Catalytic Transformation of Biomass-Derived Hemicellulose Sugars by the One-Pot Method into Oxalic, Lactic, and Levulinic Acids Using a Homogeneous H2SO4 Catalyst
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Czekaj, I.; Sobuś, N. Nano-Design of Zeolite-Based Catalysts for Selective Conversion of Biomass into Chemicals; Wydawnictwo PK: Kraków, Poland, 2018; ISBN 978-83-7242-785-4. [Google Scholar]
- Rinaldi, R.; Jastrzebski, R.; Clough, M.T.; Ralph, J.; Kennema, M.; Bruijnincx, P.C.; Weckhuysen, B.M. Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis. Angew. Chem. Int. Ed. 2016, 55, 8164–8215. [Google Scholar] [CrossRef] [PubMed]
- Yoo, C.G.; Meng, X.; Pu, Y.; Ragauskas, A.J. The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies: A comprehensive review. Bioresour. Technol. 2020, 301, 122784. [Google Scholar] [CrossRef] [PubMed]
- Vom Stein, T.; Grande, P.M.; Kayser, H.; Sibilla, F.; Leitner, W.; de María, P.D. From biomass to feedstock: One-step fractionation of lignocellulose components by the selective organic acid-catalyzed depolymerization of hemicellulose in a biphasic system. Green Chem. 2011, 13, 1772. [Google Scholar] [CrossRef]
- Grande, P.M.; Viell, J.; Theyssen, N.; Marquardt, W.; de María, P.D.; Leitner, W. Fractionation of lignocellulosic biomass using the OrganoCat process. Green Chem. 2015, 17, 3533–3539. [Google Scholar] [CrossRef]
- Weidener, D.; Klose, H.; Leitner, W.; Schurr, U.; Usadel, B.; Domínguez de María, P.; Grande, P.M. One-Step Lignocellulose Fractionation by using 2,5-Furandicarboxylic Acid as a Biogenic and Recyclable Catalyst. ChemSusChem 2018, 11, 2051–2056. [Google Scholar] [CrossRef] [PubMed]
- Weidener, D.; Leitner, W.; de María, P.D.; Klose, H.; Grande, P.M. Lignocellulose Fractionation Using Recyclable Phosphoric Acid: Lignin, Cellulose, and Furfural Production. ChemSusChem 2021, 4, 909–916. [Google Scholar] [CrossRef] [PubMed]
- Weidener, D.; Dama, M.; Dietrich, S.K.; Ohrem, B.; Pauly, M.; Leitner, W.; De María, P.D.; Grande, P.M.; Klose, H. Multiscale analysis of lignocellulose recalcitrance towards OrganoCat pretreatment and fractionation. Biotechnol. Biofuels 2020, 13, 155. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm Riemenschneider, W.; Tanifuji, M. Oxalic acid. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2002. [Google Scholar] [CrossRef]
- Yonemitsu, E.; Isshiki, T.; Suzuki, T.; Yashima, Y. Process for the production of oxalic acid. U.S. Patent 3,678,107, 15 March 1969. [Google Scholar]
- Kumar, A.; Shende, D.Z.; Wasewar, K.L. Production of levulinic acid: A promising building block material for pharmaceutical and food industry. Mater. Today Proc. 2020, 29, 790–793. [Google Scholar] [CrossRef]
- Rackemann, D.W.; Doherty, W.O. The conversion of lignocellulosics to levulinic acid. Biofuels Bioprod. Biorefining 2011, 5, 198–214. [Google Scholar] [CrossRef] [Green Version]
- Hayes, D.J.; Fitzpatrick, S.; Hayes, M.H.; Ross, J.R. The Biofine process- production of levulinic acid, furfural and formic acid from lignocellulosic feedstocks. Biorefineries Ind. Process. Prod. 2006, 1, 139–164. [Google Scholar]
- Fugalli, S.; Galletti, A.M.R.; Troiano, A. Procedure for the production of levulin acid and its esters from renewable raw materials and vegetable origin products. Italy Patent IT2008CE0002, 4 September 2008. [Google Scholar]
- Besson, M.; Gallezot, P.; Pinel, C. Conversion of Biomass into Chemicals over Metal Catalysts. Chem. Rev. 2014, 114, 1827–1870. [Google Scholar] [CrossRef] [PubMed]
- Corma, A.; Iborra, S.; Velty, A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 2007, 107, 2411–2502. [Google Scholar] [CrossRef] [PubMed]
- Girisuta, B.; Janssen, L.P.B.M.; Heeres, H.J. A Kinetic Study on the Conversion of Glucose to Levulinic Acid. Chem. Eng. Res. Des. 2006, 84, 339–349. [Google Scholar] [CrossRef]
- Wang, S.; Dorcet, V.; Roisnel, T.; Bruneau, C.; Fischmeister, C. Ruthenium and Iridium Dipyridylamine Catalysts for the Efficient Synthesis of γ-Valerolactone by Transfer Hydrogenation of Levulinic Acid. Organometallics 2017, 36, 708–713. [Google Scholar] [CrossRef]
- Sobuś, N.; Czekaj, I. Catalytic trans-formation of biomass derived glucose by one-pot method into levulinic acid over Na-BEA zeolite. Processes 2022, 10, 223. [Google Scholar] [CrossRef]
- Bohre, A.; Modak, A.; Chourasia, V.; Jadhao, P.R.; Sharma, K.; Pant, K.K. Recent advances in supported ionic liquid catalysts for sustainable biomass valorisation to high-value chemicals and fuels. Chem. Eng. J. 2022, 450, 138032. [Google Scholar] [CrossRef]
- Tarabanko, N.; Baryshnikov, S.V.; Kazachenko, A.S.; Miroshnikova, A.; Skripnikov, A.M.; Lavrenov, A.V.; Taran, O.P.; Kuznetsov, B.N. Hydrothermal hydrolysis of microcrystalline cellulose from birch wood catalyzed by Al2O3-B2O3 mixed oxides. Wood Sci. Technol. 2022, 56, 437–457. [Google Scholar] [CrossRef]
- Domański, J.; Cieciura-Włoch, W.; Marchut-Mikołajczyk, O.; Patelski, P.; Dziekońska-Kubczak, U.; Dziugan, P. Method of obtaining furfural from lignocellulosic material. Poland Patent PL236526B1, 25 January 2021. [Google Scholar]
- Parton, R.F.M.J.; Petrus, M.; Mariqa Rijkers, W.; Augustinus Kroon, J. Continuous production of furfural and levulininc acid. EU Patent EP2537841A1, 26 December 2012. [Google Scholar]
- Xiaohong, W.; Yiming, L.; Zonghang, L.; Ying Zhang, L.Y.; Ningyue, X.S. A kind of application of the polyacid catalyst of the structure containing Dawson in cellulose hydrothermal conversion. China Patent CN110028397A, 19 July 2019. [Google Scholar]
- Pyo, S.H.; Glaser, S.J.; Rehnberg, N.; Hatti-Kaul, R. Clean Production of Levulinic Acid from Fructose and Glucose in Salt Water by Heterogeneous Catalytic Dehydration. ACS Omega 2020, 5, 14275–14282. [Google Scholar] [CrossRef] [PubMed]
Mixture 1 Process Time 1 h | Process Temp. (°C) | Raw Material Conversion (%) | Yield to OA (%) | Yield to LE (%) | Yield to LA (%) | Selectivity (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Catalyst Concentration | DHA | PAC | OA | LA | FA | LE | AC | PA | |||||
0.1 M H2SO4 | 100 | 87.84 | 14.60 | 0.00 | 64.57 | 0.00 | 0.00 | 16.62 | 73.52 | 6.31 | 0.00 | 3.55 | 0.00 |
0.2 M H2SO4 | 94.89 | 51.48 | 0.00 | 35.73 | 0.00 | 0.44 | 54.26 | 37.66 | 4.54 | 0.00 | 3.11 | 0.00 | |
0.5 M H2SO4 | 97.78 | 71.03 | 0.00 | 26.38 | 0.38 | 0.00 | 72.64 | 26.98 | 0.00 | 0.00 | 0.00 | 0.00 | |
1 M H2SO4 | 98.88 | 84.81 | 0.00 | 13.85 | 0.00 | 0.00 | 85.77 | 14.01 | 0.23 | 0.00 | 0.00 | 0.00 | |
0.1 M H2SO4 | 200 | 16.84 | 16.84 | 0.00 | 0.00 | 0.00 | 0.00 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.2 M H2SO4 | 52.01 | 52.01 | 0.00 | 0.00 | 0.00 | 0.00 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
0.5 M H2SO4 | 84.42 | 84.42 | 0.00 | 0.00 | 0.00 | 0.00 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
1 M H2SO4 | 90.95 | 90.17 | 0.00 | 0.00 | 0.00 | 0.00 | 99.14 | 0.86 | 0.00 | 0.00 | 0.00 | 0.00 | |
0.1 M H2SO4 | 220 | 31.18 | 31.18 | 0.00 | 0.00 | 0.00 | 0.00 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.2 M H2SO4 | 88.58 | 83.73 | 0.00 | 0.00 | 0.00 | 0.00 | 94.52 | 0.00 | 0.00 | 0.00 | 2.86 | 0.00 | |
0.5 M H2SO4 | 100.00 | 96.65 | 2.26 | 0.00 | 0.00 | 0.00 | 96.65 | 0.00 | 0.00 | 2.26 | 1.09 | 0.00 | |
1 M H2SO4 | 100.00 | 82.09 | 0.88 | 0.00 | 0.00 | 0.00 | 82.09 | 0.00 | 0.13 | 0.88 | 0.50 | 0.00 | |
0.1 M H2SO4 | 250 | 36.65 | 35.73 | 0.00 | 0.93 | 0.00 | 0.00 | 97.47 | 2.53 | 0.00 | 0.00 | 0.00 | 0.00 |
0.2 M H2SO4 | 99.12 | 83.47 | 2.24 | 0.00 | 0.00 | 0.00 | 84.21 | 0.00 | 1.07 | 2.26 | 3.90 | 8.57 | |
0.5 M H2SO4 | 99.38 | 95.66 | 2.05 | 0.00 | 0.00 | 0.00 | 96.25 | 0.00 | 0.58 | 2.07 | 1.10 | 0.00 | |
1 M H2SO4 | 100.00 | 99.06 | 0.63 | 0.00 | 0.00 | 0.12 | 99.06 | 0.00 | 0.19 | 0.63 | 0.00 | 0.00 |
Mixture 2 Process Time 1 h | Process Temp. (°C) | Raw Material Conversion (%) | Yield to OA (%) | Yield to LE (%) | Yield to LA (%) | Selectivity (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Catalyst Concentration | DHA | OA | LA | FA | LE | AC | PA | ACt | |||||
0.1 M H2SO4 | 100 | 77.24 | 14.41 | 0.00 | 57.74 | 0.00 | 18.65 | 74.75 | 1.97 | 0.00 | 1.58 | 0.00 | 3.05 |
0.2 M H2SO4 | 86.66 | 42.67 | 0.00 | 36.49 | 0.00 | 49.24 | 42.11 | 5.46 | 0.00 | 3.20 | 0.00 | 0.00 | |
0.5 M H2SO4 | 92.19 | 69.48 | 0.00 | 21.84 | 0.00 | 75.36 | 23.69 | 0.57 | 0.00 | 0.38 | 0.00 | 0.00 | |
1 M H2SO4 | 95.08 | 77.89 | 0.00 | 16.10 | 0.00 | 81.93 | 16.93 | 0.69 | 0.00 | 0.45 | 0.00 | 0.00 | |
0.1 M H2SO4 | 200 | 30.07 | 26.42 | 0.00 | 1.62 | 0.00 | 87.86 | 5.38 | 3.68 | 0.00 | 3.08 | 0.00 | 0.00 |
0.2 M H2SO4 | 70.71 | 57.54 | 0.00 | 8.17 | 0.00 | 81.37 | 11.56 | 4.10 | 0.00 | 2.96 | 0.00 | 0.00 | |
0.5 M H2SO4 | 83.82 | 83.82 | 0.00 | 0.00 | 0.00 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
1 M H2SO4 | 84.01 | 82.24 | 0.00 | 1.43 | 0.00 | 97.90 | 1.70 | 0.41 | 0.00 | 0.00 | 0.00 | 0.00 | |
0.1 M H2SO4 | 220 | 66.32 | 63.32 | 0.00 | 0.81 | 1.15 | 95.48 | 1.22 | 0.00 | 0.00 | 2.15 | 0.00 | 0.00 |
0.2 M H2SO4 | 98.17 | 94.32 | 0.00 | 0.36 | 1.10 | 96.08 | 0.37 | 0.00 | 0.00 | 2.46 | 0.00 | 0.00 | |
0.5 M H2SO4 | 100.00 | 95.70 | 2.27 | 0.00 | 0.00 | 95.70 | 0.00 | 0.81 | 2.27 | 1.22 | 0.00 | 0.00 | |
1 M H2SO4 | 100.00 | 97.63 | 1.26 | 0.00 | 0.00 | 97.63 | 0.00 | 0.37 | 1.26 | 0.74 | 0.00 | 0.00 | |
0.1 M H2SO4 | 250 | 100.00 | 98.16 | 1.47 | 0.00 | 0.00 | 98.16 | 0.00 | 0.00 | 1.47 | 0.36 | 0.00 | 0.00 |
0.2 M H2SO4 | 100.00 | 83.56 | 8.06 | 0.00 | 0.00 | 83.56 | 0.00 | 3.26 | 8.06 | 5.13 | 0.00 | 0.00 | |
0.5 M H2SO4 | 100.00 | 75.11 | 2.73 | 0.00 | 0.00 | 75.11 | 0.00 | 1.11 | 2.73 | 0.00 | 21.05 | 0.00 | |
1 M H2SO4 | 99.46 | 96.59 | 1.22 | 0.00 | 0.00 | 97.12 | 0.00 | 0.68 | 1.23 | 0.97 | 0.00 | 0.00 |
Mixture 3 Process Time 1 h | Process Temp. (°C) | Raw Material Conversion (%) | Yield to OA (%) | Yield to LE (%) | Yield to LA (%) | Selectivity (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Catalyst Concentration | 5-HMF | DHA | OA | LA | FA | LE | AC | PA | ACt | |||||
0.1 M H2SO4 | 100 | 75.50 | 27.94 | 0.00 | 44.65 | 0.00 | 0.00 | 37.01 | 59.13 | 2.59 | 0.00 | 1.27 | 0.00 | 0.00 |
0.2 M H2SO4 | 79.73 | 47.03 | 0.00 | 26.74 | 0.00 | 0.00 | 58.99 | 33.54 | 4.33 | 0.00 | 3.14 | 0.00 | 0.00 | |
0.5 M H2SO4 | 88.30 | 67.85 | 0.00 | 20.45 | 0.00 | 0.00 | 76.84 | 23.16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
1 M H2SO4 | 93.97 | 82.10 | 0.00 | 10.45 | 0.00 | 0.00 | 87.37 | 11.13 | 0.85 | 0.00 | 0.43 | 0.00 | 0.22 | |
0.1 M H2SO4 | 200 | 27.79 | 22.72 | 0.00 | 1.82 | 0.00 | 0.00 | 81.78 | 6.54 | 6.09 | 0.00 | 5.58 | 0.00 | 0.00 |
0.2 M H2SO4 | 55.32 | 44.36 | 0.00 | 6.83 | 0.00 | 0.00 | 80.19 | 12.34 | 4.01 | 0.00 | 3.45 | 0.00 | 0.00 | |
0.5 M H2SO4 | 93.11 | 83.14 | 0.00 | 3.24 | 0.00 | 0.00 | 89.30 | 3.48 | 4.88 | 0.00 | 2.34 | 0.00 | 0.00 | |
1 M H2SO4 | 94.36 | 94.36 | 0.00 | 0.00 | 0.00 | 0.00 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
0.1 M H2SO4 | 220 | 82.01 | 80.89 | 0.00 | 0.00 | 0.00 | 0.00 | 98.62 | 0.00 | 1.38 | 0.00 | 0.00 | 0.00 | 0.00 |
0.2 M H2SO4 | 97.53 | 86.82 | 0.00 | 1.23 | 4.53 | 2.68 | 89.02 | 1.26 | 0.00 | 0.00 | 2.53 | 0.00 | 0.00 | |
0.5 M H2SO4 | 99.81 | 98.93 | 0.00 | 0.00 | 0.00 | 0.00 | 99.12 | 0.00 | 0.53 | 0.00 | 0.35 | 0.00 | 0.00 | |
1 M H2SO4 | 99.60 | 98.84 | 0.00 | 0.00 | 0.00 | 0.00 | 99.23 | 0.00 | 0.30 | 0.00 | 0.47 | 0.00 | 0.00 | |
0.1 M H2SO4 | 250 | 100.00 | 87.81 | 2.59 | 0.00 | 0.00 | 0.00 | 87.81 | 0.00 | 4.47 | 2.59 | 4.04 | 1.10 | 0.00 |
0.2 M H2SO4 | 97.78 | 85.30 | 0.00 | 0.00 | 0.00 | 0.00 | 87.23 | 0.00 | 1.92 | 0.00 | 3.57 | 7.28 | 0.00 | |
0.5 M H2SO4 | 98.34 | 95.83 | 0.89 | 0.00 | 0.00 | 0.00 | 97.45 | 0.00 | 0.86 | 0.91 | 0.79 | 0.00 | 0.00 | |
1 M H2SO4 | 100.00 | 99.24 | 0.00 | 0.00 | 0.00 | 0.00 | 99.24 | 0.00 | 0.76 | 0.00 | 0.00 | 0.00 | 0.00 |
Mixture 1 Process Time 5 h | Process Temp. (°C) | Raw Material Conversion (%) | Yield to OA (%) | Yield to LE (%) | Yield to LA (%) | Selectivity (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Catalyst Concentration | FRU | OA | LA | FA | LE | AC | |||||
0.1 M H2SO4 | 180 | 99.78 | 94.29 | 4.54 | 0.14 | 0.00 | 94.50 | 0.14 | 0.81 | 4.55 | 0.00 |
0.2 M H2SO4 | 99.37 | 89.74 | 6.28 | 0.00 | 0.00 | 90.30 | 0.00 | 0.94 | 6.32 | 2.43 | |
0.5 M H2SO4 | 99.62 | 96.45 | 2.40 | 0.00 | 0.00 | 96.82 | 0.00 | 0.31 | 2.41 | 0.46 | |
1 M H2SO4 | 100.00 | 97.72 | 1.74 | 0.00 | 0.00 | 97.72 | 0.00 | 0.00 | 1.74 | 0.54 | |
0.1 M H2SO4 | 200 | 100.00 | 77.35 | 13.04 | 2.68 | 0.00 | 77.35 | 2.68 | 6.04 | 13.04 | 0.89 |
0.2 M H2SO4 | 100.00 | 88.11 | 5.70 | 1.75 | 0.00 | 88.11 | 1.75 | 3.80 | 5.70 | 0.65 | |
0.5 M H2SO4 | 99.04 | 94.98 | 2.32 | 0.85 | 0.00 | 95.90 | 0.86 | 0.90 | 2.34 | 0.00 | |
1 M H2SO4 | 99.45 | 97.94 | 1.05 | 0.20 | 0.00 | 98.49 | 0.20 | 0.09 | 1.06 | 0.17 | |
0.1 M H2SO4 | 220 | 98.94 | 82.90 | 8.26 | 2.20 | 1.28 | 83.79 | 2.22 | 2.79 | 8.35 | 1.56 |
0.2 M H2SO4 | 100.00 | 92.98 | 4.70 | 1.50 | 0.00 | 92.98 | 1.50 | 0.82 | 4.70 | 0.00 | |
0.5 M H2SO4 | 100.00 | 96.01 | 2.59 | 0.46 | 0.35 | 96.01 | 0.46 | 0.30 | 2.59 | 0.28 | |
1 M H2SO4 | 99.36 | 98.03 | 1.14 | 0.20 | 0.00 | 98.66 | 0.20 | 0.00 | 1.15 | 0.00 | |
0.1 M H2SO4 | 250 | 100.00 | 85.89 | 9.29 | 1.55 | 0.00 | 85.89 | 1.55 | 1.61 | 9.29 | 1.65 |
0.2 M H2SO4 | 100.00 | 89.90 | 5.96 | 2.25 | 0.00 | 89.90 | 2.25 | 0.00 | 5.96 | 1.90 | |
0.5 M H2SO4 | 100.00 | 95.76 | 3.07 | 0.41 | 0.00 | 95.76 | 0.41 | 0.00 | 3.07 | 0.77 | |
1 M H2SO4 | 100.00 | 98.98 | 0.90 | 0.12 | 0.00 | 98.98 | 0.12 | 0.00 | 0.90 | 0.00 |
Mixture 2 Process Time 5 h | Process Temp. (°C) | Raw Material Conversion (%) | Yield to OA (%) | Yield to LE (%) | Yield to LA (%) | Selectivity (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Catalyst Concentration | FRU | PAC | OA | LA | FA | LE | AC | |||||
0.1 M H2SO4 | 180 | 100.00 | 82.04 | 11.57 | 0.00 | 0.00 | 0.63 | 82.04 | 0.00 | 2.21 | 11.57 | 3.55 |
0.2 M H2SO4 | 99.13 | 90.21 | 4.86 | 0.00 | 0.00 | 0.00 | 91.00 | 0.00 | 1.07 | 4.90 | 3.03 | |
0.5 M H2SO4 | 98.92 | 94.87 | 1.96 | 0.00 | 0.00 | 0.31 | 95.90 | 0.00 | 0.52 | 1.98 | 1.28 | |
1 M H2SO4 | 99.78 | 99.26 | 0.28 | 0.00 | 0.00 | 0.07 | 99.48 | 0.00 | 0.23 | 0.28 | 0.00 | |
0.1 M H2SO4 | 200 | 100.00 | 81.52 | 9.12 | 3.01 | 0.00 | 0.00 | 81.52 | 3.01 | 5.57 | 9.12 | 0.79 |
0.2 M H2SO4 | 100.00 | 89.02 | 4.32 | 1.73 | 0.00 | 0.00 | 89.02 | 1.73 | 3.86 | 4.32 | 1.07 | |
0.5 M H2SO4 | 99.50 | 96.21 | 2.07 | 0.54 | 0.00 | 0.00 | 96.69 | 0.54 | 0.50 | 2.08 | 0.19 | |
1 M H2SO4 | 100.00 | 98.54 | 1.05 | 0.29 | 0.00 | 0.00 | 98.54 | 0.29 | 0.12 | 1.05 | 0.00 | |
0.1 M H2SO4 | 220 | 98.28 | 80.67 | 7.41 | 3.43 | 1.81 | 0.00 | 82.08 | 3.49 | 3.60 | 7.54 | 1.48 |
0.2 M H2SO4 | 100.00 | 92.98 | 4.70 | 1.50 | 0.00 | 0.00 | 92.98 | 1.50 | 0.00 | 4.70 | 0.82 | |
0.5 M H2SO4 | 100.00 | 97.48 | 1.83 | 0.57 | 0.00 | 0.00 | 97.48 | 0.57 | 0.00 | 1.83 | 0.12 | |
1 M H2SO4 | 99.36 | 97.79 | 1.03 | 0.44 | 0.00 | 0.00 | 98.41 | 0.45 | 0.00 | 1.04 | 0.10 | |
0.1 M H2SO4 | 250 | 99.29 | 83.11 | 8.21 | 1.89 | 2.73 | 0.00 | 83.71 | 1.90 | 1.96 | 8.27 | 1.44 |
0.2 M H2SO4 | 99.91 | 31.37 | 29.29 | 0.26 | 0.32 | 0.00 | 31.40 | 0.26 | 0.00 | 29.32 | 38.71 | |
0.5 M H2SO4 | 100.00 | 97.80 | 1.33 | 0.25 | 0.00 | 0.00 | 97.80 | 0.25 | 0.18 | 1.33 | 0.44 | |
1 M H2SO4 | 100.00 | 98.96 | 0.69 | 0.17 | 0.00 | 0.00 | 98.96 | 0.17 | 0.00 | 0.69 | 0.19 |
Mixture 3 Process Time 5 h | Process Temp. (°C) | Raw Material Conversion (%) | Yield to OA (%) | Yield to LE (%) | Yield to LA (%) | Selectivity (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Catalyst Concentration | FRU | PAC | OA | LA | FA | LE | AC | |||||
0.1 M H2SO4 | 180 | 99.80 | 94.78 | 0.00 | 0.00 | 0.00 | 0.95 | 94.97 | 0.00 | 1.30 | 0.00 | 2.78 |
0.2 M H2SO4 | 98.21 | 94.36 | 1.23 | 0.00 | 0.00 | 0.00 | 96.09 | 0.00 | 0.94 | 1.25 | 1.73 | |
0.5 M H2SO4 | 99.25 | 96.85 | 0.70 | 0.94 | 0.00 | 0.00 | 97.59 | 0.95 | 0.55 | 0.71 | 0.20 | |
1 M H2SO4 | 99.74 | 98.99 | 0.38 | 0.00 | 0.00 | 0.00 | 99.25 | 0.00 | 0.22 | 0.38 | 0.14 | |
0.1 M H2SO4 | 200 | 99.10 | 90.38 | 2.51 | 3.46 | 0.00 | 0.00 | 91.20 | 3.49 | 2.77 | 2.54 | 0.00 |
0.2 M H2SO4 | 100.00 | 94.08 | 1.96 | 1.70 | 0.00 | 0.00 | 94.08 | 1.70 | 1.87 | 1.96 | 0.40 | |
0.5 M H2SO4 | 100.00 | 97.85 | 1.07 | 0.61 | 0.00 | 0.00 | 97.85 | 0.61 | 0.47 | 1.07 | 0.00 | |
1 M H2SO4 | 100.00 | 99.03 | 0.53 | 0.35 | 0.00 | 0.00 | 99.03 | 0.35 | 0.09 | 0.53 | 0.00 | |
0.1 M H2SO4 | 220 | 100.00 | 90.08 | 2.49 | 4.13 | 0.00 | 0.00 | 90.08 | 4.13 | 2.51 | 2.49 | 0.79 |
0.2 M H2SO4 | 99.02 | 93.35 | 1.40 | 2.96 | 1.32 | 0.00 | 94.27 | 2.99 | 0.00 | 1.42 | 0.00 | |
0.5 M H2SO4 | 100.00 | 97.28 | 1.11 | 0.68 | 0.00 | 0.00 | 97.28 | 0.68 | 0.94 | 1.11 | 0.00 | |
1 M H2SO4 | 99.21 | 97.42 | 0.37 | 0.77 | 0.54 | 0.00 | 98.19 | 0.77 | 0.00 | 0.37 | 0.12 | |
0.1 M H2SO4 | 250 | 98.09 | 84.27 | 3.30 | 2.02 | 5.87 | 0.00 | 85.91 | 2.06 | 1.78 | 3.37 | 1.01 |
0.2 M H2SO4 | 99.91 | 95.36 | 1.61 | 0.70 | 1.03 | 0.00 | 95.44 | 0.70 | 0.55 | 1.61 | 0.67 | |
0.5 M H2SO4 | 100.00 | 98.32 | 0.66 | 0.36 | 0.00 | 0.00 | 98.32 | 0.36 | 0.13 | 0.66 | 0.53 | |
1 M H2SO4 | 100.00 | 99.17 | 0.45 | 0.20 | 0.00 | 0.00 | 99.17 | 0.20 | 0.00 | 0.45 | 0.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobuś, N.; Czekaj, I. Catalytic Transformation of Biomass-Derived Hemicellulose Sugars by the One-Pot Method into Oxalic, Lactic, and Levulinic Acids Using a Homogeneous H2SO4 Catalyst. Catalysts 2023, 13, 349. https://doi.org/10.3390/catal13020349
Sobuś N, Czekaj I. Catalytic Transformation of Biomass-Derived Hemicellulose Sugars by the One-Pot Method into Oxalic, Lactic, and Levulinic Acids Using a Homogeneous H2SO4 Catalyst. Catalysts. 2023; 13(2):349. https://doi.org/10.3390/catal13020349
Chicago/Turabian StyleSobuś, Natalia, and Izabela Czekaj. 2023. "Catalytic Transformation of Biomass-Derived Hemicellulose Sugars by the One-Pot Method into Oxalic, Lactic, and Levulinic Acids Using a Homogeneous H2SO4 Catalyst" Catalysts 13, no. 2: 349. https://doi.org/10.3390/catal13020349
APA StyleSobuś, N., & Czekaj, I. (2023). Catalytic Transformation of Biomass-Derived Hemicellulose Sugars by the One-Pot Method into Oxalic, Lactic, and Levulinic Acids Using a Homogeneous H2SO4 Catalyst. Catalysts, 13(2), 349. https://doi.org/10.3390/catal13020349