Synthesis of Novel Zn3V2O8/Ag Nanocomposite for Efficient Photocatalytic Hydrogen Production
Abstract
:1. Introduction
2. Results and Discussion
2.1. Materials Characterization
2.2. Photocatalytic H2 Production Activities
2.3. Mechanism of H2 Production
3. Experimental Section
3.1. Chemicals and Reagents
3.2. Synthesis of Zn3V2O8/Ag NPs
3.3. H2 Production Assembly
3.4. Apparatus
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ishaq, H.; Dincer, I.; Crawford, C. A review on hydrogen production and utilization: Challenges and opportunities. Int. J. Hydrogen Energy 2022, 47, 26238–26264. [Google Scholar] [CrossRef]
- Ahmad, K.; Mobin, S.M. Recent Progress and Challenges in A3Sb2X9-Based Perovskite Solar Cells. ACS Omega 2020, 5, 28404–28412. [Google Scholar] [CrossRef]
- Alam, M.W.; Al Qahtani, H.S.; Souayeh, B.; Ahmed, W.; Albalawi, H.; Farhan, M.; Abuzir, A.; Naeem, S. Novel Copper-Zinc-Manganese Ternary Metal Oxide Nanocomposite as Heterogeneous Catalyst for Glucose Sensor and Antibacterial Activity. Antioxidants 2022, 11, 1064. [Google Scholar] [CrossRef]
- Ahmad, K.; Shinde, M.A.; Song, G.; Kim, H. Design and fabrication of MoSe2/WO3 thin films for the construction of electrochromic devices on indium tin oxide based glass and flexible substrates. Ceram. Int. 2021, 47, 34297–34306. [Google Scholar] [CrossRef]
- Alam, M.W.; Azam, H.; Khalid, N.R.; Naeem, S.; Hussain, M.K.; BaQais, A.; Farhan, M.; Souayeh, B.; Zaidi, N.; Khan, K. Enhanced Photocatalytic Performance of Ag3PO4/Mn-ZnO Nanocomposite for the Degradation of Tetracycline Hydrochloride. Crystals 2022, 12, 1156. [Google Scholar] [CrossRef]
- Suresh Philip, C.; Nivetha, A.; Sakthivel, C.; Veena, C.G.; Prabha, I. Novel fabrication of cellulose sprinkled crystalline nanocomposites using economical fibrous sources: High performance, compatible catalytic and electrochemical properties. Microporous Mesoporous Mater. 2021, 318, 111021. [Google Scholar] [CrossRef]
- Ahmad, K.; Shinde, M.A.; Kim, H. Molybdenum disulfide/reduced graphene oxide: Progress in synthesis and electro-catalytic properties for electrochemical sensing and dye sensitized solar cells. Microchem. J. 2021, 169, 106583. [Google Scholar] [CrossRef]
- Low, W.H.; Khiew, P.S.; Lim, S.S.; Siong, C.W.; Chia, C.H.; Ezeigwe, E.R. Facile synthesis of graphene-Zn3V2O8 nanocomposite as a high performance electrode material for symmetric supercapacitor. J. Alloys Compd. 2019, 784, 847–858. [Google Scholar] [CrossRef]
- Liu, W.; Wang, X.; Yu, H.; Yu, J. Direct Photoinduced Synthesis of Amorphous CoMoSx Cocatalyst and Its Improved Photocatalytic H2-Evolution Activity of CdS. ACS Sustain. Chem. Eng. 2018, 6, 12436–12445. [Google Scholar] [CrossRef]
- Sharma, R.; Almáši, M.; Nehra, S.P.; Rao, V.S.; Panchal, P.; Paul, D.R.; Jain, I.P.; Sharma, A. Photocatalytic hydrogen production using graphitic carbon nitride (GCN): A precise review. Renew. Sustain. Energy Rev. 2022, 168, 112776. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Shanmugaratnam, S.; Velauthapillai, D.; Ravirajan, P.; Christy, A.A.; Shivatharsiny, Y. CoS2/TiO2 Nanocomposites for Hydrogen Production under UV Irradiation. Materials 2019, 12, 3882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sekar, K.; Kassam, A.; Bai, Y.; Coulson, B.; Li, W.; Douthwaite, R.E.; Sasaki, K.; Lee, A.F. Hierarchical bismuth vanadate/reduced graphene oxide composite photocatalyst for hydrogen evolution and bisphenol A degradation. Appl. Mater. Today 2021, 22, 100963. [Google Scholar] [CrossRef]
- Dhabarde, N.; Carrillo-Ceja, O.; Tian, S.; Xiong, G.; Raja, K.; Subramanian, V.R. Bismuth Vanadate Encapsulated with Reduced Graphene Oxide: A Nanocomposite for Optimized Photocatalytic Hydrogen Peroxide Generation. J. Phys. Chem. C 2021, 125, 23669–23679. [Google Scholar] [CrossRef]
- Marberger, A.; Ferri, D.; Elsener, M.; Sagar, A.; Artner, C.; Schermanz, K.; Kröcher, O. Relationship between structures and activities of supported metal vanadates for the selective catalytic reduction of NO by NH3. Appl. Catal. B Environ. 2017, 218, 731–742. [Google Scholar] [CrossRef]
- Lashari, N.R.; Zhao, M.; Zheng, Q.; Gong, H.; Duan, W.; Xu, T.; Wang, F.; Song, X. Excellent cycling stability and capability of novel mixed-metal vanadate coated with V2O5 materials in an aqueous solution. Electrochim. Acta 2019, 314, 115–123. [Google Scholar] [CrossRef]
- Vignesh, K.; Hariharan, R.; Rajarajan, M.; Suganthi, A. Visible light assisted photocatalytic activity of TiO2–metal vanadate (M = Sr, Ag and Cd) nanocomposites. Mater. Sci. Semicond. Process. 2013, 16, 1521–1530. [Google Scholar] [CrossRef]
- Muthurasu, A.; Tiwari, A.P.; Chhetri, K.; Dahal, B.; Kim, H.Y. Construction of iron doped cobalt-vanadate-cobalt oxide with metal-organic framework oriented nanoflakes for portable rechargeable zinc-air batteries powered total water splitting. Nano Energy 2021, 88, 106238. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Y.; Yuan, H.; Li, J.; Ding, L.; Chu, S.; Wang, L.; Zhai, W.; Jiao, Z. Carbon hollow matrix anchored by isolated transition metal atoms serving as a single atom cocatalyst to facilitate the water oxidation kinetics of bismuth vanadate. J. Colloid Interface Sci. 2022, 616, 631–640. [Google Scholar] [CrossRef]
- Yao, X.; Zhao, X.; Hu, J.; Xie, H.; Wang, D.; Cao, X.; Zhang, Z.; Huang, Y.; Chen, Z.; Sritharan, T. The Self-Passivation Mechanism in Degradation of BiVO4 Photoanode. IScience 2019, 19, 976–985. [Google Scholar] [CrossRef] [Green Version]
- Su, J.; Bai, Z.; Huang, B.; Quan, X.; Chen, G. Unique three dimensional architecture using a metal-free semiconductor cross-linked bismuth vanadate for efficient photoelectrochemical water oxidation. Nano Energy 2016, 24, 148–157. [Google Scholar] [CrossRef]
- Rajaji, U.; Govindasamy, M.; Sha, R.; Alshgari, R.A.; Juang, R.-S.; Liu, T.-Y. Surface engineering of 3D spinel Zn3V2O8 wrapped on sulfur doped graphitic nitride composites: Investigation on the dual role of electrocatalyst for simultaneous detection of antibiotic drugs in biological fluids. Compos. Part B Eng. 2022, 242, 110017. [Google Scholar] [CrossRef]
- Yin, Z.; Qin, J.; Wang, W.; Cao, M. Rationally designed hollow precursor-derived Zn3V2O8 nanocages as a high-performance anode material for lithium-ion batteries. Nano Energy 2017, 31, 367–376. [Google Scholar] [CrossRef]
- Rajkumar, S.; Elanthamilan, E.; Princy Merlin, J. Facile synthesis of Zn3V2O8 nanostructured material and its enhanced supercapacitive performance. J. Alloys Compd. 2021, 861, 157939. [Google Scholar] [CrossRef]
- Gan, L.; Deng, D.; Zhang, Y.; Li, G.; Wang, X.; Jiang, L.; Wang, C. Zn3V2O8 hexagon nanosheets: A high-performance anode material for lithium-ion batteries. J. Mater. Chem. A 2013, 2, 2461–2466. [Google Scholar] [CrossRef]
- Mirsadeghi, S.; Ghoreishian, S.M.; Zandavar, H.; Behjatmanesh-Ardakani, R.; Naghian, E.; Ghoreishian, M.; Mehrani, A.; Abdolhoseinpoor, N.; Ganjali, M.R.; Huh, Y.S.; et al. In-depth insight into the photocatalytic and electrocatalytic mechanisms of Mg3V2O8@Zn3V2O8@ZnO ternary heterostructure toward linezolid: Experimental and DFT studies. J. Environ. Chem. Eng. 2023, 11, 109106. [Google Scholar] [CrossRef]
- Khan, F.U.; Chen, Y.; Khan, Z.U.H.; Khan, A.U.; Ahmad, A.; Tahir, K.; Wang, L.; Khan, M.R.; Wan, P. Antioxidant and catalytic applications of silver nanoparticles using Dimocarpus longan seed extract as a reducing and stabilizing agent. J. Photochem. Photobiol. B Biol. 2016, 164, 344–351. [Google Scholar] [CrossRef]
- Liu, P.; Yi, J.; Bao, R.; Fang, D. A flower-like Zn3V2O8/Ag composite with enhanced visible light driven photocatalytic activity: The triple-functional roles of Ag nanoparticles. New J. Chem. 2019, 43, 7482–7490. [Google Scholar] [CrossRef]
- Scherrer, P. Estimation of the Size and Internal Structure of Colloidal Particles by Means of Rontgen Rays. Nachr. Von Der Ges. Der Wiss. Zu Göttingen 1918, 26, 98–100. [Google Scholar]
- Luo, J.; Ning, X.; Zhan, L.; Zhou, X. Facile construction of a fascinating Z-scheme AgI/Zn3V2O8 photocatalyst for the photocatalytic degradation of tetracycline under visible light irradiation. Sep. Purif. Technol. 2021, 255, 117691. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Liu, P.P.; Tian, S.J.; Liu, Y.; Peng, Z.Y.; Li, F.; Ni, L.; Liu, Z.C. Sustainable visible-light-driven Z-scheme porous Zn3(VO4)2/g-C3N4 heterostructure toward highly photoredox pollutant and mechanism insight. J. Taiwan Inst. Chem. Eng. 2017, 78, 517–529. [Google Scholar] [CrossRef]
- Pei, L.Z.; Lin, N.; Wei, T.; Liu, H.D.; Yu, H.Y. Zinc Vanadate Nanorods and Their Visible Light Photocatalytic Activity. J. Alloys Compd. 2015, 631, 90–98. [Google Scholar] [CrossRef]
- Ahmed, N.; Mukhtar, S.; Gao, W.; Zafar Ilyas, S. Ab-Initio Calculations of Structural, Electronic, and Optical Properties of Zn3(VO4)2. Chin. Phys. B 2018, 27, 033101. [Google Scholar] [CrossRef]
- Du, M.; Xiong, S.; Wu, T.; Zhao, D.; Zhang, Q.; Fan, Z.; Zeng, Y.; Ji, F.; He, Q.; Xu, X. Preparation of a Microspherical Silver-Reduced Graphene Oxide-Bismuth Vanadate Composite and Evaluation of Its Photocatalytic Activity. Materials 2016, 9, 160. [Google Scholar] [CrossRef] [Green Version]
- Ijaz, M. Plasmonic Hot Electrons: Potential Candidates for Improved Photocatalytic Hydrogen Production. Int J. Hydrogen Energy 2022. [Google Scholar] [CrossRef]
- Arif Sher Shah, M.S.; Zhang, K.; Park, A.R.; Kim, K.S.; Park, N.G.; Park, J.H.; Yoo, P.J. Single-Step Solvothermal Synthesis of Mesoporous Ag–TiO2–Reduced Graphene Oxide Ternary Composites with Enhanced Photocatalytic Activity. Nanoscale 2013, 5, 5093–5101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubelka, P. Ein Beitrag Zur Optik Der Farbanstriche (Contribution to the Optic of Paint). Z. Fur Tech. Phys. 1931, 12, 593–601. [Google Scholar]
- Kondarides, D.I.; Daskalaki, V.M.; Patsoura, A.; Verykios, X.E. Hydrogen Production by Photo-Induced Reforming of Biomass Components and Derivatives at Ambient Conditions. Catal. Lett. 2008, 122, 26–32. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, T.; Tian, W.; Zhang, Y.; Shan, P.; Chen, Y.; Wei, W.; Yuan, H.; Cui, H. Mechanism for Hydrogen Evolution from Water Splitting Based on a MoS2/WSe2 Heterojunction Photocatalyst: A First-Principle Study. RSC Adv. 2020, 10, 41127–41136. [Google Scholar] [CrossRef]
Material | Crystallite Size (nm) | Lattice Parameters | Unit Volume | Energy Band Gap |
---|---|---|---|---|
ZnV | 27.50 | a = 6.18 Å, b = 11.76 Å, c = 8.38 Å | 609.03 Å3 | 2.33 eV |
ZnV@Ag | 24.60 | a = 5.88 Å, b = 11.38 Å, c = 8.18 Å | 547.97 Å3 | 2.19 eV |
Photocatalyst Materials | H2 Production Efficiency | Light Source |
---|---|---|
ZnV@Ag NC | 37.52 µmolg−1h−1 | Xenon lamp (λ = 420 nm) |
ZnV | 16.44 µmolg−1h−1 | Xenon lamp (λ = 420 nm) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharthi, F.A.; Ababtain, A.S.; Aldubeikl, H.K.; Alanazi, H.S.; Hasan, I. Synthesis of Novel Zn3V2O8/Ag Nanocomposite for Efficient Photocatalytic Hydrogen Production. Catalysts 2023, 13, 455. https://doi.org/10.3390/catal13030455
Alharthi FA, Ababtain AS, Aldubeikl HK, Alanazi HS, Hasan I. Synthesis of Novel Zn3V2O8/Ag Nanocomposite for Efficient Photocatalytic Hydrogen Production. Catalysts. 2023; 13(3):455. https://doi.org/10.3390/catal13030455
Chicago/Turabian StyleAlharthi, Fahad A., Alanood Sulaiman Ababtain, Hend Khalid Aldubeikl, Hamdah S. Alanazi, and Imran Hasan. 2023. "Synthesis of Novel Zn3V2O8/Ag Nanocomposite for Efficient Photocatalytic Hydrogen Production" Catalysts 13, no. 3: 455. https://doi.org/10.3390/catal13030455
APA StyleAlharthi, F. A., Ababtain, A. S., Aldubeikl, H. K., Alanazi, H. S., & Hasan, I. (2023). Synthesis of Novel Zn3V2O8/Ag Nanocomposite for Efficient Photocatalytic Hydrogen Production. Catalysts, 13(3), 455. https://doi.org/10.3390/catal13030455