Triton-X-100 as an Organic Catalyst for One-Pot Synthesis of Arylmethyl-H-phosphinic Acids from Red Phosphorus and Arylmethyl Halides in the KOH/H2O/Toluene Multiphase Superbase System
Abstract
:1. Introduction
2. Results
2.1. Optimization of the Reaction Conditions
2.2. Study on Substrate Scope
3. Discussion
4. Materials and Methods
4.1. General Considerations
4.2. General Procedure for the Synthesis of H-Phosphinic Acids 2
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdou, M.M.; O’Neill, P.M.; Amigues, E.; Matziari, M. Phosphinic acids: Current status and potential for drug discovery. Drug Discov. Today 2019, 24, 916–929. [Google Scholar] [CrossRef]
- Makki, M.S.T.; Abdel-Rahman, R.M.; Alharbi, A.S. Synthetic Approach for Novel Fluorine Substituted α-Aminophosphonic Acids Containing 1,2,4-Triazin-5-One Moiety as Antioxidant Agents. Int. J. Org. Chem. 2018, 8, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Chu, L.; Luo, X.; Zhu, T.; Cao, Y.; Zhang, L.; Deng, Z.; Gao, J. Harnessing phosphonate antibiotics argolaphos biosynthesis enables a synthetic biology-based green synthesis of glyphosate. Nat. Commun. 2022, 13, 1736. [Google Scholar] [CrossRef]
- Nifant’ev, I.E.; Minyaev, M.E.; Tavtorkin, A.N.; Vinogradov, A.A.; Ivchenko, P.V. Branched alkylphosphinic and disubstituted phosphinic and phosphonic acids: Effective synthesis based on alpha-olefin dimers and applications in lanthanide extraction and separation. RSC Adv. 2017, 7, 24122–24128. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, V.; Safarzadeh, M.S. Solvent extraction and molecular modeling studies of Dy(III) using acidic extractants. J. Mol. Liq. 2020, 304, 112452. [Google Scholar] [CrossRef]
- Safiulina, A.M.; Ivanets, D.V.; Kudryavtsev, E.M.; Baulin, D.V.; Baulin, V.E.; Tsivadze, A.Y. Liquid- and Solid-Phase Extraction of Uranium(VI), Thorium(IV), and Rare Earth Elements(III) from Nitric Acid Solutions Using Acid-Type Phosphoryl-Containing Podands. Russ. J. Inorg. Chem. 2019, 64, 536–542. [Google Scholar] [CrossRef]
- Zhang, R.; Khan, S.; Azimi, G. Microstructured silicon substrates impregnated with bis(2,4,4-trimethylpentyl) phosphinic acid for selective scandium recovery. Appl. Surf. Sci. 2023, 622, 156852. [Google Scholar] [CrossRef]
- Han, Y.; Chen, J.; Deng, Y.; Liu, T.; Li, H. A leaching, solvent extraction, stripping, precipitation and calcination process for the recovery of MoO3 and NiO from spent hydrofining catalysts. Hydrometallurgy 2023, 218, 106046. [Google Scholar] [CrossRef]
- Sait, N.; Aliouane, N.; Toukal, L.; Hammache, H.; Al-Noaimi, M.; Helesbeux, J.J.; Duval, O. Synthesis of ethylene bis [(2-hydroxy-5,1,3-phenylene) bis methylene] tetraphosphonic acid and their anticorrosive effect on carbon steel in 3%NaCl solution. J. Mol. Liq. 2021, 326, 115316. [Google Scholar] [CrossRef]
- Francos, J.; Elorriaga, D.; Crochet, P.; Cadierno, V. The chemistry of Group 8 metal complexes with phosphinous acids and related P OH ligands. Coordin. Chem. Rev. 2019, 387, 199–234. [Google Scholar] [CrossRef]
- Schneider, F.; Osterod, F.; Bauer, H.; Sicken, M. Mixtures of bis-phosphinic acids and alkylphosphinic acids as additives for polymer formulations for control of thermal stability and thermal expansion coefficient. U.S. Patent 20,180,030,355, 1 February 2018. [Google Scholar]
- Dhaene, E.; Coppenolle, S.; Deblock, L.; De Buysser, K.; De Roo, J. Binding Affinity of Monoalkyl Phosphinic Acid Ligands toward Nanocrystal Surfaces. Chem. Mater. 2023, 35, 558–569. [Google Scholar] [CrossRef]
- Petit, C.; Fécourt, F.; Montchamp, J.-L. Synthesis of Disubstituted Phosphinates via Palladium-Catalyzed Hydrophosphinylation of H-Phosphinic Acids. Adv. Synth. Catal. 2011, 353, 1883–1888. [Google Scholar] [CrossRef]
- Berger, O.; Petit, C.; Deal, E.L.; Montchamp, J.L. Phosphorus-Carbon Bond Formation: Palladium-Catalyzed Cross-Coupling of H-Phosphinates and Other P(O)H-Containing Compounds. Adv. Synth. Catal. 2013, 355, 1361–1373. [Google Scholar] [CrossRef]
- Li, Y.; Jin, X.; Liu, P.; Zhang, H.; Yu, X.; Liu, Y.; Liu, B.; Yang, W. Copper-Catalyzed Dynamic Kinetic C−P Cross-Coupling/Cyclization for the Concise Asymmetric Synthesis of Six-, Seven- and Eight-Membered P-Stereogenic Phosphorus Heterocycles. Angew. Chem. Int. Ed. 2022, 61, E202117093. [Google Scholar] [CrossRef]
- Montchamp, J.-L. Challenges and solutions in phosphinate chemistry. Pure Appl. Chem. 2019, 91, 113–120. [Google Scholar] [CrossRef]
- Winters, K.R.; Ricke, C.; Montchamp, J.L. Synthesis of Adamantyl H-Phosphinate Esters. Eur. J. Org. Chem. 2021, 2022, e202101130. [Google Scholar] [CrossRef]
- Troev, K.D. Reactivity of P–H Group of H-Phosphinic Acid and Its Derivatives. In Reactivity of P–H Group of Phosphorus Based Compounds; Academic Press: Cambridge, MA, USA, 2018; pp. 245–290. [Google Scholar] [CrossRef]
- Chen, T.; Han, L.-B. Optically Active H-Phosphinates and Their Stereospecific Transformations into Optically Active P-Stereogenic Organophosphoryl Compounds. Synlett 2015, 26, 1153–1163. [Google Scholar] [CrossRef]
- Greco, M.N.; Hawkins, M.J.; Powell, E.T.; Almond, H.R.; de Garavilla, L.; Hall, J.; Minor, L.K.; Wang, Y.; Corcoran, T.W.; Di Cera, E.; et al. Discovery of Potent, Selective, Orally Active, Nonpeptide Inhibitors of Human Mast Cell Chymase. J. Med. Chem. 2007, 50, 1727–1730. [Google Scholar] [CrossRef]
- Rudovský, J.; Kotek, J.; Hermann, P.; Lukeš, I.; Mainero, V.; Aime, S. Synthesis of a bifunctional monophosphinic acid DOTA analogue ligand and its lanthanide(iii) complexes. A gadolinium(iii) complex endowed with an optimal water exchange rate for MRI applications. Org. Biomol. Chem. 2005, 3, 112–117. [Google Scholar] [CrossRef]
- Froestl, W.; Mickel, S.J.; von Sprecher, G.; Diel, P.J.; Hall, R.G.; Maier, L.; Strub, D.; Melillo, V.; Baumann, P.A. Phosphinic Acid Analogs of GABA. 2. Selective, Orally Active GABAB Antagonists. J. Med. Chem. 1995, 38, 3313–3331. [Google Scholar] [CrossRef]
- Wolińska, E.; Hałdys, K.; Góra, J.; Olszewski, T.K.; Boduszek, B.; Latajka, R. Phosphonic and Phosphinic Acid Derivatives as Novel Tyrosinase Inhibitors: Kinetic Studies and Molecular Docking. Chem. Biodivers. 2019, 16, e1900167. [Google Scholar] [CrossRef] [PubMed]
- Duro, M.V.V.; Mustafa, D.; Kashemirov, B.A.; McKenna, C.E. Phosphorus in Chemical Biology and Medicinal Chemistry. In Organophosphorus Chemistry: From Molecules to Applications; Iaroshenko, V., Ed.; Wiley-VCH: Weinheim, Germany, 2019; Chapter 10; pp. 499–544. [Google Scholar] [CrossRef]
- Jackson, P.F.; Tays, K.L.; Maclin, K.M.; Ko, Y.-S.; Li, W.; Vitharana, D.; Tsukamoto, T.; Stoermer, D.; Lu, X.-C.M.; Wozniak, K.; et al. Design and Pharmacological Activity of Phosphinic Acid Based NAALADase Inhibitors. J. Med. Chem. 2001, 44, 4170–4175. [Google Scholar] [CrossRef] [PubMed]
- Slusher, B.S.; Jackson, P.F.; Tays, K.L.; Maclin, K.M. Methods of Cancer Treatment Using Naaladase Inhibitors. U.S. Patent 6,011,021, 4 January 2000. [Google Scholar]
- Virieux, D.; Volle, J.-N.; Bakalara, N.; Pirat, J.-L. Synthesis and Biological Applications of Phosphinates and Derivatives. In Phosphorus Chemistry I. Asymmetric Synthesis and Bioactive Compounds. Topics in Current Chemistry; Montchamp, J.-L., Ed.; Springer: Cham, Switzerland, 2015; Volume 360, pp. 39–114. [Google Scholar] [CrossRef]
- Raguin, O.; Fournié-Zaluski, M.-C.; Romieu, A.; Pèlegrin, A.; Chatelet, F.; Pélaprat, D.; Barbet, J.; Roques, B.P.; Gruaz-Guyon, A. A Labeled Neutral Endopeptidase Inhibitor as a Potential Tool for Tumor Diagnosis and Prognosis. Angew. Chem. Int. Ed. 2005, 44, 4058–4061. [Google Scholar] [CrossRef] [PubMed]
- Schwier, C.E.; Chapman, R.D.; Ayotte, R.C. Linear Amorphous Polyamides with Excess Amine Endgroups and Their Production. U.S. Patent 5,245,005, 14 September 1993. [Google Scholar]
- Balavoine, F.; Compere, D.; Llorens-Cortes, C.; Marc, Y. Aminopeptidase a Inhibitors and Pharmaceutical Compositions Comprising the Same. WO Patent 2020/084131, 30 April 2020. [Google Scholar]
- Sachais, B.; Rux, J. Screening Methods for Identifying Small Molecule Antagonists of Platelet Factor-4 (PF4) Containing Ultra Large Complexes and Uses Thereof for Treating Medical Conditions Such as Heparin-Induced Thrombocytopenia and Related Diseases. WO Patent 2,013,142,328, 26 September 2013. [Google Scholar]
- Corbridge, D.E.C. Phosphorus. Chemistry, Biochemistry and Technology, 6th ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar] [CrossRef]
- Pietrusiewicz, K.M.; Stankevic, M. Product Class 8: Alkylphosphonous Acids and Derivatives. In Science of Synthesis; Mathey, F., Trost, B.M., Eds.; Thieme: Leipzig, Germany, 2009; Volume 42.8.6, p. 251. [Google Scholar] [CrossRef]
- Jackson, P.F.; Slusher, B.S. Prodrugs of NAALADase Inhibitors. U.S. Patent 6,384,022, 7 May 2002. [Google Scholar]
- Bravo-Altamirano, K.; Montchamp, J.-L. Phosphinic Acid, Alkyl Esters. Encyclopedia of Reagents for Organic Synthesis (e-EROS); Wiley: Hoboken, NJ, USA, 2007. [Google Scholar] [CrossRef]
- Coudray, L.; Montchamp, J.L. Green, palladium-catalyzed synthesis of benzylic H-phosphinates from hypophosphorous acid and benzylic alcohols. Eur. J. Org. Chem. 2008, 2008, 4101–4103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abrunhosa-Thomas, I.; Ribiere, P.; Adcock, A.C.; Montchamp, J.L. Direct monoalkylation of alkyl phosphinates to access H-phosphinic acid esters. Synthesis 2006, 2006, 325–331. [Google Scholar] [CrossRef]
- Montchamp, J.L.; Dumond, Y.R. Synthesis of monosubstituted phosphinic acids: Palladium-catalyzed cross-coupling reactions of anilinium hypophosphite. J. Am. Chem. Soc. 2001, 123, 510–511. [Google Scholar] [CrossRef]
- Fu, X.; Loh, W.-T.; Zhang, Y.; Chen, T.; Ma, T.; Liu, H.; Wang, J.; Tan, C.-H. Chiral Guanidinium Salt Catalyzed Enantioselective Phospha-Mannich Reactions. Angew. Chem. Int. Ed. 2009, 48, 7387–7390. [Google Scholar] [CrossRef]
- Kalek, M.; Stawinski, J. Efficient synthesis of mono- and diarylphosphinic acids: A microwave-assisted palladium-catalyzed cross-coupling of aryl halides with phosphinate. Tetrahedron 2009, 65, 10406–10412. [Google Scholar] [CrossRef]
- Montchamp, J.-L. Recent advances in phosphorus–carbon bond formation: Synthesis of H-phosphinic acid derivatives from hypophosphorous compounds. J. Organomet. Chem. 2005, 690, 2388–2406. [Google Scholar] [CrossRef]
- Albouy, D.; Etemad-Moghadam, G.; Koenig, M. Phosphorylating Power of Red Phosphorus towards Aldehydes in Basic and in Acidic Media. Eur. J. Org. Chem. 1999, 1999, 861–868. [Google Scholar] [CrossRef]
- Dragulescu-Andrasi, A.; Miller, L.Z.; Chen, B.H.; McQuade, D.T.; Shatruk, M. Facile Conversion of Red Phosphorus into Soluble Polyphosphide Anions by Reaction with Potassium Ethoxide. Angew. Chem. Int. Ed. 2016, 55, 3904–3908. [Google Scholar] [CrossRef]
- Caporali, M.; Serrano-Ruiz, M.; Peruzzini, M. Benign Chlorine-Free Approaches to Organophosphorus Compounds. In Chemistry Beyond Chlorine, Part II; Tundo, P., He, L.N., Lokteva, E., Mota, C., Eds.; Springer: Cham, Switzerland, 2016; pp. 97–136. [Google Scholar] [CrossRef]
- Gusarova, N.K.; Trofimov, B.A. Organophosphorus chemistry based on elemental phosphorus: Advances and horizons. Russ. Chem. Rev. 2020, 89, 225–249. [Google Scholar] [CrossRef]
- Jo, M.; Dragulescu-Andrasi, A.; Miller, L.Z.; Pak, C.; Shatruk, M. Nucleophilic Activation of Red Phosphorus for Controlled Synthesis of Polyphosphides. Inorg. Chem. 2020, 59, 5483–5489. [Google Scholar] [CrossRef]
- Olmstead, W.N.; Margolin, Z.; Bordwell, F.G. Acidities of Water and Simple Alcohols in Dimethylsulfoxide Solution. J. Org. Chem. 1980, 45, 3295–3299. [Google Scholar] [CrossRef]
- Malysheva, S.F.; Kuimov, V.A.; Belogorlova, N.A.; Albanov, A.I.; Gusarova, N.K.; Trofimov, B.A. Superbase-Assisted Selective Synthesis of Triarylphosphines from Aryl Halides and Red Phosphorus: Three Consecutive Different SNAr Reactions in One Pot. Eur. J. Org. Chem. 2019, 2019, 6240–6245. [Google Scholar] [CrossRef]
- Malysheva, S.F.; Kuimov, V.A.; Trofimov, A.B.; Belogorlova, N.A.; Litvintsev, Y.I.; Belogolova, A.M.; Gusarova, N.K.; Trofimov, B.A. 2-Halopyridines in the triple reaction in the Pn/KOH/DMSO system to form tri(2-pyridyl)phosphine: Experimental and quantum-chemical dissimilarities. Mendeleev Commun. 2018, 28, 472–474. [Google Scholar] [CrossRef]
- Malysheva, S.F.; Belogorlova, N.A.; Kuimov, V.A.; Litvintsev, Y.I.; Sterkhova, I.V.; Albanov, A.I.; Gusarova, N.K.; Trofimov, B.A. PCl3- and organometallic-free synthesis of tris(2-picolyl)phosphine oxide from elemental phosphorus and 2-(chloromethyl)pyridine hydrochloride. Tetrahedron Lett. 2018, 59, 723–726. [Google Scholar] [CrossRef]
- Trofimov, B.A.; Artem’ev, A.V.; Gusarova, N.K.; Sutyrina, A.O.; Malysheva, S.F.; Oparina, L.A. Hydrophosphorylation of vinyl sulfides with elemental phosphorus in the KOH/DMSO(H2O) system: Synthesis of 2-alkyl(aryl) thioethylphosphinic acids. J. Sulfur Chem. 2018, 39, 112–118. [Google Scholar] [CrossRef]
- Gusarova, N.K.; Sutyrina, A.O.; Matveeva, E.A.; Sterkhova, I.V.; Smirnov, V.I.; Trofimov, B.A. One-Pot Chlorine-Free Synthesis of Chiral Organophosphorus Compounds from Elemental Phosphorus and α-Methylstyrene Dimer. Dokl. Chem. 2018, 478, 5–8. [Google Scholar] [CrossRef]
- Gusarova, N.K.; Sutyrina, A.O.; Kuimov, V.A.; Malysheva, S.F.; Belogorlova, N.A.; Volkov, P.A.; Trofimov, B.A. Single-stage synthesis of alkyl-H-phosphinic acids from elemental phosphorus and alkyl bromides. Mendeleev Commun. 2019, 29, 328–330. [Google Scholar] [CrossRef]
- Kuimov, V.A.; Malysheva, S.F.; Belogorlova, N.A.; Albanov, A.I.; Gusarova, N.K.; Trofimov, B.A. Synthesis of Long-Chain n-Alkylphosphonic Acids by Phosphonylation of Alkyl Bromides with Red Phosphorus and Superbase under Micellar/Phase Transfer Catalysis. Eur. J. Org. Chem. 2021, 2021, 1596–1602. [Google Scholar] [CrossRef]
- Kuimov, V.A.; Malysheva, S.F.; Belogorlova, N.A.; Gusarova, N.K.; Trofimov, B.A. Chemoselective synthesis of long-chain alkyl-H-phosphinic acids via one-pot alkylation/oxidation of red phosphorus with alkyl-PEGs as recyclable micellar catalysts. Org. Biomol. Chem. 2021, 19, 10587–10595. [Google Scholar] [CrossRef] [PubMed]
- Brewer, S.E.; Vickery, T.P.; Bachert, D.C.; Brands, K.M.J.; Emerson, K.M.; Goodyear, A.; Kumke, K.J.; Lam, T.; Scott, J.P. Thermal Hazard Evaluation of 4-Methoxybenzyl Chloride (PMB-Cl). Org. Process Res. Dev. 2005, 9, 1009–1012. [Google Scholar] [CrossRef]
- Denegri, B.; Matić, M.; Vaško, M. Mechanism of solvolysis of substituted benzyl chlorides in aqueous ethanol. Tetrahedron 2022, 103, 132548. [Google Scholar] [CrossRef]
- Levshina, K.V.; Sergievskaya, S.I. Preparation of N,N-bis(chloroethyl) alkaryl amines. Zh. Obshch. Khim. 1954, 24, 905–909. [Google Scholar]
- Karmanova, I.B.; Vol'kenshtein, Y.B.; Belen'kii, L.I. Alkyl m-chloromethylphenyl ketones. U.S.S.R. Patent SU585150, 25 December 1977. [Google Scholar]
- 2-Chloromethylthiophene. Organic Syntheses 1949, 29, 31. Available online: https://orgsyn.org/Content/pdfs/procedures/CV3P0197.pdf (accessed on 7 April 2023).
Entry | Catalyst | Conversion of Pred, % | Content of Acids in the Crude Product | ||
---|---|---|---|---|---|
2a | 3 | 4 | |||
1 | Bu3N | 99 | 0 | 0 | 0 |
2 | TBAB | 40 | 7 | 1 | 11 |
3 2 | TEBAC | 59 | 4 | 1 | 5 |
4 | [Ph4P]Br | 98 | 0 | 0 | 0 |
5 | DPB | 97 | 0 | 0 | 0 |
6 | CTAB | 70 | 31 | 2 | 6 |
7 3 | Stearate Na | 77 | 0 | 0 | 2 |
8 | SDS | 89 | 0 | 0 | 0 |
9 | DB18C6 | 74 | 10 | 0 | 6 |
10 | PEG1000 | 70 | 15 | 2 | 2 |
11 | Hex2PEG600 | 73 | 11 | 2 | 3 |
12 | DodecMPEG550 | 96 | 27 | trace | 0 |
13 | Bn2PEG600 | 87 | 11 | trace | 0 |
14 | Nonoxynol-12 | 97 | 16 | 0 | 3 |
15 | Triton-X-100 | 73 | 50 | 0 | 4 |
Entry | Catalyst (mol%) | Temp., °C | Feeding Time of BnCl | Reaction Time | Concentration of KOH, % | Conversion of Pred, % | 31P NMR Yield of Acids | ||
---|---|---|---|---|---|---|---|---|---|
2a | 3 | 4 | |||||||
1 | CTAB (5) | 85–90 | 2 h | 6 | 50 | 99 | 31 | 2 | 6 |
2 | CTAB (5) | 90–95 | 1.25 h | 6 | 50 | 98 | 16 | 0 | 0 |
3 | CTAB (5) | 90–95 | 0.7 h | 1 | 50 | 47 | 8 | 3 | 9 |
4 | CTAB (5) | 90–95 | 1.5 h | 3 | 50 | 48 | 32 | 0 | 0 |
5 | CTAB (5) | 95–97 | 1 h | 3 | 50 | 61 | 34 | 0 | 0 |
6 | Triton-X-100 (10) | 80 | 1 min | 3 | 55 | 76 | 40 | 0 | 0 |
7 | Triton-X-100 (5) | 85–90 | 2 h | 4.5 | 55 | 71 | 41 | 2 | 4 |
8 | Triton-X-100 (2.5) | 80–85 | 2 h | 5 | 55 | 83 | 3 | 1 | 2 |
9 | Triton-X-100 (1) | 80–85 | 2 h | 5 | 50 | 92 | 2 | 1 | 3 |
10 | Triton-X-100 (5) | 85–90 | 1.5 h | 4 | 50 | 73 | 50 | 0 | 4 |
11 | Triton-X-100 (2.5) | 85–90 | 2 h | 6 | 55 | 92 | 63 | 0 | 2 |
12 | Triton-X-100 (2.5) | 95–97 | 1 min | 3 | 55 | 97 | 65 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuimov, V.A.; Malysheva, S.F.; Belogorlova, N.A.; Fattakhov, R.I.; Albanov, A.I.; Trofimov, B.A. Triton-X-100 as an Organic Catalyst for One-Pot Synthesis of Arylmethyl-H-phosphinic Acids from Red Phosphorus and Arylmethyl Halides in the KOH/H2O/Toluene Multiphase Superbase System. Catalysts 2023, 13, 720. https://doi.org/10.3390/catal13040720
Kuimov VA, Malysheva SF, Belogorlova NA, Fattakhov RI, Albanov AI, Trofimov BA. Triton-X-100 as an Organic Catalyst for One-Pot Synthesis of Arylmethyl-H-phosphinic Acids from Red Phosphorus and Arylmethyl Halides in the KOH/H2O/Toluene Multiphase Superbase System. Catalysts. 2023; 13(4):720. https://doi.org/10.3390/catal13040720
Chicago/Turabian StyleKuimov, Vladimir A., Svetlana F. Malysheva, Natalia A. Belogorlova, Ruslan I. Fattakhov, Alexander I. Albanov, and Boris A. Trofimov. 2023. "Triton-X-100 as an Organic Catalyst for One-Pot Synthesis of Arylmethyl-H-phosphinic Acids from Red Phosphorus and Arylmethyl Halides in the KOH/H2O/Toluene Multiphase Superbase System" Catalysts 13, no. 4: 720. https://doi.org/10.3390/catal13040720
APA StyleKuimov, V. A., Malysheva, S. F., Belogorlova, N. A., Fattakhov, R. I., Albanov, A. I., & Trofimov, B. A. (2023). Triton-X-100 as an Organic Catalyst for One-Pot Synthesis of Arylmethyl-H-phosphinic Acids from Red Phosphorus and Arylmethyl Halides in the KOH/H2O/Toluene Multiphase Superbase System. Catalysts, 13(4), 720. https://doi.org/10.3390/catal13040720