocatalysis in antibiotic wastewater: Pollutant degradation and hydrogen production. Chin. J. Catal. 2020, 41, 1440–1450. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, X.; Liu, H.; Liu, C.; Wan, Y.; Long, Y.; Cai, Z. Recent Advances and Applications of Semiconductor Photocatalytic Technology. Appl. Sci. 2019, 9, 2489. [Google Scholar] [CrossRef]
- Guo, Q.; Zhou, C.; Ma, Z.; Yang, X. Fundamentals of TiO2 Photocatalysis: Concepts, Mechanisms, and Challenges. Adv. Mater. 2019, 31, 1901997. [Google Scholar] [CrossRef]
- Wang, J.; Guo, R.-T.; Bi, Z.-X.; Chen, X.; Hu, X.; Pan, W.-G. A review on TiO2−x-based materials for photocatalytic CO2 reduction. Nanoscale 2022, 14, 11512–11528. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, S.; Shi, R.; Waterhouse, G.I.N.; Tang, J.; Zhang, T. Two-dimensional photocatalyst design: A critical review of recent experimental and computational advances. Mater. Today 2020, 34, 78–91. [Google Scholar] [CrossRef]
- Li, X.; Xiong, J.; Gao, X.; Huang, J.; Feng, Z.; Chen, Z.; Zhu, Y. Recent advances in 3D g-C3N4 composite photocatalysts for photocatalytic water splitting, degradation of pollutants and CO2 reduction. J. Alloys Compd. 2019, 802, 196–209. [Google Scholar] [CrossRef]
- Luo, Y.; Zhu, Y.; Han, Y.; Ye, H.; Liu, R.; Lan, Y.; Xue, M.; Xie, X.; Yu, S.; Zhang, L.; et al. g-C3N4-based photocatalysts for organic pollutant removal: A critical review. Carbon Res. 2023, 2, 14. [Google Scholar] [CrossRef]
- Chen, L.; Maigbay, M.A.; Li, M.; Qiu, X. Synthesis and modification strategies of g-C3N4 nanosheets for photocatalytic applications. Adv. Powder Mater 2023, 100150, in press. [Google Scholar] [CrossRef]
- Zhu, W.; Yue, Y.; Wang, H.; Zhang, B.; Hou, R.; Xiao, J.; Huang, X.; Ishag, A.; Sun, Y. Recent advances on energy and environmental application of graphitic carbon nitride (g-C3N4)-based photocatalysts: A review. J. Environ. Chem. Eng. 2023, 11, 110164. [Google Scholar] [CrossRef]
- Babu, B.; Koutavarapu, R.; Shim, J.; Yoo, K. Enhanced visible-light-driven photoelectrochemical and photocatalytic performance of Au-SnO2 quantum dot-anchored g-C3N4 nanosheets. Sep. Purif. Technol. 2020, 240, 116652. [Google Scholar] [CrossRef]
- Jin, T.; Liu, C.B.; Chen, F.; Qian, J.C.; Qiu, Y.B.; Meng, X.R.; Chen, Z.G. Synthesis of g-C3N4/CQDs composite and its photocatalytic degradation property for Rhodamine B. Carbon Lett. 2022, 32, 1451–1462. [Google Scholar] [CrossRef]
- Zhao, Z.W.; Fan, J.Y.; Deng, X.Y.; Liu, J. One-step synthesis of phosphorus-doped g-C3N4/Co3O4 quantum dots from vitamin B12 with enhanced visible-light photocatalytic activity for metronidazole degradation. Chem. Eng. J. 2019, 360, 1517–1529. [Google Scholar] [CrossRef]
- Zhu, X.; Dong, Z.M.; Xu, J.D.; Lin, S.Y.; Liu, J.Y.; Cheng, Z.P.; Cao, X.H.; Wang, Y.Q.; Liu, Y.H.; Zhang, Z.B. Visible-light induced electron-transfer in MoO3 QDs/g-C3N4 nanosheets for efficient photocatalytic reduction of U(VI). J. Alloys Compd. 2022, 926, 10. [Google Scholar] [CrossRef]
- Guo, R.T.; Liu, X.Y.; Qin, H.; Ang, Z.Y.; Shi, X.; Pan, W.G.; Fu, Z.G.; Tang, J.Y.; Jia, P.Y.; Miao, Y.F.; et al. Photocatalytic reduction of CO2 into CO over nanostructure Bi2S3 quantum dots/g-C3N4 composites with Z-scheme mechanism. Appl. Surf. Sci 2020, 500, 144059. [Google Scholar] [CrossRef]
- Wang, J.M.; Yu, L.M.; Wang, Z.J.; Wei, W.; Wang, K.F.; Wei, X.H. Constructing 0D/2D Z-Scheme Heterojunction of CdS/g-C3N4 with Enhanced Photocatalytic Activity for H-2 Evolution. Catal. Lett. 2021, 151, 3550–3561. [Google Scholar] [CrossRef]
- Li, G.; Huang, J.M.; Wang, N.N.; Huang, J.L.; Zheng, Y.M.; Zhan, G.W.; Li, Q.B. Carbon quantum dots functionalized g-C3N4 nanosheets as enhanced visible-light photocatalysts for water splitting. Diam. Relat. Mat. 2021, 116, 9. [Google Scholar] [CrossRef]
- Huo, Y.; Ding, X.H.; Zhang, X.Y.; Ren, M.; Sang, L.B.; Wen, S.Y.; Song, D.Y.; Yang, Y.X. Graphene quantum dot implanted supramolecular carbon nitrides with robust photocatalytic activity against recalcitrant contaminants. Catal. Sci. Technol. 2022, 12, 3937–3946. [Google Scholar] [CrossRef]
- Hu, X.Y.; Yu, Y.T.; Chen, D.D.; Xu, W.C.; Fang, J.Z.; Liu, Z.; Li, R.Q.; Yao, L.; Qin, J.J.; Fang, Z.Q. Anatase/Rutile homojunction quantum dots anchored on g-C3N4 nanosheets for antibiotics degradation in seawater matrice via coupled adsorption-photocatalysis: Mechanism insight and toxicity evaluation. Chem. Eng. J. 2022, 432, 15. [Google Scholar] [CrossRef]
- Zhao, T.Y.; Xing, Z.P.; Xiu, Z.Y.; Li, Z.Z.; Yang, S.L.; Zhou, W. Oxygen-Doped MoS2 Nanospheres/CdS Quantum Dots/g-C3N4 Nanosheets Super-Architectures for Prolonged Charge Lifetime and Enhanced Visible-Light-Driven Photocatalytic Performance. ACS Appl. Mater. Interfaces 2019, 11, 7104–7111. [Google Scholar] [CrossRef]
- Wu, H.H.; Yu, S.Y.; Wang, Y.; Han, J.; Wang, L.; Song, N.; Dong, H.J.; Li, C.M. A facile one-step strategy to construct 0D/2D SnO2/g-C3N4 heterojunction photocatalyst for high-efficiency hydrogen production performance from water splitting. Int. J. Hydrogen Energy 2020, 45, 30142–30152. [Google Scholar] [CrossRef]
- Babu, B.; Cho, M.; Byon, C.; Shim, J. Sunlight-driven photocatalytic activity of SnO2 QDs-g-C3N4 nanolayers. Mater. Lett. 2018, 212, 327–331. [Google Scholar] [CrossRef]
- Li, N.X.; Liu, X.C.; Zhou, J.C.; Chen, W.S.; Liu, M.C. Encapsulating CuO quantum dots in MIL-125(Ti) coupled with g-C3N4 for efficient photocatalytic CO2 reduction. Chem. Eng. J. 2020, 399, 11. [Google Scholar] [CrossRef]
- Zou, Y.Z.; Xie, Y.; Yu, S.; Chen, L.; Cui, W.; Dong, F.; Zhou, Y. SnO2 quantum dots anchored on g-C3N4 for enhanced visible-light photocatalytic removal of NO and toxic NO2 inhibition. Appl. Surf. Sci. 2019, 496, 8. [Google Scholar] [CrossRef]
- Zhu, Z.; Tang, X.; Fan, W.Q.; Liu, Z.; Huo, P.W.; Wang, T.S.; Yan, Y.S.; Li, C.X. Studying of Co-doped g-C3N4 and modified with Fe3O4 quantum dots on removing tetracycline. J. Alloys Compd. 2019, 775, 248–258. [Google Scholar] [CrossRef]
- Cheng, C.; Chen, D.Y.; Li, N.J.; Li, H.; Xu, Q.F.; He, J.H.; Lu, J.M. Bi2WO6 quantum dots with oxygen vacancies combined with g-C3N4 for NO removal. J. Colloid Interface Sci. 2022, 609, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Paul, D.R.; Sharma, R.; Nehra, S.P.; Sharma, A. Effect of calcination temperature, pH and catalyst loading on photodegradation efficiency of urea derived graphitic carbon nitride towards methylene blue dye solution. RSC Adv. 2019, 9, 15381–15391. [Google Scholar] [CrossRef] [PubMed]
- Surender, S.; Balakumar, S. Insight into the melamine-derived freeze-dried nanostructured g-C3N4 for expeditious photocatalytic degradation of dye pollutants. Diam. Relat. Mat. 2022, 128, 109269. [Google Scholar] [CrossRef]
- Raaja Rajeshwari, M.; Kokilavani, S.; Sudheer Khan, S. Recent developments in architecturing the g-C3N4 based nanostructured photocatalysts: Synthesis, modifications and applications in water treatment. Chemosphere 2022, 291, 132735. [Google Scholar] [CrossRef]
- Fernández-Catalá, J.; Greco, R.; Navlani-García, M.; Cao, W.; Berenguer-Murcia, Á.; Cazorla-Amorós, D. g-C3N4-Based Direct Z-Scheme Photocatalysts for Environmental Applications. Catalysts 2022, 12, 1137. [Google Scholar] [CrossRef]
- Hayat, A.; Sohail, M.; El Jery, A.; Al-Zaydi, K.M.; Alshammari, K.F.; Khan, J.; Ali, H.; Ajmal, Z.; Taha, T.A.; Ud Din, I.; et al. Different Dimensionalities, Morphological Advancements and Engineering of g-C3N4-Based Nanomaterials for Energy Conversion and Storage. Chem. Rec. 2023, 23, e202200171. [Google Scholar] [CrossRef]
- Linh, P.H.; Do Chung, P.; Van Khien, N.; Oanh, L.T.M.; Thu, V.T.; Bach, T.N.; Hang, L.T.; Hung, N.M.; Lam, V.D. A simple approach for controlling the morphology of g-C3N4 nanosheets with enhanced photocatalytic properties. Diam. Relat. Mat. 2021, 111, 108214. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, Y.; An, X.; Zhao, J.; Bao, Y.; Hou, L.-A. Exfoliation method matters: The microstructure-dependent photoactivity of g-C3N4 nanosheets for water purification. J. Hazard. Mater. 2022, 424, 127424. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, B.; Xie, W.; Zhao, X.; Wang, Z.; Su, X.; Yang, C. Combined soft templating with thermal exfoliation toward synthesis of porous g-C3N4 nanosheets for improved photocatalytic hydrogen evolution. J. Mater. Res. Technol. 2021, 13, 301–310. [Google Scholar] [CrossRef]
- Wu, X.; Gao, D.; Wang, P.; Yu, H.; Yu, J. NH4Cl-induced low-temperature formation of nitrogen-rich g-C3N4 nanosheets with improved photocatalytic hydrogen evolution. Carbon 2019, 153, 757–766. [Google Scholar] [CrossRef]
- Zhou, L.; Shen, Z.; Wang, S.; Gao, J.; Tang, L.; Li, J.; Dong, Y.; Wang, Z.; Lyu, J. Construction of quantum-scale catalytic regions on anatase TiO2 nanoparticles by loading TiO2 quantum dots for the photocatalytic degradation of VOCs. Ceram. Int. 2021, 47, 21090–21098. [Google Scholar] [CrossRef]
- Javed, S.; Islam, M.; Mujahid, M. Synthesis and characterization of TiO2 quantum dots by sol gel reflux condensation method. Ceram. Int. 2019, 45, 2676–2679. [Google Scholar] [CrossRef]
- Wang, S.; Wang, F.; Su, Z.; Wang, X.; Han, Y.; Zhang, L.; Xiang, J.; Du, W.; Tang, N. Controllable Fabrication of Heterogeneous p-TiO2 QDs@g-C3N4 p-n Junction for Efficient Photocatalysis. Catalysts 2019, 9, 439. [Google Scholar] [CrossRef]
- Wang, J.; Lin, W.; Hu, H.; Liu, C.; Cai, Q.; Zhou, S.; Kong, Y. Engineering Z-system hybrids of 0D/2D F-TiO2 quantum dots/g-C3N4 heterostructures through chemical bonds with enhanced visible-light photocatalytic performance. New J. Chem. 2021, 45, 3067–3078. [Google Scholar] [CrossRef]
- Lee, J.-H.; Jeong, S.-Y.; Son, Y.-D.; Lee, S.-W. Facile Fabrication of TiO2 Quantum Dots-Anchored g-C3N4 Nanosheets as 0D/2D Heterojunction Nanocomposite for Accelerating Solar-Driven Photocatalysis. Nanomaterials 2023, 13, 1565. [Google Scholar] [CrossRef]
- Kumari, K.; Ahmaruzzaman, M. SnO2 quantum dots (QDs): Synthesis and potential applications in energy storage and environmental remediation. Mater. Res. Bull. 2023, 168, 112446. [Google Scholar] [CrossRef]
- Yu, B.; Li, Y.; Wang, Y.; Li, H.; Zhang, R. Facile hydrothermal synthesis of SnO2 quantum dots with enhanced photocatalytic degradation activity: Role of surface modification with chloroacetic acid. J. Environ. Chem. Eng. 2021, 9, 105618. [Google Scholar] [CrossRef]
- Xu, Z.; Jiang, Y.; Li, Z.; Chen, C.; Kong, X.; Chen, Y.; Zhou, G.; Liu, J.-M.; Kempa, K.; Gao, J. Rapid Microwave-Assisted Synthesis of SnO2 Quantum Dots for Efficient Planar Perovskite Solar Cells. ACS Appl. Energy Mater. 2021, 4, 1887–1893. [Google Scholar] [CrossRef]
- Bathula, B.; Gurugubelli, T.R.; Yoo, J.; Yoo, K. Recent Progress in the Use of SnO2 Quantum Dots: From Synthesis to Photocatalytic Applications. Catalysts 2023, 13, 765. [Google Scholar] [CrossRef]
- Wu, Z.; Jing, H.; Zhao, Y.; Lu, K.; Liu, B.; Yu, J.; Xia, X.; Lei, W.; Hao, Q. Grain boundary and interface interaction Co-regulation promotes SnO2 quantum dots for efficient CO2 reduction. Chem. Eng. J. 2023, 451, 138477. [Google Scholar] [CrossRef]
- Yousaf, M.U.; Pervaiz, E.; Minallah, S.; Afzal, M.J.; Honghong, L.; Yang, M. Tin oxide quantum dots decorated graphitic carbon nitride for enhanced removal of organic components from water: Green process. Results Phys. 2019, 14, 102455. [Google Scholar] [CrossRef]
- Ji, H.; Fan, Y.; Yan, J.; Xu, Y.; She, X.; Gu, J.; Fei, T.; Xu, H.; Li, H. Construction of SnO2/graphene-like g-C3N4 with enhanced visible light photocatalytic activity. RSC Adv. 2017, 7, 36101–36111. [Google Scholar] [CrossRef]
- Mohamed, K.M.; Benitto, J.J.; Vijaya, J.J.; Bououdina, M. Recent Advances in ZnO-Based Nanostructures for the Photocatalytic Degradation of Hazardous, Non-Biodegradable Medicines. Crystals 2023, 13, 329. [Google Scholar] [CrossRef]
- Mohamed, W.A.A.; Handal, H.T.; Ibrahem, I.A.; Galal, H.R.; Mousa, H.A.; Labib, A.A. Recycling for solar photocatalytic activity of Dianix blue dye and real industrial wastewater treatment process by zinc oxide quantum dots synthesized by solvothermal method. J. Hazard. Mater. 2021, 404, 123962. [Google Scholar] [CrossRef]
- Mohamed, W.A.A.; Ibrahem, I.A.; El-Sayed, A.M.; Galal, H.R.; Handal, H.; Mousa, H.A.; Labib, A.A. Zinc oxide quantum dots for textile dyes and real industrial wastewater treatment: Solar photocatalytic activity, photoluminescence properties and recycling process. Adv. Powder Technol. 2020, 31, 2555–2565. [Google Scholar] [CrossRef]
- Ye, Q.; Xu, L.; Xia, Y.; Gang, R.; Xie, C. Zinc oxide quantum dots/graphitic carbon nitride nanosheets based visible-light photocatalyst for efficient tetracycline hydrochloride degradation. J. Porous Mat. 2022, 29, 571–581. [Google Scholar] [CrossRef]
- Ren, Z.; Ma, H.; Geng, J.; Liu, C.; Song, C.; Lv, Y. ZnO QDs/GO/g-C3N4 Preparation and Photocatalytic Properties of Composites. Micromachines 2023, 14, 1501. [Google Scholar] [CrossRef]
- Vattikuti, S.V.P.; Reddy, P.A.K.; Shim, J.; Byon, C. Visible-Light-Driven Photocatalytic Activity of SnO2–ZnO Quantum Dots Anchored on g-C3N4 Nanosheets for Photocatalytic Pollutant Degradation and H2 Production. ACS Omega 2018, 3, 7587–7602. [Google Scholar] [CrossRef]
- Wang, J.B.; Liu, C.; Yang, S.; Lin, X.; Shi, W.L. Fabrication of a ternary heterostructure BiVO4 quantum dots/C-60/g-C3N4 photocatalyst with enhanced photocatalytic activity. J. Phys. Chem. Solids 2020, 136, 7. [Google Scholar] [CrossRef]
- Liang, Y.; Xu, W.; Fang, J.; Liu, Z.; Chen, D.; Pan, T.; Yu, Y.; Fang, Z. Highly dispersed bismuth oxide quantum dots/graphite carbon nitride nanosheets heterojunctions for visible light photocatalytic redox degradation of environmental pollutants. Appl. Catal. B 2021, 295, 120279. [Google Scholar] [CrossRef]
- Zeng, Y.; Yin, Q.; Liu, Z.; Dong, H. Attapulgite-interpenetrated g-C3N4/Bi2WO6 quantum-dots Z-scheme heterojunction for 2-mercaptobenzothiazole degradation with mechanism insight. Chem. Eng. J. 2022, 435, 134918. [Google Scholar] [CrossRef]
- Ding, F.; Chen, P.; Liu, F.; Chen, L.; Guo, J.-K.; Shen, S.; Zhang, Q.; Meng, L.-H.; Au, C.-T.; Yin, S.-F. Bi2MoO6/g-C3N4 of 0D/2D heterostructure as efficient photocatalyst for selective oxidation of aromatic alkanes. Appl. Surf. Sci. 2019, 490, 102–108. [Google Scholar] [CrossRef]
- Sun, Y.; Yuan, X.; Wang, Y.; Zhang, W.; Li, Y.; Zhang, Z.; Su, J.; Zhang, J.; Hu, S. CeO2 quantum dots anchored g-C3N4: Synthesis, characterization and photocatalytic performance. Appl. Surf. Sci. 2022, 576, 151901. [Google Scholar] [CrossRef]
- Qin, Y.Y.; Li, H.; Lu, J.; Ma, C.C.; Liu, X.L.; Meng, M.J.; Yan, Y.S. Fabrication of magnetic quantum dots modified Z-scheme Bi2O4/g-C3N4 photocatalysts with superior hydroxyl radical productivity for the degradation of rhodamine B. Appl. Surf. Sci. 2019, 493, 458–469. [Google Scholar] [CrossRef]
- Sun, C.; Yang, J.; Zhu, Y.; Xu, M.; Cui, Y.; Liu, L.; Ren, W.; Zhao, H.; Liang, B. Synthesis of 0D SnO2 nanoparticles/2D g-C3N4 nanosheets heterojunction: Improved charge transfer and separation for visible-light photocatalytic performance. J. Alloys Compd. 2021, 871, 159561. [Google Scholar] [CrossRef]
- Mohammad, A.; Khan, M.E.; Karim, M.R.; Cho, M.H. Synergistically effective and highly visible light responsive SnO2-g-C3N4 nanostructures for improved photocatalytic and photoelectrochemical performance. Appl. Surf. Sci. 2019, 495, 143432. [Google Scholar] [CrossRef]
- Van Pham, V.; Mai, D.-Q.; Bui, D.-P.; Van Man, T.; Zhu, B.; Zhang, L.; Sangkaworn, J.; Tantirungrotechai, J.; Reutrakul, V.; Cao, T.M. Emerging 2D/0D g-C3N4/SnO2 S-scheme photocatalyst: New generation architectural structure of heterojunctions toward visible-light-driven NO degradation. Environ. Pollut. 2021, 286, 117510. [Google Scholar] [CrossRef]
- Wang, X.; He, Y.; Xu, L.; Xia, Y.; Gang, R. SnO2 particles as efficient photocatalysts for organic dye degradation grown in-situ on g-C3N4 nanosheets by microwave-assisted hydrothermal method. Mater. Sci. Semicond. Process. 2021, 121, 105298. [Google Scholar] [CrossRef]
- Zhang, B.; He, X.; Yu, C.; Liu, G.; Ma, D.; Cui, C.; Yan, Q.; Zhang, Y.; Zhang, G.; Ma, J.; et al. Degradation of tetracycline hydrochloride by ultrafine TiO2 nanoparticles modified g-C3N4 heterojunction photocatalyst: Influencing factors, products and mechanism insight. Chin. Chem. Lett. 2022, 33, 1337–1342. [Google Scholar] [CrossRef]
- Ni, S.; Fu, Z.; Li, L.; Ma, M.; Liu, Y. Step-scheme heterojunction g-C3N4/TiO2 for efficient photocatalytic degradation of tetracycline hydrochloride under UV light. Colloids Surf. A Physicochem. Eng. Asp. 2022, 649, 129475. [Google Scholar] [CrossRef]
- Guo, F.; Sun, H.; Huang, X.; Shi, W.; Yan, C. Fabrication of TiO2/high-crystalline g-C3N4 composite with enhanced visible-light photocatalytic performance for tetracycline degradation. J. Chem. Technol. Biotechnol. 2020, 95, 2684–2693. [Google Scholar] [CrossRef]
- Gündoğmuş, P.; Park, J.; Öztürk, A. Preparation and photocatalytic activity of g-C3N4/TiO2 heterojunctions under solar light illumination. Ceram. Int. 2020, 46, 21431–21438. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Q.; Lu, Y.; Song, Z.; Wang, C.; Li, D.; Tang, X.; Zhou, X. Surface hydroxylation of TiO2/g-C3N4 photocatalyst for photo-Fenton degradation of tetracycline. Ceram. Int. 2022, 48, 1306–1313. [Google Scholar] [CrossRef]
- Jung, H.; Pham, T.-T.; Shin, E.W. Effect of g-C3N4 precursors on the morphological structures of g-C3N4/ZnO composite photocatalysts. J. Alloys Compd. 2019, 788, 1084–1092. [Google Scholar] [CrossRef]
- Ngullie, R.C.; Alaswad, S.O.; Bhuvaneswari, K.; Shanmugam, P.; Pazhanivel, T.; Arunachalam, P. Synthesis and Characterization of Efficient ZnO/g-C3N4 Nanocomposites Photocatalyst for Photocatalytic Degradation of Methylene Blue. Coatings 2020, 10, 500. [Google Scholar] [CrossRef]
- Tan, X.; Wang, X.; Hang, H.; Zhang, D.; Zhang, N.; Xiao, Z.; Tao, H. Self-assembly method assisted synthesis of g-C3N4/ZnO heterostructure nanocomposites with enhanced photocatalytic performance. Opt. Mater. 2019, 96, 109266. [Google Scholar] [CrossRef]
- Naseri, A.; Samadi, M.; Pourjavadi, A.; Ramakrishna, S.; Moshfegh, A.Z. Enhanced photocatalytic activity of ZnO/g-C3N4 nanofibers constituting carbonaceous species under simulated sunlight for organic dye removal. Ceram. Int. 2021, 47, 26185–26196. [Google Scholar] [CrossRef]
- Mathialagan, A.; Manavalan, M.; Venkatachalam, K.; Mohammad, F.; Oh, W.C.; Sagadevan, S. Fabrication and physicochemical characterization of g-C3N4/ZnO composite with enhanced photocatalytic activity under visible light. Opt. Mater. 2020, 100, 109643. [Google Scholar] [CrossRef]
- Xu, X.; Huang, T.; Xu, Y.; Hu, H.; Liao, S.; Hu, X.; Chen, D.; Zhang, M. Highly dispersed CeO2–x nanoparticles with rich oxygen vacancies enhance photocatalytic performance of g-C3N4 toward methyl orange degradation under visible light irradiation. J. Rare Earths 2022, 40, 1255–1263. [Google Scholar] [CrossRef]
- Subashini, A.; Varun Prasath, P.; Sagadevan, S.; Anita Lett, J.; Fatimah, I.; Mohammad, F.; Al-Lohedan, H.A.; Alshahateet, S.F.; Chun Oh, W. Enhanced photocatalytic degradation efficiency of graphitic carbon nitride-loaded CeO2 nanoparticles. Chem. Phys. Lett. 2021, 769, 138441. [Google Scholar] [CrossRef]
- Barathi, D.; Rajalakshmi, N.; Ranjith, R.; Sangeetha, R.; Meyvel, S. Controllable synthesis of CeO2/g-C3N4 hybrid catalysts and its structural, optical and visible light photocatalytic activity. Diam. Relat. Mat. 2021, 111, 108161. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, S.; Mehta, S.K.; Kansal, S.K.; Umar, A.; Ibrahim, A.A.; Baskoutas, S. CeO2 quantum dots decorated g-C3N4 nanosheets: A potential scaffold for fluorescence sensing of heavy metals and visible-light driven photocatalyst. J. Alloys Compd. 2023, 960, 170637. [Google Scholar] [CrossRef]
- Wei, X.; Wang, X.; Pu, Y.; Liu, A.; Chen, C.; Zou, W.; Zheng, Y.; Huang, J.; Zhang, Y.; Yang, Y.; et al. Facile ball-milling synthesis of CeO2/g-C3N4 Z-scheme heterojunction for synergistic adsorption and photodegradation of methylene blue: Characteristics, kinetics, models, and mechanisms. Chem. Eng. J. 2021, 420, 127719. [Google Scholar] [CrossRef]
- Rathi, V.; Panneerselvam, A.; Sathiyapriya, R. A novel hydrothermal induced BiVO4/g-C3N4 heterojunctions visible-light photocatalyst for effective elimination of aqueous organic pollutants. Vacuum 2020, 180, 109458. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, J.; Tao, F.; Dong, Y.; Wang, L.; Hong, T. Facile construction of Z-scheme g-C3N4/BiVO4 heterojunctions for boosting visible-light photocatalytic activity. Mater. Sci. Eng. B 2022, 279, 115676. [Google Scholar] [CrossRef]
- Reddy, C.V.; Nagar, A.; Shetti, N.P.; Reddy, I.N.; Basu, S.; Shim, J.; Kakarla, R.R. Novel g-C3N4/BiVO4 heterostructured nanohybrids for high efficiency photocatalytic degradation of toxic chemical pollutants. Chemosphere 2023, 322, 138146. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Hong, B.; Wei, J.; Xu, J.; Han, Y.; Jin, H.; Jin, D.; Peng, X.; Li, J.; Yang, Y.; et al. Enhanced Ciprofloxacin Photodegradation of Visible-Light-Driven Z-Scheme g-C3N4/Bi2WO6 Nanocomposites and Interface Effect. ChemistrySelect 2019, 4, 13716–13723. [Google Scholar] [CrossRef]
- Yasmeen, H.; Zada, A.; Li, W.; Xu, M.; Liu, S. Suitable energy platform of Bi2WO6 significantly improves visible-light degradation activity of g-C3N4 for highly toxic diuron pollutant. Mater. Sci. Semicond. Process. 2019, 102, 104598. [Google Scholar] [CrossRef]
- Lian, X.; Xue, W.; Dong, S.; Liu, E.; Li, H.; Xu, K. Construction of S-scheme Bi2WO6/g-C3N4 heterostructure nanosheets with enhanced visible-light photocatalytic degradation for ammonium dinitramide. J. Hazard. Mater. 2021, 412, 125217. [Google Scholar] [CrossRef]
- Yang, Q.; An, J.; Xu, Z.; Liang, S.; Wang, H. Performance and mechanism of atrazine degradation using Co3O4/g-C3N4 hybrid photocatalyst with peroxymonosulfate under visible light irradiation. Colloids Surf. A Physicochem. Eng. Asp. 2021, 614, 126161. [Google Scholar] [CrossRef]
- Liu, L.; Huang, J.; Yu, H.; Wan, J.; Liu, L.; Yi, K.; Zhang, W.; Zhang, C. Construction of MoO3 nanopaticles/g-C3N4 nanosheets 0D/2D heterojuntion photocatalysts for enhanced photocatalytic degradation of antibiotic pollutant. Chemosphere 2021, 282, 131049. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.; Wu, C.; Pu, S.; Hou, Y.; Tong, T.; Yang, G.; Qin, Z.; Wang, Z.; Bao, J. Direct Z-Scheme charge transfer in heterostructured MoO3/g-C3N4 photocatalysts and the generation of active radicals in photocatalytic dye degradations. Environ. Pollut. 2019, 250, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Huang, H.; Cao, W.; Mao, B.; Liu, Y.; Kang, Z. Advances in carbon dots: From the perspective of traditional quantum dots. Mat. Chem. Front. 2020, 4, 1586–1613. [Google Scholar] [CrossRef]
Photocatalyst | Pollutant | Dosage | Light Source | Efficiency | Ref. |
---|---|---|---|---|---|
SnO2 QDs/g-C3N4 | RhB | 50 mg/L | Visible light | 95% in 60 min | [51] |
TiO2 QDs/g-C3N4 | RhB | 10 mg/L | Visible light | 99% in 75 min | [44] |
TiO2 QDs/g-C3N4 | Phenol | 10 mg/L | Visible light | 98% in 100 min | [44] |
TiO2 QDs/g-C3N4 | Cr (VI) | 20 mg/L | Visible light | 99% in 60 min | [44] |
TiO2 QDs/g-C3N4 | MO | 10 mg/L | Solar light | 98% in 120 min | [20] |
CeO2 QDs/g-C3N4 | RhB | 10 mg/L | Visible light | 80% in 180 min | [63] |
CeO2 QDs/g-C3N4 | MO | 10 mg/L | Visible light | 82% in 180 min | [63] |
CeO2 QDs/g-C3N4 | MB | 10 mg/L | Visible light | 74% in 180 min | [63] |
BiVO4 QDs-g-C3N4 | RhB | 10 mg/L | Visible light | 81% in 90 min | [59] |
Bi2O3 QDs/g-C3N4 | TC | 10 mg/L | Visible light | 83% in 120 min | [60] |
Bi2O3 QDs/g-C3N4 | Cr (VI) | 10 mg/L | Visible light | 88% in 60 min | [60] |
Bi2O4 QDs/g-C3N4 | RhB | 10 mg/L | Visible light | 78% in 160 min | [64] |
Bi2WO6 QDs/g-C3N4 | MBT | 20 mg/L | Visible light | 99% in 80 min | [61] |
MoO3 QDs/g-C3N4 | U (VI) | 50 mg/L | Visible light | 96% in 150 min | [19] |
Co3O4 QDs-g-C3N4 | MTZ | 10 mg/L | Visible light | 77% in 180 min | [18] |
Bi2WO6 QDs/g-C3N4 | NO | 0.5 ppm | Visible light | 61% | [31] |
SnO2 QDs/g-C3N4 | NO | 600 ppb | Visible light | 32% | [29] |
SnO2 NPs/g-C3N4 | RhB | 10 ppm | Visible light | 97% in 50 min | [65] |
SnO2 NPs/g-C3N4 | MB | 10 ppm | Visible light | 99% in 90 min | [66] |
SnO2 NPs/g-C3N4 | CR | 10 ppm | Visible light | 96% in 90 min | [66] |
SnO2 NPs/g-C3N4 | NO | 500 ppb | Visible light | 40% | [67] |
SnO2 NPs/g-C3N4 | RhB | 10 ppm | Solar light | 86% in 240 min | [68] |
TiO2 NPs/g-C3N4 | TC | 20 ppm | Visible light | 99% in 120 min | [69] |
TiO2 NPs/g-C3N4 | TC | 20 ppm | UV light | 96% in 90 min | [70] |
TiO2 NPs/g-C3N4 | TC | 20 ppm | Visible light | 90% in 120 min | [71] |
TiO2 NPs/g-C3N4 | MB | 20 ppm | Solar light | 80% in 180 min | [72] |
TiO2 NPs/g-C3N4 | TC | 100 ppm | Visible light | 80% in 100 min | [73] |
ZnO NPs/g-C3N4 | MB | 10 ppm | Visible light | 98% in 150 min | [74] |
ZnO NPs/g-C3N4 | MB | 50 ppm | Visible light | 98% in 180 min | [75] |
ZnO NPs/g-C3N4 | MB | 10 ppm | Visible light | 60% in 120 min | [76] |
ZnO NPs/g-C3N4 | MB | 10 ppm | Visible light | 92% in 120 min | [77] |
ZnO NPs/g-C3N4 | CR | 10 ppm | Visible light | 70% in 45 min | [78] |
CeO2 NPs/g-C3N4 | MO | 10 ppm | Visible light | 96% in 100 min | [79] |
CeO2 NPs/g-C3N4 | RhB | 10 ppm | Visible light | 96% in 60 min | [80] |
CeO2 NPs/g-C3N4 | Cr | 20 ppm | Visible light | 96% in 100 min | [81] |
CeO2 QDs/g-C3N4 | TC | 10 ppm | Visible light | 78% in 160 min | [82] |
CeO2 NPs/g-C3N4 | MB | 10 ppm | Visible light | 70% in 180 min | [83] |
BiVO4 NPs/g-C3N4 | 4-CP | 20 ppm | Visible light | 95% in 100 min | [84] |
BiVO4 NPs/g-C3N4 | MO | 20 ppm | Visible light | 82% in 60 min | [85] |
BiVO4 NPs/g-C3N4 | MB | 10 ppm | Visible light | 88% in 120 min | [86] |
BiVO4 NPs/g-C3N4 | TC | 10 ppm | Visible light | 89% in 120 min | [86] |
Bi2WO6 NPs/g-C3N4 | CIP | 15 ppm | Visible light | 98% in 120 min | [87] |
Bi2WO6 NPs/g-C3N4 | Diuron | 20 ppm | Visible light | 75% in 120 min | [88] |
Bi2WO6 NPs/g-C3N4 | ADN | 10 ppm | Visible light | 98% in 80 min | [89] |
Co3O4 NPs/g-C3N4 | Atrazine | - | Visible light | 78% in 35 min | [90] |
MoO3 NPs/g-C3N4 | TC | 10 ppm | Visible light | 86% in 100 min | [91] |
MoO3 NPs/g-C3N4 | RhB | 10 ppm | Visible light | 99% in 25 min | [92] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salunkhe, T.T.; Gurugubelli, T.R.; Babu, B.; Yoo, K. Recent Innovative Progress of Metal Oxide Quantum-Dot-Integrated g-C3N4 (0D-2D) Synergistic Nanocomposites for Photocatalytic Applications. Catalysts 2023, 13, 1414. https://doi.org/10.3390/catal13111414
Salunkhe TT, Gurugubelli TR, Babu B, Yoo K. Recent Innovative Progress of Metal Oxide Quantum-Dot-Integrated g-C3N4 (0D-2D) Synergistic Nanocomposites for Photocatalytic Applications. Catalysts. 2023; 13(11):1414. https://doi.org/10.3390/catal13111414
Chicago/Turabian StyleSalunkhe, Tejaswi Tanaji, Thirumala Rao Gurugubelli, Bathula Babu, and Kisoo Yoo. 2023. "Recent Innovative Progress of Metal Oxide Quantum-Dot-Integrated g-C3N4 (0D-2D) Synergistic Nanocomposites for Photocatalytic Applications" Catalysts 13, no. 11: 1414. https://doi.org/10.3390/catal13111414
APA StyleSalunkhe, T. T., Gurugubelli, T. R., Babu, B., & Yoo, K. (2023). Recent Innovative Progress of Metal Oxide Quantum-Dot-Integrated g-C3N4 (0D-2D) Synergistic Nanocomposites for Photocatalytic Applications. Catalysts, 13(11), 1414. https://doi.org/10.3390/catal13111414