Application of Heterogeneous Catalytic Ozonation in Wastewater Treatment: An Overview
Abstract
:1. Introduction
2. Basic Strategies for Catalyst Design
- (1)
- The specific surface area of a catalyst is a critical factor in catalytic reactions, thus it is essential to enhance the specific surface area in the design process. Nanomaterials are employed to increase the specific surface area, while the substrate of immobilized catalysts usually selects substances with a greater specific surface area to improve the adsorption and reaction performance.
- (2)
- Enhancing the rate of electron transfer is essential in order to catalyze the reaction. This can be achieved by improving the electronic exchange between the catalyst and the substrate. Furthermore, some substrates possess the ability to capture free electrons on their surface, thereby enabling the catalysts immobilized on them to undergo effective reactions.
- (3)
- The arrangement of active components on the substrate and the alteration of surface active sites are critical to the catalytic effect of the catalyst. Noble metals possess great catalytic capacity, however, their expense is restrictive. Therefore, research into composite metal and immobilized metal catalysts was initiated by doping noble metal elements. Utilizing substrate not only lessens the expense of the catalyst, but can also upgrade the catalytic performance through the cooperation between substrate and catalyst.
3. Catalytic Properties of Metal Oxides Catalyst for Ozonation and Its Application in Water Treatment
3.1. Titanium Oxide
3.2. Zinc Oxide
3.3. Manganese Oxide
3.4. Iron Oxide
3.5. Other Metal Oxides
3.6. Mixed Metal Oxides
3.7. Natural Mineral Material
4. Catalytic Properties of Metal-Free Catalyst for Ozonation and Its Application in Water Treatment
5. Catalytic Properties of Immobilized Noble Metal Catalyst for Ozonation and Its Application in Water Treatment
6. Catalytic Properties of MOF Catalyst for Ozonation and Its Application in Water Treatment
7. Common Substrates for Ozonation Catalysts
- (1)
- Improve the mass transfer capacity of catalyst. The enrichment ability of ozone and organic matter on the catalyst surface will be improved.
- (2)
- Control the particle size of active components, increase the exposure of active sites, and enhance the decomposition and transformation of ozone into active oxygen species.
- (3)
- Improve the redox reaction characteristics of catalyst and enhance the electron transfer of catalyst micro-interface.
7.1. Activated Carbon
7.2. Aluminium Oxide
7.3. Ceramic Substrate
8. The Role of Catalysts in Ozone-Catalyzed Oxidation
9. Conclusions and Perspectives
- (1)
- Many catalysts developed are powder or even nano-form, which is difficult to directly applied in engineering. Therefore, the research and preparation of immobilized catalyst is an important research direction of heterogeneous catalytic ozonation. However, the surface property of immobilized catalyst is easy to change, and the reuse rate is low, resulting in the waste of catalyst and increase the cost. At the same time, according to the characteristics of pollutants, the reasonable choice of catalyst and substrate, further work needs to try the combination of multi-metal.
- (2)
- In the study of heterogeneous ozonation, attention should be paid to the development of new materials such as nanomaterials and membrane materials. The application of porous structures with different scales in the catalysis of heterogeneous ozonation should be constantly tried.
- (3)
- Because of the wide variety of catalysts, the experimental phenomena are often inconsistent, even contradictory, and cannot be compared. Therefore, it is still necessary to further study the relationship between the physical and chemical properties of catalysts and their decontamination efficiency in order to sum up their internal rules.
- (4)
- The Lewis acid point on the surface of metal oxide is considered to be the active point promoting ozonolysis to form free radicals, while the Lewis basic point on the surface of activated carbon is considered to be the active point promoting ozonolysis to form free radicals. In addition, different catalyst preparation methods and reaction conditions are selected, so different test results and reaction mechanism evaluation may be obtained even for the same solid catalyst. The types and properties of active sites of different catalysts need further study.
- (5)
- Most reports about catalysts in heterogeneous ozonation system are still in the laboratory stage. The wastewater tested was not complex industrial wastewater, but mostly organic wastewater made in a laboratory with a single ingredient. The selection of catalysts is still largely restricted by the nature of pollutants, so it is necessary to establish a heterogeneous catalytic ozonation system with broad spectrum for organic degradation. These investigations are the challenges to be faced in the practical application of catalytic ozonation.
- (6)
- The problem of dissolution of active components exists in many catalysts. This reduces the service life of the catalyst. At the same time, the poisoning of the active site and the contamination of the catalyst surface by the reaction intermediates are also important factors to determine the stability and durability of the catalyst. Future investigations can focus on optimizing catalyst preparation methods, adding catalyst auxiliaries and selecting suitable substrate to overcome these challenges.
- (7)
- At present, the work on catalytic ozonation mainly focuses on the rate of ·OH formation in oxidation system. The heterogeneous catalytic ozonation process with non-·OH as the dominant oxidizing species will certainly attract more attention in future research.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, S.; Wang, J.; Zhang, Y.; Ma, J.; Huang, L.; Yu, S.; Chen, L.; Song, G.; Qiu, M.; Wang, X. Applications of Water-Stable Metal-Organic Frameworks in the Removal of Water Pollutants: A Review. Environ. Pollut. 2021, 291, 118076. [Google Scholar] [CrossRef]
- He, M.; Xu, Z.; Hou, D.; Gao, B.; Cao, X.; Ok, Y.S.; Rinklebe, J.; Bolan, N.S.; Tsang, D.C. Waste-Derived Biochar for Water Pollution Control and Sustainable Development. Nat. Rev. Earth Environ. 2022, 3, 444–460. [Google Scholar] [CrossRef]
- Rekhate, C.V.; Srivastava, J. Recent Advances in Ozone-Based Advanced Oxidation Processes for Treatment of Wastewater-A Review. Chem. Eng. J. Adv. 2020, 3, 100031. [Google Scholar] [CrossRef]
- Cuerda-Correa, E.M.; Alexandre-Franco, M.F.; Fernández-González, C. Advanced Oxidation Processes for the Removal of Antibiotics from Water. An Overview. Water 2019, 12, 102. [Google Scholar] [CrossRef]
- Liu, Z.; Demeestere, K.; Van Hulle, S. Comparison and Performance Assessment of Ozone-Based AOPs in View of Trace Organic Contaminants Abatement in Water and Wastewater: A Review. J. Environ. Chem. Eng. 2021, 9, 105599. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Darabi, R.; Karimi, F.; Karaman, C.; Shahidi, S.A.; Zare, N.; Baghayeri, M.; Fu, L.; Rostamnia, S.; Rouhi, J.; et al. State-of-Art Advances on Removal, Degradation and Electrochemical Monitoring of 4-Aminophenol Pollutants in Real Samples: A Review. Environ. Res. 2023; in press. [Google Scholar] [CrossRef]
- Lu, J.; Cheng, M.; Zhao, C.; Li, B.; Peng, H.; Zhang, Y.; Shao, Q.; Hassan, M. Application of Lignin in Preparation of Slow-Release Fertilizer: Current Status and Future Perspectives. Ind. Crops Prod. 2022, 176, 114267. [Google Scholar] [CrossRef]
- Mo, F.; Liu, Y.; Xu, Y.; He, Q.; Sun, P.; Dong, X. Photocatalytic Elimination of Moxifloxacin by Two-Dimensional Graphitic Carbon Nitride Nanosheets: Enhanced Activity, Degradation Mechanism and Potential Practical Application. Sep. Purif. Technol. 2022, 292, 121067. [Google Scholar] [CrossRef]
- Xie, K.; Wang, W.; Li, Y.; Xu, M.; Han, Z.; Zhang, Y.; Gao, W. Study on Structure-Performance Relationship of RGO Enhanced Polypropylene Composites with Improved Atomic Oxygen Resistance. Compos. Part B Eng. 2022, 239, 109970. [Google Scholar] [CrossRef]
- Khadhraoui, M.; Trabelsi, H.; Ksibi, M.; Bouguerra, S.; Elleuch, B. Discoloration and Detoxicification of a Congo Red Dye Solution by Means of Ozone Treatment for a Possible Water Reuse. J. Hazard. Mater. 2009, 161, 974–981. [Google Scholar] [CrossRef] [PubMed]
- Yıldırım, A.Ö.; Gül, Ş.; Eren, O.; Kuşvuran, E. A Comparative Study of Ozonation, Homogeneous Catalytic Ozonation, and Photocatalytic Ozonation for CI Reactive Red 194 Azo Dye Degradation. CLEAN–Soil Air Water 2011, 39, 795–805. [Google Scholar] [CrossRef]
- Farré, M.J.; Franch, M.I.; Malato, S.; Ayllón, J.A.; Peral, J.; Doménech, X. Degradation of Some Biorecalcitrant Pesticides by Homogeneous and Heterogeneous Photocatalytic Ozonation. Chemosphere 2005, 58, 1127–1133. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Wang, H.; Wang, B.; Deng, S.; Huang, J.; Yu, G.; Wang, Y. Prediction of Micropollutant Abatement during Homogeneous Catalytic Ozonation by a Chemical Kinetic Model. Water Res. 2018, 142, 383–395. [Google Scholar] [CrossRef] [PubMed]
- Forni, L.; Bahnemann, D.; Hart, E.J. Mechanism of the Hydroxide Ion-Initiated Decomposition of Ozone in Aqueous Solution. J. Phys. Chem. 1982, 86, 255–259. [Google Scholar] [CrossRef]
- Yu, G.; Wang, Y.; Cao, H.; Zhao, H.; Xie, Y. Reactive Oxygen Species and Catalytic Active Sites in Heterogeneous Catalytic Ozonation for Water Purification. Environ. Sci. Technol. 2020, 54, 5931–5946. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhang, H.; Wang, F.; Xiong, X.; Tian, K.; Sun, Y.; Yu, T. Application of Heterogeneous Catalytic Ozonation for Refractory Organics in Wastewater. Catalysts 2019, 9, 241. [Google Scholar] [CrossRef]
- Zsilák, Z.; Szabó-Bárdos, E.; Fónagy, O.; Horváth, O.; Horváth, K.; Hajós, P. Degradation of Benzenesulfonate by Heterogeneous Photocatalysis Combined with Ozonation. Catal. Today 2014, 230, 55–60. [Google Scholar] [CrossRef]
- Chang, C.-C.; Chiu, C.-Y.; Chang, C.-Y.; Chang, C.-F.; Chen, Y.-H.; Ji, D.-R.; Tseng, J.-Y.; Yu, Y.-H. Pt-Catalyzed Ozonation of Aqueous Phenol Solution Using High-Gravity Rotating Packed Bed. J. Hazard. Mater. 2009, 168, 649–655. [Google Scholar] [CrossRef]
- Dong, Y.; Yang, H.; He, K.; Wu, X.; Zhang, A. Catalytic Activity and Stability of Y Zeolite for Phenol Degradation in the Presence of Ozone. Appl. Catal. B Environ. 2008, 82, 163–168. [Google Scholar] [CrossRef]
- Liang, H.; Sun, H.; Patel, A.; Shukla, P.; Zhu, Z.; Wang, S. Excellent Performance of Mesoporous Co3O4/MnO2 Nanoparticles in Heterogeneous Activation of Peroxymonosulfate for Phenol Degradation in Aqueous Solutions. Appl. Catal. B Environ. 2012, 127, 330–335. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Y.; Zhu, W.; He, X. Catalytic Ozonation of Dimethyl Phthalate and Chlorination Disinfection By-Product Precursors over Ru/AC. J. Hazard. Mater. 2009, 166, 502–507. [Google Scholar] [CrossRef]
- Qu, J.; Li, H.; Liu, H.; He, H. Ozonation of Alachlor Catalyzed by Cu/Al2O3 in Water. Catal. Today 2004, 90, 291–296. [Google Scholar] [CrossRef]
- Yunrui, Z.; Wanpeng, Z.; Fudong, L.; Jianbing, W.; Shaoxia, Y. Catalytic Activity of Ru/Al2O3 for Ozonation of Dimethyl Phthalate in Aqueous Solution. Chemosphere 2007, 66, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Ye, W.; Zhang, Q.; Sun, F.; Lu, P.; Li, X. Catalytic Ozonation of Dimethyl Phthalate over Cerium Supported on Activated Carbon. J. Hazard. Mater. 2009, 170, 411–416. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, W.; Ma, J.; Qiang, Z. Minimizing Bromate Formation with Cerium Dioxide during Ozonation of Bromide-Containing Water. Water Res. 2008, 42, 3651–3658. [Google Scholar] [CrossRef] [PubMed]
- Beltrán, F.J.; Pocostales, P.; Alvarez, P.; Oropesa, A. Diclofenac Removal from Water with Ozone and Activated Carbon. J. Hazard. Mater. 2009, 163, 768–776. [Google Scholar] [CrossRef]
- Allemane, H.; Delouane, B.; Paillard, H.; Legube, B. Comparative Efficiency of Three Systems (O3, O3/H2O2, and O3/TiO2) for the Oxidation of Natural Organic Matter in Water. Ozone Sci. Eng. 1993, 15, 419–432. [Google Scholar] [CrossRef]
- Volk, C.; Roche, P.; Joret, J.-C.; Paillard, H. Comparison of the Effect of Ozone, Ozone-Hydrogen Peroxide System and Catalytic Ozone on the Biodegradable Organic Matter of a Fulvic Acid Solution. Water Res. 1997, 31, 650–656. [Google Scholar] [CrossRef]
- Rosal, R.; Gonzalo, M.S.; Rodríguez, A.; García-Calvo, E. Ozonation of Clofibric Acid Catalyzed by Titanium Dioxide. J. Hazard. Mater. 2009, 169, 411–418. [Google Scholar] [CrossRef]
- Gracia, R.; Cortés, S.; Sarasa, J.; Ormad, P.; Ovelleiro, J. Catalytic Ozonation with Supported Titanium Dioxide. The Stability of Catalyst in Water. Ozone Sci. Eng. 2000, 22, 185–193. [Google Scholar] [CrossRef]
- Gracia, R.; Cortés, S.; Sarasa, J.; Ormad, P.; Ovelleiro, J. Heterogeneous Catalytic Ozonation with Supported Titanium Dioxide in Model and Natural Waters. Ozone Sci. Eng. 2000, 22, 461–471. [Google Scholar] [CrossRef]
- Gracia, R.; Cortes, S.; Sarasa, J.; Ormad, P.; Ovelleiro, J. TiO2-Catalysed Ozonation of Raw Ebro River Water. Water Res. 2000, 34, 1525–1532. [Google Scholar] [CrossRef]
- Dabuth, N.; Thuangchon, S.; Prasert, T.; Yuthawong, V.; Phungsai, P. Effects of Catalytic Ozonation Catalyzed by TiO2 Activated Carbon and Biochar on Dissolved Organic Matter Removal and Disinfection By-Product Formations Investigated by Orbitrap Mass Spectrometry. J. Environ. Chem. Eng. 2022, 10, 107215. [Google Scholar] [CrossRef]
- Huang, W.-J.; Fang, G.-C.; Wang, C.-C. A Nanometer-ZnO Catalyst to Enhance the Ozonation of 2, 4, 6-Trichlorophenol in Water. Colloids Surf. A Physicochem. Eng. Asp. 2005, 260, 45–51. [Google Scholar] [CrossRef]
- Dong, Y.M.; Wang, G.L.; Jiang, P.P.; Zhang, A.M.; Yue, L.; Zhang, X.M. Simple Preparation and Catalytic Properties of ZnO for Ozonation Degradation of Phenol in Water. Chin. Chem. Lett. 2011, 22, 209–212. [Google Scholar] [CrossRef]
- Hu, Q.; Zhang, M.; Xu, L.; Wang, S.; Yang, T.; Wu, M.; Lu, W.; Li, Y.; Yu, D. Unraveling Timescale-Dependent Fe-MOFs Crystal Evolution for Catalytic Ozonation Reactivity Modulation. J. Hazard. Mater. 2022, 431, 128575. [Google Scholar] [CrossRef]
- Nowell, L.; Hoigné, J. Interaction of Iron (II) and Other Transition Metals with Aqueous Ozone. In Proceedings of the 8th Ozone World Congress, Zurich, Switzerland, 15–18 September 1987; p. E80. [Google Scholar]
- Ma, J.; Graham, N.J.D. Preliminary Investigation of Manganese-Catalyzed Ozonation for the Destruction of Atrazine. Ozone Sci. Eng. 1997, 19, 227–240. [Google Scholar] [CrossRef]
- Ma, J.; Graham, N.J.D. Degradation of Atrazine by Manganese-Catalysed Ozonation—Influence of Radical Scavengers. Water Res. 2000, 34, 3822–3828. [Google Scholar] [CrossRef]
- Xu, J.; Li, Y.; Qian, M.; Pan, J.; Ding, J.; Guan, B. Amino-Functionalized Synthesis of MnO2-NH2-GO for Catalytic Ozonation of Cephalexin. Appl. Catal. B Environ. 2019, 256, 117797. [Google Scholar] [CrossRef]
- Ponnusamy, G.; Farzaneh, H.; Tong, Y.; Lawler, J.; Liu, Z.; Saththasivam, J. Enhanced Catalytic Ozonation of Ibuprofen Using a 3D Structured Catalyst with MnO2 Nanosheets on Carbon Microfibers. Sci. Rep. 2021, 11, 6342. [Google Scholar] [CrossRef]
- Gao, E.; Meng, R.; Jin, Q.; Yao, S.; Wu, Z.; Li, J.; Du, E. Highly Effective Mineralization of Acetic Acid Wastewater via Catalytic Ozonation over the Promising MnO2/γ-Al2O3 Catalyst. Chem. Phys. Impact 2023, 6, 100149. [Google Scholar] [CrossRef]
- Andreozzi, R.; Insola, A.; Caprio, V.; Marotta, R.; Tufano, V. The Use of Manganese Dioxide as a Heterogeneous Catalyst for Oxalic Acid Ozonation in Aqueous Solution. Appl. Catal. A Gen. 1996, 138, 75–81. [Google Scholar] [CrossRef]
- Andreozzi, R.; Caprio, V.; Insola, A.; Marotta, R.; Tufano, V. Kinetics of Oxalic Acid Ozonation Promoted by Heterogeneous MnO2 Catalysis. Ind. Eng. Chem. Res. 1997, 36, 4774–4778. [Google Scholar] [CrossRef]
- Andreozzi, R.; Caprio, V.; Insola, A.; Marotta, R.; Tufano, V. The Ozonation of Pyruvic Acid in Aqueous Solutions Catalyzed by Suspended and Dissolved Manganese. Water Res. 1998, 32, 1492–1496. [Google Scholar] [CrossRef]
- Xiang, L.; Lin, F.; Cai, B.; Li, G.; Zhang, L.; Wang, Z.; Yan, B.; Wang, Y.; Chen, G. Catalytic Ozonation of CH2Cl2 over Hollow Urchin-like MnO2 with Regulation of Active Oxygen by Catalyst Modification and Ozone Promotion. J. Hazard. Mater. 2022, 436, 129217. [Google Scholar] [CrossRef]
- Li, P.; Zhan, S.; Yao, L.; Xiong, Y.; Tian, S. Highly Porous α-MnO2 Nanorods with Enhanced Defect Accessibility for Efficient Catalytic Ozonation of Refractory Pollutants. J. Hazard. Mater. 2022, 437, 129235. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, Y.; Sun, H.; Xiao, J.; Cao, H.; Wang, S. Hierarchical Shape-Controlled Mixed-Valence Calcium Manganites for Catalytic Ozonation of Aqueous Phenolic Compounds. Catal. Sci. Technol. 2016, 6, 2918–2929. [Google Scholar] [CrossRef]
- Alsheyab, M.A.; Muñoz, A.H. Comparative Study of Ozone and MnO2/O3 Effects on the Elimination of TOC and COD of Raw Water at the Valmayor Station. Desalination 2007, 207, 179–183. [Google Scholar] [CrossRef]
- Oh, B.; Song, S.; Lee, E.; Oh, H.; Kang, J. Catalyzed Ozonation Process with GAC and Metal Doped-GAC for Removing Organic Pollutants. Water Sci. Technol. 2004, 49, 45–49. [Google Scholar] [CrossRef]
- Wang, H.C.; Chang, S.H.; Hung, P.C.; Hwang, J.F.; Chang, M.B. Synergistic Effect of Transition Metal Oxides and Ozone on PCDD/F Destruction. J. Hazard. Mater. 2009, 164, 1452–1459. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Li, C.; Ma, J.; Tian, H.; Qiang, Z. Surface Hydroxyl Groups of Synthetic α-FeOOH in Promoting OH Generation from Aqueous Ozone: Property and Activity Relationship. Appl. Catal. B Environ. 2008, 82, 131–137. [Google Scholar] [CrossRef]
- Sui, M.; Sheng, L.; Lu, K.; Tian, F. FeOOH Catalytic Ozonation of Oxalic Acid and the Effect of Phosphate Binding on Its Catalytic Activity. Appl. Catal. B Environ. 2010, 96, 94–100. [Google Scholar] [CrossRef]
- Wang, J.; Bai, Z. Fe-Based Catalysts for Heterogeneous Catalytic Ozonation of Emerging Contaminants in Water and Wastewater. Chem. Eng. J. 2017, 312, 79–98. [Google Scholar] [CrossRef]
- Pi, Y.; Ernst, M.; Schrotter, J.-C. Effect of Phosphate Buffer upon CuO/Al2O3 and Cu (II) Catalyzed Ozonation of Oxalic Acid Solution. Ozone Sci. Eng. 2003, 25, 393–397. [Google Scholar] [CrossRef]
- Zhang, J.; Zhuang, T.; Liu, S.; Sun, S.; Wang, Y.; Liu, X.; Wang, J.; Liu, R. Catalytic Ozonation of Atrazine Enhanced by Mesoporous CeO2: Morphology, Performance and Intermediates. Water 2022, 14, 3431. [Google Scholar] [CrossRef]
- Orge, C.A.; Órfão, J.J.; Pereira, M.F.; de Farias, A.M.D.; Neto, R.C.R.; Fraga, M.A. Ozonation of Model Organic Compounds Catalysed by Nanostructured Cerium Oxides. Appl. Catal. B Environ. 2011, 103, 190–199. [Google Scholar] [CrossRef]
- Padilla, J.; Del Angel, G.; Navarrete, J. Improved Pd/γ-Al2O3–Ce Catalysts for Benzene Combustion. Catal. Today 2008, 133, 541–547. [Google Scholar] [CrossRef]
- Moussavi, G.; Mahmoudi, M. Degradation and Biodegradability Improvement of the Reactive Red 198 Azo Dye Using Catalytic Ozonation with MgO Nanocrystals. Chem. Eng. J. 2009, 152, 1–7. [Google Scholar] [CrossRef]
- Zeng, Y.-F.; Liu, Z.-L.; Qin, Z.-Z. Decolorization of Molasses Fermentation Wastewater by SnO2-Catalyzed Ozonation. J. Hazard. Mater. 2009, 162, 682–687. [Google Scholar] [CrossRef]
- Faria, P.; Monteiro, D.; Órfão, J.; Pereira, M. Cerium, Manganese and Cobalt Oxides as Catalysts for the Ozonation of Selected Organic Compounds. Chemosphere 2009, 74, 818–824. [Google Scholar] [CrossRef]
- Shiraga, M.; Kawabata, T.; Li, D.; Shishido, T.; Komaguchi, K.; Sano, T.; Takehira, K. Memory Effect-Enhanced Catalytic Ozonation of Aqueous Phenol and Oxalic Acid over Supported Cu Catalysts Derived from Hydrotalcite. Appl. Clay Sci. 2006, 33, 247–259. [Google Scholar] [CrossRef]
- Martins, R.C.; Quinta-Ferreira, R.M. Catalytic Ozonation of Phenolic Acids over a Mn–Ce–O Catalyst. Appl. Catal. B Environ. 2009, 90, 268–277. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, Z.; Jing, G.; Fang, J. Catalytic Ozonation of Acid Red B in Aqueous Solution over a Fe–Cu–O Catalyst. Sep. Purif. Technol. 2013, 115, 129–135. [Google Scholar] [CrossRef]
- Xing, S.; Lu, X.; Ren, L.; Ma, Z. Characterization and Reactivity of Mn–Ce–O Composites for Catalytic Ozonation of Antipyrine. RSC Adv. 2015, 5, 60279–60285. [Google Scholar] [CrossRef]
- Ma, Z.; Zhu, L.; Lu, X.; Xing, S.; Wu, Y.; Gao, Y. Catalytic Ozonation of P-Nitrophenol over Mesoporous Mn–Co–Fe Oxide. Sep. Purif. Technol. 2014, 133, 357–364. [Google Scholar] [CrossRef]
- Zhang, Z.; Ai, H.; Fu, M.-L.; Hu, Y.; Liu, J.; Ji, Y.; Vasudevan, V.; Yuan, B. Oxygen Vacancies Enhancing Performance of Mg-Co-Ce Oxide Composite for the Selective Catalytic Ozonation of Ammonia in Water. J. Hazard. Mater. 2022, 436, 129000. [Google Scholar] [CrossRef]
- Chung, H.-H.; Jung, J.; Yoon, J.-H.; Lee, M.-J. Catalytic Ozonation of PCE by Clay from Tidal Flat Sediments. Catal. Lett. 2002, 78, 77–79. [Google Scholar] [CrossRef]
- Hassan, M.M.; Hawkyard, C.J. Ferral-Catalyzed Ozonation of Aqueous Dyes in a Bubble-Column Reactor. Catal. Commun. 2002, 3, 281–286. [Google Scholar] [CrossRef]
- Lim, H.-N.; Choi, H.; Hwang, T.-M.; Kang, J.-W. Characterization of Ozone Decomposition in a Soil Slurry: Kinetics and Mechanism. Water Res. 2002, 36, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; He, K.; Yin, L.; Zhang, A. Catalytic Degradation of Nitrobenzene and Aniline in Presence of Ozone by Magnesia from Natural Mineral. Catal. Lett. 2007, 119, 222–227. [Google Scholar] [CrossRef]
- Valdés, H.; Farfán, V.J.; Manoli, J.A.; Zaror, C.A. Catalytic Ozone Aqueous Decomposition Promoted by Natural Zeolite and Volcanic Sand. J. Hazard. Mater. 2009, 165, 915–922. [Google Scholar] [CrossRef]
- Su, L.; Chen, X.; Wang, H.; Wang, Y.; Lu, Z. Oxygen Vacancies Promoted Heterogeneous Catalytic Ozonation of Atrazine by Defective 4A Zeolite. J. Clean. Prod. 2022, 336, 130376. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, L.; Cao, H.; Chi, Z.; Chen, C.; Duan, X.; Xie, Y.; Qi, F.; Song, W.; Liu, J. Role of Oxygen Vacancies and Mn Sites in Hierarchical Mn2O3/LaMnO3-δ Perovskite Composites for Aqueous Organic Pollutants Decontamination. Appl. Catal. B Environ. 2019, 245, 546–554. [Google Scholar] [CrossRef]
- Afzal, S.; Quan, X.; Zhang, J. High Surface Area Mesoporous Nanocast LaMO3 (M= Mn, Fe) Perovskites for Efficient Catalytic Ozonation and an Insight into Probable Catalytic Mechanism. Appl. Catal. B Environ. 2017, 206, 692–703. [Google Scholar] [CrossRef]
- Han, P.; Li, X.; Jin, C.; Tan, X.; Sun, W.; Wang, S.; Ding, F.; Li, X.; Jin, H.; Sun, C.; et al. Cation Deviated Stoichiometry Ca1.1ZrO3 Perovskite as an Efficient Ozonation Catalyst for m-Cresol Wastewater Degradation. Chem. Eng. J. 2022, 429, 132218. [Google Scholar] [CrossRef]
- Lin, S.H.; Lai, C.L. Kinetic Characteristics of Textile Wastewater Ozonation in Fluidized and Fixed Activated Carbon Beds. Water Res. 2000, 34, 763–772. [Google Scholar] [CrossRef]
- Faria, P.; Órfão, J.; Pereira, M. Activated Carbon Catalytic Ozonation of Oxamic and Oxalic Acids. Appl. Catal. B Environ. 2008, 79, 237–243. [Google Scholar] [CrossRef]
- Guzman-Perez, C.A.; Soltan, J.; Robertson, J. Kinetics of Catalytic Ozonation of Atrazine in the Presence of Activated Carbon. Sep. Purif. Technol. 2011, 79, 8–14. [Google Scholar] [CrossRef]
- Liu, Z.-Q.; Ma, J.; Cui, Y.-H.; Zhao, L.; Zhang, B.-P. Factors Affecting the Catalytic Activity of Multi-Walled Carbon Nanotube for Ozonation of Oxalic Acid. Sep. Purif. Technol. 2011, 78, 147–153. [Google Scholar] [CrossRef]
- Cao, H.; Xing, L.; Wu, G.; Xie, Y.; Shi, S.; Zhang, Y.; Minakata, D.; Crittenden, J.C. Promoting Effect of Nitration Modification on Activated Carbon in the Catalytic Ozonation of Oxalic Acid. Appl. Catal. B Environ. 2014, 146, 169–176. [Google Scholar] [CrossRef]
- Gonçalves, A.G.; Figueiredo, J.L.; Órfão, J.J.; Pereira, M.F. Influence of the Surface Chemistry of Multi-Walled Carbon Nanotubes on Their Activity as Ozonation Catalysts. Carbon 2010, 48, 4369–4381. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, Y.; Sun, H.; Xiao, J.; Cao, H.; Wang, S. Efficient Catalytic Ozonation over Reduced Graphene Oxide for P-Hydroxylbenzoic Acid (PHBA) Destruction: Active Site and Mechanism. ACS Appl. Mater. Interfaces 2016, 8, 9710–9720. [Google Scholar] [CrossRef]
- Yin, R.; Guo, W.; Du, J.; Zhou, X.; Zheng, H.; Wu, Q.; Chang, J.; Ren, N. Heteroatoms Doped Graphene for Catalytic Ozonation of Sulfamethoxazole by Metal-Free Catalysis: Performances and Mechanisms. Chem. Eng. J. 2017, 317, 632–639. [Google Scholar] [CrossRef]
- Xiao, J.; Xie, Y.; Nawaz, F.; Jin, S.; Duan, F.; Li, M.; Cao, H. Super Synergy between Photocatalysis and Ozonation Using Bulk G-C3N4 as Catalyst: A Potential Sunlight/O3/g-C3N4 Method for Efficient Water Decontamination. Appl. Catal. B Environ. 2016, 181, 420–428. [Google Scholar] [CrossRef]
- Liu, Z.-Q.; Ma, J.; Cui, Y.-H. Carbon Nanotube Supported Platinum Catalysts for the Ozonation of Oxalic Acid in Aqueous Solutions. Carbon 2008, 46, 890–897. [Google Scholar] [CrossRef]
- Lin, J.; Kawai, A.; Nakajima, T. Effective Catalysts for Decomposition of Aqueous Ozone. Appl. Catal. B Environ. 2002, 39, 157–165. [Google Scholar] [CrossRef]
- Pugazhenthiran, N.; Sathishkumar, P.; Murugesan, S.; Anandan, S. Effective Degradation of Acid Orange 10 by Catalytic Ozonation in the Presence of Au-Bi2O3 Nanoparticles. Chem. Eng. J. 2011, 168, 1227–1233. [Google Scholar] [CrossRef]
- Zhao, J.; Cao, J.; Zhao, Y.; Zhang, T.; Zheng, D.; Li, C. Catalytic Ozonation Treatment of Papermaking Wastewater by Ag-Doped NiFe2O4: Performance and Mechanism. J. Environ. Sci. 2020, 97, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Malik, S.N.; Khan, S.M.; Ghosh, P.C.; Vaidya, A.N.; Das, S.; Mudliar, S.N. Nano Catalytic Ozonation of Biomethanated Distillery Wastewater for Biodegradability Enhancement, Color and Toxicity Reduction with Biofuel Production. Chemosphere 2019, 230, 449–461. [Google Scholar] [CrossRef]
- Wen, G.; Wang, S.-J.; Ma, J.; Huang, T.-L.; Liu, Z.-Q.; Zhao, L.; Su, J.-F. Enhanced Ozonation Degradation of Di-n-Butyl Phthalate by Zero-Valent Zinc in Aqueous Solution: Performance and Mechanism. J. Hazard. Mater. 2014, 265, 69–78. [Google Scholar] [CrossRef]
- Hu, Q.; Xu, L.; Fu, K.; Zhu, F.; Yang, T.; Yang, T.; Luo, J.; Wu, M.; Yu, D. Ultrastable MOF-Based Foams for Versatile Applications. Nano Res. 2022, 15, 2961–2970. [Google Scholar] [CrossRef]
- Yu, D.; Wu, M.; Hu, Q.; Wang, L.; Lv, C.; Zhang, L. Iron-Based Metal-Organic Frameworks as Novel Platforms for Catalytic Ozonation of Organic Pollutant: Efficiency and Mechanism. J. Hazard. Mater. 2019, 367, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Wang, L.; Yang, T.; Yang, G.; Wang, D.; Ni, H.; Wu, M. Tuning Lewis Acidity of Iron-Based Metal-Organic Frameworks for Enhanced Catalytic Ozonation. Chem. Eng. J. 2021, 404, 127075. [Google Scholar] [CrossRef]
- Pang, Z.; Luo, P.; Wei, C.; Qin, Z.; Wei, T.; Hu, Y.; Wu, H.; Wei, C. In-Situ Growth of Co/Ni Bimetallic Organic Frameworks on Carbon Spheres with Catalytic Ozonation Performance for Removal of Bio-Treated Coking Wastewater. Chemosphere 2022, 291, 132874. [Google Scholar] [CrossRef]
- Mohammadi, V.; Tabatabaee, M.; Fadaei, A.; Mirhoseini, S.A. Study of Nickel Nanoparticles in Highly Porous Nickel Metal–Organic Framework for Efficient Heterogeneous Catalytic Ozonation of Linear Alkyl Benzene Sulfonate in Water. Ozone Sci. Eng. 2021, 43, 239–253. [Google Scholar] [CrossRef]
- Akhtar, J.; Amin, N.S.; Aris, A. Combined Adsorption and Catalytic Ozonation for Removal of Sulfamethoxazole Using Fe2O3/CeO2 Loaded Activated Carbon. Chem. Eng. J. 2011, 170, 136–144. [Google Scholar] [CrossRef]
- Orge, C.; Órfão, J.; Pereira, M. Catalytic Ozonation of Organic Pollutants in the Presence of Cerium Oxide–Carbon Composites. Appl. Catal. B Environ. 2011, 102, 539–546. [Google Scholar] [CrossRef]
- Rosal, R.; Gonzalo, M.S.; Rodríguez, A.; Perdigón-Melón, J.A.; García-Calvo, E. Catalytic Ozonation of Atrazine and Linuron on MnOx/Al2O3 and MnOx/SBA-15 in a Fixed Bed Reactor. Chem. Eng. J. 2010, 165, 806–812. [Google Scholar] [CrossRef]
- Rosal, R.; Gonzalo, M.S.; Rodríguez, A.; García-Calvo, E. Catalytic Ozonation of Fenofibric Acid over Alumina-Supported Manganese Oxide. J. Hazard. Mater. 2010, 183, 271–278. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Hsieh, D.-C.; Shang, N.-C. Efficient Mineralization of Dimethyl Phthalate by Catalytic Ozonation Using TiO2/Al2O3 Catalyst. J. Hazard. Mater. 2011, 192, 1017–1025. [Google Scholar] [CrossRef]
- Ni, C.; Chen, J. Heterogeneous Catalytic Ozonation of 2-Chlorophenol Queous Solution with Alumina as a Catalyst. Water Sci. Technol. 2001, 43, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Kasprzyk-Hordern, B.; Raczyk-Stanisławiak, U.; Świetlik, J.; Nawrocki, J. Catalytic Ozonation of Natural Organic Matter on Alumina. Appl. Catal. B Environ. 2006, 62, 345–358. [Google Scholar] [CrossRef]
- Qi, F.; Xu, B.; Chen, Z.; Ma, J.; Sun, D.; Zhang, L. Influence of Aluminum Oxides Surface Properties on Catalyzed Ozonation of 2, 4, 6-Trichloroanisole. Sep. Purif. Technol. 2009, 66, 405–410. [Google Scholar] [CrossRef]
- Zhao, L.; Ma, J.; Sun, Z.; Liu, H. Influencing Mechanism of Temperature on the Degradation of Nitrobenzene in Aqueous Solution by Ceramic Honeycomb Catalytic Ozonation. J. Hazard. Mater. 2009, 167, 1119–1125. [Google Scholar] [CrossRef]
- Zhao, L.; Sun, Z.; Ma, J.; Liu, H. Enhancement Mechanism of Heterogeneous Catalytic Ozonation by Cordierite-Supported Copper for the Degradation of Nitrobenzene in Aqueous Solution. Environ. Sci. Technol. 2009, 43, 2047–2053. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Xu, X.; Zhu, L.; Ding, W.; Mahmood, Q. Catalytic Ozonation of Industrial Wastewater Containing Chloro and Nitro Aromatics Using Modified Diatomaceous Porous Filling. Desalination 2010, 254, 90–98. [Google Scholar] [CrossRef]
- Rivera-Utrilla, J.; Sánchez-Polo, M.; Bautista-Toledo, M.I.; Méndez-Díaz, J.D. Enhanced Oxidation of Sodium Dodecylbenzenesulfonate Aqueous Solution Using Ozonation Catalyzed by Base Treated Zeolite. Chem. Eng. J. 2012, 180, 204–209. [Google Scholar] [CrossRef]
- Zhao, L.; Ma, J.; Sun, Z.; Zhai, X. Catalytic Ozonation for the Degradation of Nitrobenzene in Aqueous Solution by Ceramic Honeycomb-Supported Manganese. Appl. Catal. B Environ. 2008, 83, 256–264. [Google Scholar] [CrossRef]
- Byun, S.; Davies, S.; Alpatova, A.; Corneal, L.; Baumann, M.; Tarabara, V.; Masten, S. Mn Oxide Coated Catalytic Membranes for a Hybrid Ozonation–Membrane Filtration: Comparison of Ti, Fe and Mn Oxide Coated Membranes for Water Quality. Water Res. 2011, 45, 163–170. [Google Scholar] [CrossRef]
- Joseph, Y.; Ranke, W.; Weiss, W. Water on FeO (111) and Fe3O4 (111): Adsorption Behavior on Different Surface Terminations. J. Phys. Chem. B 2000, 104, 3224–3236. [Google Scholar] [CrossRef]
- Nawrocki, J.; Rigney, M.; McCormick, A.; Carr, P. Chemistry of Zirconia and Its Use in Chromatography. J. Chromatogr. A 1993, 657, 229–282. [Google Scholar] [CrossRef]
- Kasprzyk-Hordern, B.; Ziółek, M.; Nawrocki, J. Catalytic Ozonation and Methods of Enhancing Molecular Ozone Reactions in Water Treatment. Appl. Catal. B Environ. 2003, 46, 639–669. [Google Scholar] [CrossRef]
- Zhao, L.; Ma, J.; Sun, Z.; Liu, H. Mechanism of Heterogeneous Catalytic Ozonation of Nitrobenzene in Aqueous Solution with Modified Ceramic Honeycomb. Appl. Catal. B Environ. 2009, 89, 326–334. [Google Scholar] [CrossRef]
- Zhang, T.; Ma, J. Catalytic Ozonation of Trace Nitrobenzene in Water with Synthetic Goethite. J. Mol. Catal. A Chem. 2008, 279, 82–89. [Google Scholar] [CrossRef]
- Ikhlaq, A.; Brown, D.R.; Kasprzyk-Hordern, B. Catalytic Ozonation for the Removal of Organic Contaminants in Water on ZSM-5 Zeolites. Appl. Catal. B Environ. 2014, 154–155, 110–122. [Google Scholar] [CrossRef]
- Faria, P.; Órfão, J.; Pereira, M. Catalytic Ozonation of Sulfonated Aromatic Compounds in the Presence of Activated Carbon. Appl. Catal. B Environ. 2008, 83, 150–159. [Google Scholar] [CrossRef]
- Sánchez-Polo, M.; von Gunten, U.; Rivera-Utrilla, J. Efficiency of Activated Carbon to Transform Ozone into OH Radicals: Influence of Operational Parameters. Water Res. 2005, 39, 3189–3198. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Zhang, X.; Lei, L. Degradation of Aqueous P-Nitrophenol by Ozonation Integrated with Activated Carbon. Ind. Eng. Chem. Res. 2008, 47, 6809–6815. [Google Scholar] [CrossRef]
- Sun, Z.; Zhao, L.; Liu, C.; Zhen, Y.; Ma, J. Catalytic Ozonation of Ketoprofen with in Situ N-Doped Carbon: A Novel Synergetic Mechanism of Hydroxyl Radical Oxidation and an Intra-Electron-Transfer Nonradical Reaction. Environ. Sci. Technol. 2019, 53, 10342–10351. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, L.; Chen, C.; Xi, J.; Cao, H.; Duan, X.; Xie, Y.; Song, W.; Wang, S. Occurrence of Both Hydroxyl Radical and Surface Oxidation Pathways in N-Doped Layered Nanocarbons for Aqueous Catalytic Ozonation. Appl. Catal. B Environ. 2019, 254, 283–291. [Google Scholar] [CrossRef]
- Song, Z.; Wang, M.; Wang, Z.; Wang, Y.; Li, R.; Zhang, Y.; Liu, C.; Liu, Y.; Xu, B.; Qi, F. Insights into Heteroatom-Doped Graphene for Catalytic Ozonation: Active Centers, Reactive Oxygen Species Evolution, and Catalytic Mechanism. Environ. Sci. Technol. 2019, 53, 5337–5348. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Li, W.; Croué, J.-P. Catalytic Ozonation of Oxalate with a Cerium Supported Palladium Oxide: An Efficient Degradation Not Relying on Hydroxyl Radical Oxidation. Environ. Sci. Technol. 2011, 45, 9339–9346. [Google Scholar] [CrossRef]
- Zhang, T.; Croué, J.-P. Catalytic Ozonation Not Relying on Hydroxyl Radical Oxidation: A Selective and Competitive Reaction Process Related to Metal–Carboxylate Complexes. Appl. Catal. B Environ. 2014, 144, 831–839. [Google Scholar] [CrossRef]
- Fujita, H.; Izumi, J.; Sagehashi, M.; Fujii, T.; Sakoda, A. Adsorption and Decomposition of Water-Dissolved Ozone on High Silica Zeolites. Water Res. 2004, 38, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Fujita, H.; Izumi, J.; Sagehashi, M.; Fujii, T.; Sakoda, A. Decomposition of Trichloroethene on Ozone-Adsorbed High Silica Zeolites. Water Res. 2004, 38, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Su, T.; Xie, X.; Qin, Z.; Ji, H. The Adsorption of Ozone on the Solid Catalyst Surface and the Catalytic Reaction Mechanism for Organic Components. ChemistrySelect 2020, 5, 15092–15116. [Google Scholar] [CrossRef]
- Guo, Y.; Zhu, S.; Wang, B.; Huang, J.; Deng, S.; Yu, G.; Wang, Y. Modelling of Emerging Contaminant Removal during Heterogeneous Catalytic Ozonation Using Chemical Kinetic Approaches. J. Hazard. Mater. 2019, 380, 120888. [Google Scholar] [CrossRef]
- Zhang, J.; Zhuang, T.; Liu, S.; Zhang, G.; Huo, K. Catalytic Ozonation of Phenol Enhanced by Mesoporous MnO2 Prepared through Nanocasting Method with SBA-15 as Template. J. Environ. Chem. Eng. 2020, 8, 103967. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, Y.; Yu, G.; Wang, Y. Revisiting the Role of Reactive Oxygen Species for Pollutant Abatement during Catalytic Ozonation: The Probe Approach versus the Scavenger Approach. Appl. Catal. B Environ. 2021, 280, 119418. [Google Scholar] [CrossRef]
- Ferreiro, C.; Villota, N.; de Luis, A.; Lombraña, J.I. Analysis of the Effect of the Operational Conditions in a Combined Adsorption–Ozonation Process with Granular Activated Carbon for the Treatment of Phenol Wastewater. React. Chem. Eng. 2020, 5, 760–778. [Google Scholar] [CrossRef]
- Ferreiro, C.; Villota, N.; Lombraña, J.I.; Rivero, M.J. Heterogeneous Catalytic Ozonation of Aniline-Contaminated Waters: A Three-Phase Modelling Approach Using TiO2/GAC. Water 2020, 12, 3448. [Google Scholar] [CrossRef]
- Khataee, A.; Fathinia, M.; Rad, T.S. Kinetic Modeling of Nalidixic Acid Degradation by Clinoptilolite Nanorod-Catalyzed Ozonation Process. RSC Adv. 2016, 6, 44371–44382. [Google Scholar] [CrossRef]
- Staehelin, J.; Hoigne, J. Decomposition of Ozone in Water: Rate of Initiation by Hydroxide Ions and Hydrogen Peroxide. Environ. Sci. Technol. 1982, 16, 676–681. [Google Scholar] [CrossRef]
- Pera-Titus, M.; García-Molina, V.; Baños, M.A.; Giménez, J.; Esplugas, S. Degradation of Chlorophenols by Means of Advanced Oxidation Processes: A General Review. Appl. Catal. B Environ. 2004, 47, 219–256. [Google Scholar] [CrossRef]
- Zhao, L.; Ma, J.; Sun, Z.; Zhai, X. Mechanism of Influence of Initial PH on the Degradation of Nitrobenzene in Aqueous Solution by Ceramic Honeycomb Catalytic Ozonation. Environ. Sci. Technol. 2008, 42, 4002–4007. [Google Scholar] [CrossRef]
- Bai, Z.; Yang, Q.; Wang, J. Catalytic Ozonation of Sulfamethazine Using Ce0.1Fe0.9OOH as Catalyst: Mineralization and Catalytic Mechanisms. Chem. Eng. J. 2016, 300, 169–176. [Google Scholar] [CrossRef]
- Dai, Q.; Chen, L.; Chen, W.; Chen, J. Degradation and Kinetics of Phenoxyacetic Acid in Aqueous Solution by Ozonation. Sep. Purif. Technol. 2015, 142, 287–292. [Google Scholar] [CrossRef]
- Chen, C.; Wei, L.; Guo, X.; Guo, S.; Yan, G. Investigation of Heavy Oil Refinery Wastewater Treatment by Integrated Ozone and Activated Carbon-Supported Manganese Oxides. Fuel Process. Technol. 2014, 124, 165–173. [Google Scholar] [CrossRef]
- Mehrjouei, M.; Müller, S.; Möller, D. A Review on Photocatalytic Ozonation Used for the Treatment of Water and Wastewater. Chem. Eng. J. 2015, 263, 209–219. [Google Scholar] [CrossRef]
- Xiong, Z.; Cao, J.; Yang, D.; Lai, B.; Yang, P. Coagulation-Flocculation as Pre-Treatment for Micro-Scale Fe/Cu/O3 Process (CF-MFe/Cu/O3) Treatment of the Coating Wastewater from Automobile Manufacturing. Chemosphere 2017, 166, 343–351. [Google Scholar] [CrossRef]
- Chang, C.-C.; Chiu, C.-Y.; Chang, C.-Y.; Chang, C.-F.; Chen, Y.-H.; Ji, D.-R.; Yu, Y.-H.; Chiang, P.-C. Combined Photolysis and Catalytic Ozonation of Dimethyl Phthalate in a High-Gravity Rotating Packed Bed. J. Hazard. Mater. 2009, 161, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Shao, S.; Ding, X.; Jiao, W.; Liu, Y. Degradation of Phenol with Heterogeneous Catalytic Ozonation Enhanced by High Gravity Technology. J. Clean. Prod. 2020, 248, 119179. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Fu, L.; Chen, F.; Zhao, S.; Zhu, J.; Yin, C. Application of Heterogeneous Catalytic Ozonation in Wastewater Treatment: An Overview. Catalysts 2023, 13, 342. https://doi.org/10.3390/catal13020342
Li X, Fu L, Chen F, Zhao S, Zhu J, Yin C. Application of Heterogeneous Catalytic Ozonation in Wastewater Treatment: An Overview. Catalysts. 2023; 13(2):342. https://doi.org/10.3390/catal13020342
Chicago/Turabian StyleLi, Xingxing, Li Fu, Fei Chen, Shichao Zhao, Jiangwei Zhu, and Chengliang Yin. 2023. "Application of Heterogeneous Catalytic Ozonation in Wastewater Treatment: An Overview" Catalysts 13, no. 2: 342. https://doi.org/10.3390/catal13020342
APA StyleLi, X., Fu, L., Chen, F., Zhao, S., Zhu, J., & Yin, C. (2023). Application of Heterogeneous Catalytic Ozonation in Wastewater Treatment: An Overview. Catalysts, 13(2), 342. https://doi.org/10.3390/catal13020342