Effect of HCl Treatment on Acidity of Pd/TiO2 for Furfural Hydrogenation
Abstract
:1. Introduction
2. Results
2.1. Characterization of Supports
2.2. Characterization of Catalysts
2.3. FF Hydrogenation
3. Materials and Methods
3.1. Material
3.2. Preparation of TiO2 Supports (TiO2 NP)
3.3. Pre-Treatment of TiO2 Supports
3.4. Preparation of Pd/TiO2 Catalysts
3.5. Characterization
3.6. FF Hydrogenation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Jia, P.; Wang, T. Furfural: A promising platform compound for sustainable production of C4 and C5 chemicals. ACS Catal. 2016, 6, 7621–7640. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, D.; Rodríguez-Padrón, D.; Len, C. Recent advances in catalytic hydrogenation of furfural. Catalysts 2019, 9, 796. [Google Scholar] [CrossRef]
- Matsagar, B.M.; Hsu, C.-Y.; Chen, S.S.; Ahamad, T.; Alshehri, S.M.; Tsang, D.C.W.; Wu, K.C.-W. Selective hydrogenation of furfural to tetrahydrofurfuryl alcohol over a Rh-loaded carbon catalyst in aqueous solution under mild conditions. Sustain. Energy Fuels 2020, 4, 293–301. [Google Scholar] [CrossRef]
- Ma, R.; Wu, X.-P.; Tong, T.; Shao, Z.-J.; Wang, Y.; Liu, X.; Xia, Q.; Gong, X.-Q. The critical role of water in the ring opening of furfural alcohol to 1,2-pentanediol. ACS Catal. 2017, 7, 333–337. [Google Scholar] [CrossRef]
- Yan, K.; Jarvis, C.; Lafleur, T.; Qiao, Y.; Xie, X. Novel synthesis of Pd nanoparticles for hydrogenation of biomass-derived platform chemicals showing enhanced catalytic performance. RSC Adv. 2013, 3, 25865–25871. [Google Scholar] [CrossRef]
- Taylor, M.J.; Durndell, L.J.; Isaacs, M.A.; Parlett, C.M.A.; Wilson, K.; Lee, A.F.; Kyriakou, G. Highly selective hydrogenation of furfural over supported Pt nanoparticles under mild conditions. Appl. Cat. B 2016, 180, 580–585. [Google Scholar] [CrossRef]
- Lesiak, M.; Binczarski, M.; Karski, S.; Maniukiewicz, W.; Rogowski, J.; Szubiakiewicz, E.; Berlowska, J.; Dziugan, P.; Witońska, I. Hydrogenation of furfural over Pd−Cu/Al2O3 catalysts. The role of interaction between palladium and copper on determining catalytic properties. J. Mol. Cat. A Chem. 2014, 395, 337–348. [Google Scholar] [CrossRef]
- Nakagawa, Y.; Nakazawa, H.; Watanabe, H.; Tomishige, K. Total hydrogenation of furfural over a silica-supported nickel catalyst prepared by the reduction of a nickel nitrate precursor. ChemCatChem 2012, 4, 1791–1797. [Google Scholar] [CrossRef]
- Bagheri, S.; Muhd Julkapli, N.; Bee Abd Hamid, S. Titanium dioxide as a catalyst support in heterogeneous catalysis. Sci. World J. 2014, 2014, 727496. [Google Scholar] [CrossRef]
- Parapat, R.Y.; Saputra, O.H.I.; Ang, A.P.; Schwarze, M.; Schomäcker, R. Support effect in the preparation of supported metal catalysts via microemulsion. RSC Adv. 2014, 4, 50955–50963. [Google Scholar] [CrossRef]
- Lashdaf, M.; Tiitta, M.; Venäläinen, T.; Österholm, H.; Krause, A.O.I. Ruthenium on beta zeolite in cinnamaldehyde hydrogenation. Cat. Lett. 2004, 94, 7–14. [Google Scholar] [CrossRef]
- Song, W.; Liu, Y.; Baráth, E.; Zhao, C.; Lercher, J.A. Synergistic effects of Ni and acid sites for hydrogenation and C–O bond cleavage of substituted phenols. Green. Chem. 2015, 17, 1204–1218. [Google Scholar] [CrossRef]
- Zhu, Z.; Yang, L.; Ke, C.; Fan, G.; Yang, L.; Li, F. Highly efficient catalytic transfer hydrogenation of furfural over defect-rich amphoteric ZrO2 with abundant surface acid-base sites. Dalton Trans. 2021, 50, 2616–2626. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Yang, C.; Zhang, D.; Wang, J.; Fu, H.; Chen, H.; Li, X. Catalytic transfer hydrogenolysis of α-methylbenzyl alcohol using palladium catalysts and formic acid. Appl. Cat. A 2009, 354, 38–43. [Google Scholar] [CrossRef]
- Zhou, G.; Liu, J.; Tan, X.; Pei, Y.; Qiao, M.; Fan, K.; Zong, B. Effect of support acidity on liquid-phase hydrogenation of benzene to cyclohexene over Ru–B/ZrO2 catalysts. Ind. Eng. Chem. Res. 2012, 51, 12205–12213. [Google Scholar]
- Lin, L.; Qiu, C.; Zhuo, Z.; Zhang, D.; Zhao, S.; Wu, H.; Liu, Y.; He, M. Acid strength controlled reaction pathways for the catalytic cracking of 1-butene to propene over ZSM-5. J. Cat. 2014, 309, 136–145. [Google Scholar] [CrossRef]
- Byun, M.Y.; Park, D.-W.; Lee, M.S. Effect of oxide supports on the activity of Pd based catalysts for furfural hydrogenation. Catalysts 2020, 10, 837. [Google Scholar] [CrossRef]
- Wang, F.; Ma, J.; He, G.; Chen, M.; Wang, S.; Zhang, C.; He, H. Synergistic effect of TiO2−SiO2 in Ag/Si–Ti catalyst for the selective catalytic oxidation of ammonia. Ind. Eng. Chem. Res. 2018, 57, 11903–11910. [Google Scholar] [CrossRef]
- Fu, X.; Clark, L.A.; Yang, Q.; Anderson, M.A. Enhanced photocatalytic performance of titania-based binary metal oxides: TiO2/SiO2 and TiO2/ZrO2. Environ. Sci. Technol. 1996, 30, 647–653. [Google Scholar] [CrossRef]
- Tresatayawed, A.; Glinrun, P.; Jongsomjit, B. Ethanol dehydration over WO3/TiO2 catalysts using Titania derived from sol-gel and solvothermal methods. Int. J. Chem. Eng. 2019, 2019, 1–11. [Google Scholar] [CrossRef]
- Camposeco, R.; Castillo, S.; Mejía-Centeno, I.; Navarrete, J.; Nava, N. Boosted surface acidity in TiO2 and Al2O3-TiO2 nanotubes as catalytic supports. Appl. Surf. Sci. 2015, 356, 115–123. [Google Scholar] [CrossRef]
- Wang, W.; Deng, S.; Tong, Q.; Zhang, X.; Wu, S.; Xu, B.; He, L.; Li, S.; Gong, J.; Fan, Y.; et al. The properties and SCR de-NOx application of supported V2O5/TiO2 catalysts with different polymerization state of VOx species controlled by the pH value of their precursors. ChemistrySelect 2020, 5, 12952–12959. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, J.; Yu, J.; Zhou, J.; Zhou, X.; Li, H.; He, Z.; Long, H.; Wang, Y.; Lu, P.; et al. Surface modification of metal materials for high-performance electrocatalytic carbon dioxide reduction. Matter 2021, 4, 888–926. [Google Scholar] [CrossRef]
- Songtawee, S.; Rungtaweevoranit, B.; Klaysom, C.; Faungnawakij, K. Tuning Brønsted and Lewis acidity on phosphated titanium dioxides for efficient conversion of glucose to 5-hydroxymethylfurfural. RSC Adv. 2021, 11, 29196–29206. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Wang, Y.; Song, D.; An, C.; Wang, J. Catalysis of a nanometre solid super acid of SO42−/TiO2 on the thermal decomposition of ammonium nitrate. Nanomater. Nanotechnol. 2016, 6, 23. [Google Scholar] [CrossRef]
- Visser, N.L.; Verschoor, J.C.; Smulders, L.C.J.; Mattarozzi, F.; Morgan, D.J.; Meeldijk, J.D.; van der Hoeven, J.E.S.; Stewart, J.A.; Vandegehuchte, B.D.; de Jongh, P.E. Influence of carbon support surface modification on the performance of nickel catalysts in carbon dioxide hydrogenation. Cat. Today 2023, 418, 114071. [Google Scholar] [CrossRef]
- Hao, Z.; Liu, G.; Ma, N.; Zhang, H.; Li, Y.; Xia, Y.; Zhang, D.; Zhan, S. Oxygen-vacancy mediated acidity and redox properties on WOx/Cu-doped CeO2 for the removal of NOx. J. Environ. Chem. Eng. 2021, 9, 106024. [Google Scholar] [CrossRef]
- Lim, C.S.; Oh, W.-C. Reaction morphology depending on the amounts of HCl and NH₄OH and effect of pH on the preparation of TiO₂ nanopowder. Anal. Sci. Technol. 2007, 20, 302–307. [Google Scholar]
- Keluo, C.; Zhang, T.; Xiaohui, C.; Yingjie, H.; Liang, X. Model construction of micro-pores in shale: A case study of Silurian Longmaxi Formation shale in Dianqianbei area, SW China. Petrol. Explor. Dev. 2018, 45, 412–421. [Google Scholar] [CrossRef]
- Sych, N.V.; Trofymenko, S.I.; Poddubnaya, O.I.; Tsyba, M.M.; Sapsay, V.I.; Klymchuk, D.O.; Puziy, A.M. Porous structure and surface chemistry of phosphoric acid activated carbon from corncob. Appl. Surf. Sci. 2012, 261, 75–82. [Google Scholar] [CrossRef]
- Cychosz, K.A.; Thommes, M. Progress in the physisorption characterization of nanoporous gas storage materials. Engineering 2018, 4, 559–566. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, H.; Ji, X.; Lan, Q.; Fan, Q. Activated Carbon Modified by Ester Hydrolysis of Ethyl Acetate for Water Vapor Adsorption Enhancement. Processes 2022, 10, 1527. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Q.; Zhang, T.; Ma, X.; Guo, J.; Wang, J.; Liu, F.; Li, S. Effect of acid/alkali treatment on the structure and catalytic performance of 3DOM CeCo0.7Mn0.3O3 catalyst. Environ. Sci. Pollut. Res. 2023, 30, 101358–101365. [Google Scholar] [CrossRef] [PubMed]
- Hanna, A.A.; Ali, A.F. Removal of organic matter from crude wet-process phosphoric acid. J. Chem. Technol. Biotechnol. 1992, 55, 205–208. [Google Scholar] [CrossRef]
- Marikutsa, A.; Rumyantseva, M.; Konstantinova, E.A.; Gaskov, A. The key role of active sites in the development of selective metal oxide sensor materials. Sensors 2021, 21, 2554. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Kim, J.; Kang, M. Photodecomposition of concentrated ammonia over nanometer-sized TiO2, V-TiO~2, and Pt/V-TiO2 photocatalysts. Bull. Korean Chem. Soc. 2007, 28, 581–588. [Google Scholar] [CrossRef]
- Shao, Y.; Sun, K.; Li, Q.; Liu, Q.; Zhang, S.; Liu, Q.; Hu, G.; Hu, X. Copper-based catalysts with tunable acidic and basic sites for the selective conversion of levulinic acid/ester to γ-valerolactone or 1,4-pentanediol. Green. Chem. 2019, 21, 4499–4511. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, T.; Sun, K.; Zhang, Z.; Zhang, L.; Li, Q.; Zhang, S.; Hu, G.; Hu, X. Competition between acidic sites and hydrogenation sites in Cu/ZrO2 catalysts with different crystal phases for conversion of biomass-derived organics. Green. Energy Environ. 2021, 6, 557–566. [Google Scholar] [CrossRef]
- Duan, Y.; Wang, L.; Zhang, Y.; Du, W.; Zhang, Y. The study of C3H6 impact on selective catalytic reduction by ammonia (NH3-SCR) performance over Cu-SAPO-34 catalysts. Catalysts 2021, 11, 1327. [Google Scholar] [CrossRef]
- Yang, E.; Jang, E.J.; Lee, J.G.; Yoon, S.; Lee, J.; Musselwhite, N.; Somorjai, G.A.; Kwak, J.H.; An, K. Acidic effect of porous alumina as supports for Pt nanoparticle catalysts in n-hexane reforming. Catal. Sci. Technol. 2018, 8, 3295–3303. [Google Scholar] [CrossRef]
- Yuan, R.; Chen, T.; Fei, E.; Lin, J.; Ding, Z.; Long, J.; Zhang, Z.; Fu, X.; Liu, P.; Wu, L. Surface chlorination of TiO2-based photocatalysts: A way to remarkably improve photocatalytic activity in both UV and visible region. ACS Catal. 2011, 1, 200–206. [Google Scholar] [CrossRef]
- Schwoeble, A.S.; Strohmeier, B.R.; Bunker, K.L.; McAllister, D.R.; Marquis Jr, J.P.; Piasecki, J.D.; McAllister, N.M. Application of X-ray photoelectron spectroscopy (XPS) for the surface characterization of Gunshot Residue (GSR). Microsc. Today 2011, 19, 40–45. [Google Scholar] [CrossRef]
- Huang, H.; Leung, D.Y.C. Complete oxidation of formaldehyde at room temperature using TiO2 supported metallic Pd nanoparticles. ACS Catal. 2011, 1, 348–354. [Google Scholar] [CrossRef]
- Kim, Y.E.; Byun, M.Y.; Lee, K.Y.; Lee, M.S. Effects of chlorinated Pd precursors and preparation methods on properties and activity of Pd/TiO2 catalysts. RSC Adv. 2020, 10, 41462–41470. [Google Scholar] [CrossRef] [PubMed]
- Bischoff, B.L.; Anderson, M.A. Peptization process in the sol-gel preparation of porous anatase (TiO2). Chem. Mater. 1995, 7, 1772–1778. [Google Scholar] [CrossRef]
- Bright, E.; Readey, D.W. Dissolution kinetics of TiO2 in HF-HC1 solutions. J. Am. Ceram. Soc. 1987, 70, 900–906. [Google Scholar] [CrossRef]
- Dai, S.; Wu, Y.; Sakai, T.; Du, Z.; Sakai, H.; Abe, M. Preparation of highly crystalline TiO(2) nanostructures by acid-assisted hydrothermal treatment of hexagonal-structured nanocrystalline titania/cetyltrimethyammonium bromide nanoskeleton. Nanoscale Res. Lett. 2010, 5, 1829–1835. [Google Scholar] [CrossRef] [PubMed]
- Wen, Q.; Yu, J.; Sun, X.; Zhuang, J.; He, Q.; You, X.; Guo, J.; Tao, L. Hydrothermal treatment of a TiO2 film by hydrochloric acid for efficient dye-sensitized solar cells. New J. Chem. 2016, 40, 3233–3237. [Google Scholar] [CrossRef]
- Tran, S.B.T.; Choi, H.; Oh, S.; Park, J.Y. Influence of Support Acidity of Pt/Nb2O5 Catalysts on Selectivity of CO2 Hydrogenation. Catal. Lett. 2019, 149, 2823–2835. [Google Scholar] [CrossRef]
- Chen, P.; Wang, X.; Yu, R.; Gu, Y.; Lyu, Y.; Tian, Y.; Fu, J.; Liu, X. Enhancing metal dispersion over an Mo/ZSM-5 catalyst for methane dehydroaromatization. Inorg. Chem. Front. 2022, 9, 4642–4650. [Google Scholar] [CrossRef]
- Li, X.; Chen, L.; Chen, G.; Zhang, J.; Liu, J. The relationship between acidity, dispersion of nickel, and performance of Ni/Al-SBA-15 catalyst on eugenol hydrodeoxygenation. Renew. Energy 2020, 149, 609–616. [Google Scholar] [CrossRef]
- Park, S.K.; Shin, H. Effect of HCl and H2SO4 treatment of TiO2 powder on the photosensitized degradation of aqueous rhodamine b under visible light. J. Nanosci. Nanotechnol. 2014, 14, 8122–8128. [Google Scholar] [CrossRef] [PubMed]
- Ruiz Puigdollers, A.; Schlexer, P.; Tosoni, S.; Pacchioni, G. Increasing oxide reducibility: The role of metal/oxide interfaces in the formation of oxygen vacancies. ACS Catal. 2017, 7, 6493–6513. [Google Scholar] [CrossRef]
- Luhakhra, N.; Tiwari, S.K. Polaron and bipolaron mediated photocatalytic activity of polypyrrole nanoparticles under visible light. Colloids Surf. A Physicochem. Eng. Aspects 2023, 667, 131380. [Google Scholar] [CrossRef]
- Gao, Z.; Yang, L.; Fan, G.; Li, F. Promotional role of surface defects on carbon-supported ruthenium-based catalysts in the transfer hydrogenation of furfural. ChemCatChem 2016, 8, 3769–3779. [Google Scholar] [CrossRef]
- Nelson, N.C.; Manzano, J.S.; Sadow, A.D.; Overbury, S.H.; Slowing, I.I. Selective hydrogenation of phenol catalyzed by palladium on high-surface-area ceria at room temperature and ambient pressure. ACS Catal. 2015, 5, 2051–2061. [Google Scholar] [CrossRef]
- Gelder, E.A.; Jackson, S.D.; Lok, C.M. A study of nitrobenzene hydrogenation over palladium/carbon catalysts. Catal. Lett. 2002, 84, 205–208. [Google Scholar] [CrossRef]
- Kim, K.D.; Wang, Z.; Tao, Y.; Ling, H.; Yuan, Y.; Zhou, C.; Liu, Z.; Gaborieau, M.; Huang, J.; Yu, A. The comparative effect of particle size and support acidity on hydrogenation of aromatic ketones. ChemCatChem 2019, 11, 4810–4817. [Google Scholar] [CrossRef]
- Mao, C.; Zheng, J.; Matsagar, B.M.; Kankala, R.K.; Ahamad, T.; Yang, Y.; Wu, K.C.-W.; Zhang, X. Highly-efficient Ru/Al–SBA-15 catalysts with strong Lewis acid sites for the water-assisted hydrogenation of p-phthalic acid. Catal. Sci. Technol. 2020, 10, 2443–2451. [Google Scholar] [CrossRef]
- Nzuzo, Y.; Ntshibongo, S.; Matsinha, L.; Adeyinka, A.; Obodo, K.O.; Bingwa, N. Hydrogenation of furfural-to-furfuryl alcohol over La-based inorganic perovskites: A study of oxygen vacancies as catalytic descriptors. Catal. Commun. 2023, 181, 106717. [Google Scholar] [CrossRef]
- Hou, Q.; Cai, J.; Zuo, L.; Chen, H.; Fu, Y.; Shen, J. Selective hydrogenation of furfural over supported nickel and nickel phosphide catalysts. Appl. Surf. Sci. 2023, 619, 156738. [Google Scholar] [CrossRef]
- Vasiliades, M.A.; Govender, N.S.; Govender, A.; Crous, R.; Moodley, D.; Botha, T.; Efstathiou, A.M. The effect of H2 pressure on the carbon path of methanation reaction on Co/γ-Al2O3: Transient isotopic and operando methodology studies. ACS Catal. 2022, 12, 15110–15129. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, J.; Jia, X.; Du, Z.; Duan, Y.; Xu, J. Aqueous phase hydrogenation of furfural to tetrahydrofurfuryl alcohol on alkaline earth metal modified Ni/Al2O3. RSC Adv. 2016, 6, 51221–51228. [Google Scholar] [CrossRef]
- Cheng, G.; Akhtar, M.S.; Yang, O.-B.; Stadler, F.J. Structure modification of anatase TiO2 nanomaterials-based photoanodes for efficient dye-sensitized solar cells. Electrochim. Acta 2013, 113, 527–535. [Google Scholar] [CrossRef]
- Byun, M.Y.; Kim, Y.E.; Baek, J.H.; Jae, J.; Lee, M.S. Effect of surface properties of TiO2 on the performance of Pt/TiO2 catalysts for furfural hydrogenation. RSC Adv. 2021, 12, 860–868. [Google Scholar] [CrossRef]
Supports | SBET a (m2/g) | VTotal b (cm3/g) | Pore Diameter b (nm) | Acidity (mmol·g–1) c | |||
---|---|---|---|---|---|---|---|
Weak (<250 °C) | Medium (250–400 °C) | Strong (>400 °C) | Total | ||||
TiO2 | 257.6 | 0.32 | 4.65 | 0.48 | 0.71 | 0.19 | 1.38 |
0.5H-T | 256.8 | 0.34 | 5.02 | 0.73 | 1.00 | 0.35 | 2.08 |
2H-T | 259.0 | 0.33 | 4.81 | 1.34 | 1.80 | 0.51 | 3.64 |
4H-T | 245.5 | 0.33 | 5.50 | 0.55 | 0.77 | 0.30 | 1.62 |
5H-T | 251.0 | 0.30 | 4.54 | 0.70 | 0.85 | 0.21 | 1.77 |
Supports | Atomic % | ||
---|---|---|---|
Cl 2p | O 1s | Ti 2p | |
0.5H-T | 0.1 | 74.3 | 25.6 |
2H-T | 0.0 | 76.9 | 23.1 |
4H-T | 0.1 | 75.1 | 24.9 |
5H-T | 0.1 | 75.3 | 24.6 |
Catalysts | SBET a (m2/g) | VTotal b (cm3/g) | Pore Diameter b (nm) | Crystallite Size c (nm) | Acidity (mmol·g–1) d | |||
---|---|---|---|---|---|---|---|---|
Weak (<250 °C) | Medium (250–400 °C) | Strong (>400 °C) | Total | |||||
Pd/TiO2 | 251.6 | 0.30 | 4.64 | — | 0.86 | 0.42 | 0.09 | 1.37 |
Pd/0.5H-T | 215.9 | 0.29 | 5.07 | 9.06 | 0.85 | 0.53 | 0.13 | 1.51 |
Pd/2H-T | 208.0 | 0.29 | 5.18 | 7.04 | 0.92 | 0.51 | 0.21 | 1.64 |
Pd/4H-T | 229.7 | 0.35 | 5.89 | 9.58 | 0.89 | 0.51 | 0.11 | 1.51 |
Pd/5H-T | 225.6 | 0.30 | 5.24 | 10.21 | 0.97 | 0.56 | 0.04 | 1.57 |
Catalysts | Metal Dispersion (%) | Metallic Surface Area (m2/g metal) |
DPd (nm) |
---|---|---|---|
Pd/TiO2 | 17.7 | 78.9 | 5.3 |
Pd/0.5H-T | 23.2 | 103.4 | 4.0 |
Pd/2H-T | 25.0 | 111.6 | 3.7 |
Pd/4H-T | 24.8 | 110.4 | 3.8 |
Pd/5H-T | 19.3 | 86.2 | 4.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, H.J.; Kim, Y.E.; Jae, J.; Lee, M.S. Effect of HCl Treatment on Acidity of Pd/TiO2 for Furfural Hydrogenation. Catalysts 2023, 13, 1481. https://doi.org/10.3390/catal13121481
Song HJ, Kim YE, Jae J, Lee MS. Effect of HCl Treatment on Acidity of Pd/TiO2 for Furfural Hydrogenation. Catalysts. 2023; 13(12):1481. https://doi.org/10.3390/catal13121481
Chicago/Turabian StyleSong, Hye Jin, Ye Eun Kim, Jungho Jae, and Man Sig Lee. 2023. "Effect of HCl Treatment on Acidity of Pd/TiO2 for Furfural Hydrogenation" Catalysts 13, no. 12: 1481. https://doi.org/10.3390/catal13121481
APA StyleSong, H. J., Kim, Y. E., Jae, J., & Lee, M. S. (2023). Effect of HCl Treatment on Acidity of Pd/TiO2 for Furfural Hydrogenation. Catalysts, 13(12), 1481. https://doi.org/10.3390/catal13121481