PiFM and XPS Studies of Porous TiO2 Films for the Photocatalytic Decomposition of Polystyrene
Abstract
:1. Introduction
2. Results
2.1. Comparing the Photocatalytic Decomposition of Polystyrene with Stearic Acid
2.2. Effect of Spin Speed and Photocatalytic Film Thickness on Activity for Polystyrene Decomposition
2.3. Comparing the Rate of Aliphatic and Aromatic Hydrogen Catalytic Oxidation
2.4. Characterisation
3. Discussion
4. Materials and Methods
4.1. Formation of 2D TiO2 Spin Coated Films
4.2. Photocatalytic Testing
4.3. Catalyst Characterisation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ward, C.P.; Reddy, C.M. We Need Better Data about the Environmental Persistence of Plastic Goods. Proc. Natl. Acad. Sci. USA 2020, 117, 14618–14621. [Google Scholar] [CrossRef] [PubMed]
- Achhammer, B.G.; Reiney, M.J.; Reinhart, F.W. Study of Degradation of Polystyrene, Using Infrared Spectrophotometry. J. Res. Natl. Bur. Stan. 1951, 47, 116. [Google Scholar] [CrossRef]
- Shang, J.; Chai, M.; Zhu, Y. Photocatalytic Degradation of Polystyrene Plastic under Fluorescent Light. Environ. Sci. Technol. 2003, 37, 4494–4499. [Google Scholar] [CrossRef] [PubMed]
- Zan, L.; Wang, S.; Fa, W.; Hu, Y.; Tian, L.; Deng, K. Solid-Phase Photocatalytic Degradation of Polystyrene with Modified Nano-TiO2 Catalyst. Polymer 2006, 47, 8155–8162. [Google Scholar] [CrossRef]
- Fa, W.; Zan, L.; Gong, C.; Zhong, J.; Deng, K. Solid-Phase Photocatalytic Degradation of Polystyrene with TiO2 Modified by Iron (II) Phthalocyanine. Appl. Catal. B Environ. 2008, 79, 216–223. [Google Scholar] [CrossRef]
- Gardette, J.-L.; Mailhot, B.; Lemaire, J. Photooxidation Mechanisms of Styrenic Polymers. Polym. Degrad. Stab. 1995, 48, 457–470. [Google Scholar] [CrossRef]
- Blair, R.M.; Waldron, S.; Phoenix, V.; Gauchotte-Lindsay, C. Micro- and Nanoplastic Pollution of Freshwater and Wastewater Treatment Systems. Springer Sci. Rev. 2017, 5, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Domínguez-Jaimes, L.P.; Cedillo-González, E.I.; Luévano-Hipólito, E.; Acuña-Bedoya, J.D.; Hernández-López, J.M. Degradation of Primary Nanoplastics by Photocatalysis Using Different Anodized TiO2 Structures. J. Hazard. Mater. 2021, 413, 125452. [Google Scholar] [CrossRef]
- Paz, Y.; Luo, Z.; Rabenberg, L.; Heller, A. Photooxidative Self-Cleaning Transparent Titanium Dioxide Films on Glass. J. Mater. Res. 1995, 10, 2842–2848. [Google Scholar] [CrossRef]
- Mills, A.; Wang, J. Simultaneous Monitoring of the Destruction of Stearic Acid and Generation of Carbon Dioxide by Self-Cleaning Semiconductor Photocatalytic Films. J. Photochem. Photobiol. A Chem. 2006, 182, 181–186. [Google Scholar] [CrossRef]
- Davies, P.R.; Ososki, G. The Effect of Spin Speed, Film Thickness and Copper Doping on the Photocatalytic Activity of Spin Coated TiO2 Films. In Preparation.
- Kumaravel, V.; Mathew, S.; Bartlett, J.; Pillai, S.C. Photocatalytic Hydrogen Production Using Metal Doped TiO2: A Review of Recent Advances. Appl. Catal. B Environ. 2019, 244, 1021–1064. [Google Scholar] [CrossRef]
- Sangpour, P.; Hashemi, F.; Moshfegh, A.Z. Photoenhanced Degradation of Methylene Blue on Cosputtered M:TiO2 (M = Au, Ag, Cu) Nanocomposite Systems: A Comparative Study. J. Phys. Chem. C 2010, 114, 13955–13961. [Google Scholar] [CrossRef]
- Alofi, S.; O’Rourke, C.; Mills, A. Kinetics of Stearic Acid Destruction on TiO2 ‘Self-Cleaning’ Films Revisited. Photochem. Photobiol. Sci. 2022, 21, 2061–2069. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-Y.; Yan, J.-K.; Gan, G.-Y. The Effect of Cu Doping on the Transformation from Rutile to Anatase and Cu Occupation Tendency in TiO2 Solid Solution. J. Spectrosc. 2019, 2019, e6470601. [Google Scholar] [CrossRef] [Green Version]
- You, M.; Kim, T.G.; Sung, Y.-M. Synthesis of Cu-Doped TiO2 Nanorods with Various Aspect Ratios and Dopant Concentrations. Cryst. Growth Des. 2010, 10, 983–987. [Google Scholar] [CrossRef]
- NIST X-ray Photoelectron Spectroscopy Database, Version 4.1 (National Institute of Standards and Technology, Gaithersburg, 2012). Available online: http://srdata.nist.gov/xps/ (accessed on 25 March 2023).
- Lunell, S.; Svensson, S.; Malmqvist, P.Å.; Gelius, U.; Basilier, E.; Siegbahn, K. A Theoretical and Experimental Study of the Carbon 1s Shake-up Structure of Benzene. Chem. Phys. Lett. 1978, 54, 420–424. [Google Scholar] [CrossRef]
- Davies-Jones, J.A.; Davies, P.R. Photo Induced Force Microscopy: Chemical Spectroscopy beyond the Diffraction Limit. Mater. Chem. Front. 2022, 6, 1552–1573. [Google Scholar] [CrossRef]
- Li, Z.; Gillon, X.; Houssiau, L.; Pireaux, J.-J. Investigation in the Synthesis Process of Plasma Polymerisation: New Polystyrene. Mater. Res. Innov. 2015, 19, S5-1117–S5-1123. [Google Scholar] [CrossRef]
- Changjun, Y.; Tianyou, P.; Kejian, D.; Ling, Z. Solid-Phase Photocatalytic Degradation of Waste Plastics. Prog. Chem. 2011, 23, 874–879. [Google Scholar]
- Bowker, M.; Morton, C.; Kennedy, J.; Bahruji, H.; Greves, J.; Jones, W.; Davies, P.R.; Brookes, C.; Wells, P.P.; Dimitratos, N. Hydrogen Production by Photoreforming of Biofuels Using Au, Pd and Au–Pd/TiO2 Photocatalysts. J. Catal. 2014, 310, 10–15. [Google Scholar] [CrossRef]
- Bahruji, H.; Bowker, M.; Davies, P.R.; Pedrono, F. New Insights into the Mechanism of Photocatalytic Reforming on Pd/TiO2. Appl. Catal. B Environ. 2011, 107, 205–209. [Google Scholar] [CrossRef]
- Sergejevs, A.; Clarke, C.T.; Allsopp, D.W.E.; Marugan, J.; Jaroenworaluck, A.; Singhapong, W.; Manpetch, P.; Timmers, R.; Casado, C.; Bowen, C.R. A Calibrated UV-LED Based Light Source for Water Purification and Characterisation of Photocatalysis. Photochem. Photobiol. Sci. 2017, 16, 1690–1699. [Google Scholar] [CrossRef] [PubMed]
- Casado, C.; Timmers, R.; Sergejevs, A.; Clarke, C.T.; Allsopp, D.W.E.; Bowen, C.R.; van Grieken, R.; Marugán, J. Design and Validation of a LED-Based High Intensity Photocatalytic Reactor for Quantifying Activity Measurements. Chem. Eng. J. 2017, 327, 1043–1055. [Google Scholar] [CrossRef]
- Fairley, N. CasaXPS Manual: 2.3.15 Spectroscopy; Casa Software Ltd.: Teignmouth, UK, 2009; ISBN 978-1-907465-00-0. [Google Scholar]
- Nowak, D.; Morrison, W.; Wickramasinghe, H.K.; Jahng, J.; Potma, E.; Wan, L.; Ruiz, R.; Albrecht, T.R.; Schmidt, K.; Frommer, J.; et al. Nanoscale Chemical Imaging by Photoinduced Force Microscopy. Sci. Adv. 2016, 2, e1501571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Court-Wallace, C.; Davies, P.R.; Davies-Jones, J.; Ososki, G. PiFM and XPS Studies of Porous TiO2 Films for the Photocatalytic Decomposition of Polystyrene. Catalysts 2023, 13, 725. https://doi.org/10.3390/catal13040725
Court-Wallace C, Davies PR, Davies-Jones J, Ososki G. PiFM and XPS Studies of Porous TiO2 Films for the Photocatalytic Decomposition of Polystyrene. Catalysts. 2023; 13(4):725. https://doi.org/10.3390/catal13040725
Chicago/Turabian StyleCourt-Wallace, Christopher, Philip R. Davies, Josh Davies-Jones, and Genevieve Ososki. 2023. "PiFM and XPS Studies of Porous TiO2 Films for the Photocatalytic Decomposition of Polystyrene" Catalysts 13, no. 4: 725. https://doi.org/10.3390/catal13040725
APA StyleCourt-Wallace, C., Davies, P. R., Davies-Jones, J., & Ososki, G. (2023). PiFM and XPS Studies of Porous TiO2 Films for the Photocatalytic Decomposition of Polystyrene. Catalysts, 13(4), 725. https://doi.org/10.3390/catal13040725