Lignin Hydrogenolysis over Bimetallic Ni–Ru Nanoparticles Supported on SiO2@HPS
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalyst Characterisation
2.2. Catalyst Testing
2.3. Ni-Ru-SiO2@HPS Stability Tests
2.4. Process Conditions Optimization
3. Materials and Methods
3.1. Materials
3.2. SiO2@HPS Preparation
3.3. Catalyst Preparation
3.4. Catalyst Characterisation
3.5. Lignin Hydrogenolysis Procedure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, C.; Wang, F. Catalytic Lignin Depolymerization to Aromatic Chemicals. Acc. Chem. Res. 2020, 53, 470–484. [Google Scholar] [CrossRef] [PubMed]
- Duarah, P.; Haldar, D.; Purkait, M.K. Technological advancement in the synthesis and applications of lignin-based nanoparticles derived from agro-industrial waste residues: A review. Int. J. Biol. Macromol. 2020, 163, 1828–1843. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, Z.; Yi, W.; Fu, P.; Zhang, A.; Bai, X. Renewable aromatic hydrocarbons production from catalytic pyrolysis of lignin with Al-SBA-15 and HZSM-5: Synergistic effect and coke behavior. Renew. Energy 2021, 163, 1673–1681. [Google Scholar] [CrossRef]
- Wang, Z.X.; Li, H.; Xie, W.L.; Hu, B.; Li, K.; Lu, Q. Progress on basic structure, pyrolysis mechanism and characteristics of lignin. Adv. New. Renew. Energy 2020, 8, 6–14. [Google Scholar]
- Tejado, A.; Pena, C.; Labidi, J.; Echeverria, J.; Mondragon, I. Physico-chemical characterization of lignins from different sources for use in phenol–formaldehyde resin synthesis. Bioresour. Technol. 2007, 98, 1655–1663. [Google Scholar] [CrossRef]
- Parthasarathi, R.; Romero, R.A.; Redondo, A.; Gnanakaran, S. Theoretical study of the remarkably diverse linkages in lignin. J. Phys. Chem. Lett. 2011, 2, 2660–2666. [Google Scholar] [CrossRef]
- Alherech, M.; Omolabake, S.; Holland, C.M.; Klinger, G.E.; Hegg, E.L.; Stahl, S.S. From Lignin to Valuable Aromatic Chemicals: Lignin Depolymerization and Monomer Separation via Centrifugal Partition Chromatography. ACS Cent. Sci. 2021, 7, 1831–1837. [Google Scholar] [CrossRef]
- Lundquist, K. Low-molecular weight lignin hydrolysis products. In Applied Polymer Symposium; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1976; pp. 1393–1407. [Google Scholar]
- Roy, R.; Rahman, M.S.; Amit, T.A.; Jadhav, B. Recent Advances in Lignin Depolymerization Techniques: A Comparative Overview of Traditional and Greener Approaches. Biomass 2022, 2, 130–154. [Google Scholar] [CrossRef]
- Duan, B.; Wang, Q.; Zhao, Y.; Li, N.; Zhang, S.; Du, Y. Effect of catalysts on liquefaction of alkali lignin for production of aromatic phenolic monomer. Biomass Bioenergy 2019, 131, 105413. [Google Scholar] [CrossRef]
- Pandey, M.P.; Kim, C.S. Lignin depolymerization and conversion: A review of thermochemical methods. Eng. Technol. 2011, 34, 29–41. [Google Scholar] [CrossRef]
- Long, J.; Xu, Y.; Wang, T.; Yuan, Z.; Shu, R.; Zhang, Q.; Ma, L. Efficient base-catalyzed decomposition and in situ hydrogenolysis process for lignin depolymerization and char elimination. Appl. Energy 2015, 141, 70–79. [Google Scholar] [CrossRef]
- Kawamoto, H. Lignin pyrolysis reactions. J. Wood Sci. 2017, 63, 117–132. [Google Scholar] [CrossRef]
- Yunpu, W.; Leilei, D.; Liangliang, F.; Shaoqi, S.; Yuhuan, L.; Roger, R. Review of microwave-assisted lignin conversion for renewable fuels and chemicals. J. Anal. Appl. Pyrolysis 2016, 119, 104–113. [Google Scholar] [CrossRef]
- Yang, W.; Du, X.; Liu, W.; Tricker, A.W.; Dai, H.; Deng, Y. Highly Efficient Lignin Depolymerization via Effective Inhibition of Condensation during Polyoxometalate-Mediated Oxidation. Energy Fuels 2019, 33, 6483–6490. [Google Scholar] [CrossRef]
- Oregui-Bengoechea, M.; Gandarias, I.; Miletić, N.; Simonsen, S.F.; Kronstad, A.; Arias, P.L. Thermocatalytic conversion of lignin in an ethanol/formic acid medium with NiMo catalysts: Role of the metal and acid sites. Appl. Catal. B Environ. 2017, 217, 353–364. [Google Scholar] [CrossRef]
- Radhika, N.L.; Sachdeva, S.; Kumar, M. Lignin depolymerization and biotransformation to industrially important chemicals/biofuels. Fuel 2022, 312, 122935. [Google Scholar] [CrossRef]
- Dou, X.; Li, W.; Zhu, C.; Jiang, X. Catalytic waste Kraft lignin hydrodeoxygenation to liquid fuels over a hollow Ni-Fe catalyst. Appl. Catal. B Environ. 2021, 287, 119975. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, K.; Li, H.; Xiao, L.P.; Song, G. Selective hydrogenolysis of catechyl lignin into propenylcatechol over an atomically dispersed ruthenium catalyst. Nat. Commun. 2021, 12, 416. [Google Scholar] [CrossRef]
- Cao, L.; Yu, I.K.M.; Liu, Y.; Ruan, X.; Tsang, D.C.W.; Hunt, A.J.; Ok, Y.S.; Song, H.; Zhang, S. Lignin valorization for the production of renewable chemicals: State-of-the art review and future prospects. Bioresour. Technol. 2018, 269, 465–475. [Google Scholar] [CrossRef]
- Mahmood, N.; Yuan, Z.; Schmidt, J.; Xu, C.C. Hydrolytic depolymerization of hydrolysis lignin: Effects of catalysts and solvents. Bioresour. Technol. 2015, 190, 416–419. [Google Scholar] [CrossRef]
- Kuznetsov, B.; Sharypov, V.; Chesnokov, N.; Beregovtsova, N.; Baryshnikov, S.; Lavrenov, A.; Vosmerikov, A.; Agabekov, V. Lignin conversion in supercritical ethanol in the presence of solid acid catalysts. Kinet. Catal. 2015, 56, 434–441. [Google Scholar] [CrossRef]
- Cocero, M.J.; Cabeza, A.; Abad, N.; Adamovic, T.; Vaquerizo, L.; Martinez, C.M.; Pazo-Cepeda, M.V. Understanding biomass fractionation in subcritical & supercritical water. J. Supercrit. Fluids 2018, 133, 550–565. [Google Scholar]
- Fan, D.; Xie, X.-A.; Li, Y.; Li, L.; Sun, J. Comparative study about catalytic liquefaction of alkali lignin to aromatics by HZSM-5 in sub-and supercritical ethanol. J. Renew. Sustain. Energy 2018, 10, 013106. [Google Scholar] [CrossRef]
- Yang, T.; Wu, K.; Li, B.; Du, C.; Wang, J.; Li, R. Conversion of lignin into phenolic-rich oil by two-step liquefaction in subsupercritical ethanol system assisted by carbon dioxide. J. Energy Inst. 2021, 94, 329–336. [Google Scholar] [CrossRef]
- Ye, K.; Liu, Y.; Wu, S.; Zhuang, J. A review for lignin valorization: Challenges and perspectives in catalytic hydrogenolysis. Ind. Crops Prod. 2021, 172, 114008. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Y.; Li, X.; Chen, L.; Li, G.; Li, X. Lignin valorization: A novel in Situ Catalytic Hydrogenolysis Method in alkaline aqueous solution. Energy Fuels 2018, 32, 7643–7651. [Google Scholar] [CrossRef]
- Scarsella, M.; de Caprariis, B.; Damizia, M.; De Filippis, P. Heterogeneous catalysts for hydrothermal liquefaction of lignocellulosic biomass: A review. Biomass Bioenergy 2020, 140, 105662. [Google Scholar] [CrossRef]
- Barta, K.; Matson, T.D.; Fettig, M.L.; Scott, S.L.; Iretskii, A.V.; Ford, P.C. Catalytic disassembly of an organosolv lignin via hydrogen transfer from supercritical methanol. Green Chem. 2010, 12, 1640–1647. [Google Scholar] [CrossRef]
- Barta, K.; Warner, G.R.; Beach, E.S.; Anastas, P.T. Depolymerization of organosolv lignin to aromatic compounds over Cu-doped porous metal oxides. Green Chem. 2014, 16, 191–196. [Google Scholar] [CrossRef]
- Liu, Q.; Li, P.; Liu, N.; Shen, D. Lignin depolymerization to aromatic monomers and oligomers in isopropanol assisted by microwave heating. Polym. Degrad. Stab. 2017, 135, 54–60. [Google Scholar] [CrossRef]
- Kong, L.; Liu, C.; Gao, J.; Wang, Y.; Dai, L. Efficient and controllable alcoholysis of Kraft lignin catalyzed by porous zeolite-supported nickel-copper catalyst. Bioresour. Technol. 2019, 276, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Zhang, L.; Gu, J.; Gou, L.; Xie, L.; Wang, Y.; Dai, L. Catalytic hydrotreatment of kraft lignin into aromatic alcohols over nickel-rhenium supported on niobium oxide catalyst. Bioresour. Technol. 2020, 299, 122582. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhao, L.; Liu, S.; Wang, Y.; Dai, L. High-quality bio-oil from one-pot catalytic hydrocracking of kraft lignin over supported noble metal catalysts in isopropanol system. Bioresour. Technol. 2016, 212, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zhang, S.; Xiao, R.; Jiang, X.; Wang, Y.; Sun, Y.; Lu, P. Catalytic transfer hydrogenolysis of lignin into monophenols over platinum-rhenium supported on titanium dioxide using isopropanol as in situ hydrogen source. Bioresour. Technol. 2019, 279, 228–233. [Google Scholar] [CrossRef]
- Hita, I.; Deuss, P.J.; Bonura, G.; Frusteri, F.; Heeres, H.J. Biobased chemicals from the catalytic depolymerization of Kraft lignin using supported noble metal-based catalysts. Fuel Process. Technol. 2018, 179, 143–153. [Google Scholar] [CrossRef]
- Hossain, M.A.; Phung, T.K.; Rahaman, M.S.; Tulaphol, S.; Jasinski, J.B.; Sathitsuksanoh, N. Catalytic cleavage of the β-O-4 aryl ether bonds of lignin model compounds by Ru/C catalyst. Appl. Catal. A Gen. 2019, 582, 117100. [Google Scholar] [CrossRef]
- Zhang, S.; Su, L.; Liu, L.; Fang, G. Degradation on hydrogenolysis of soda lignin using CuO/SO42−/ZrO2 as catalyst. Ind. Crops Prod. 2015, 77, 451–457. [Google Scholar] [CrossRef]
- Zhang, J.-W.; Lu, G.-P.; Cai, C. Self-hydrogen transfer hydrogenolysis of β-O-4 linkages in lignin catalyzed by MIL-100(Fe) supported Pd–Ni BMNPs. Green Chem. 2017, 19, 4538–4543. [Google Scholar] [CrossRef]
- Xue, Z.; Yu, H.; He, J.; Zhang, Y.; Lan, X.; Liu, R.; Zhang, L.; Mu, T. Highly efficient cleavage of ether bonds in lignin models by transfer hydrogenolysis over dual functional Ruthenium/Montmorillonite. ChemSusChem 2020, 13, 4579–4586. [Google Scholar] [CrossRef]
- Song, Q.; Wang, F.; Cai, J.; Wang, Y.; Zhang, J.; Yu, W.; Xu, J. Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation-hydrogenolysis process. Energy Environ. Sci. 2013, 6, 994–1007. [Google Scholar] [CrossRef]
- Shao, Y.; Xia, Q.; Dong, L.; Liu, X.; Han, X.; Parker, S.F.; Cheng, Y.; Daemen, L.L.; Ramirez-Cuesta, A.J.; Yang, S.; et al. Selective production of arenes via direct lignin upgrading over a niobium-based catalyst. Nat. Commun. 2017, 8, 16104. [Google Scholar] [CrossRef] [PubMed]
- Ayusheev, A.B.; Taran, O.P.; Afinogenova, I.I.; Mishchenko, T.I.; Shashkov, M.V.; Sashkina, A.; Semeikina, V.S.; Parkhomchuk, E.V.; Agabekov, V.E.; Parmon, V.N. Depolymerization of Birch-Wood Organosolv Lignin Over Solid Catalysts in Supercritical Ethanol. J. Sib. Fed. Univ. Chem 2016, 9, 353–370. [Google Scholar] [CrossRef]
- Guo, H.; Qi, Z.; Liu, Y.; Xia, H.; Li, L.; Huang, Q.; Wang, A.; Li, C. Tungsten-based catalysts for lignin depolymerization: The role of tungsten species in C–O bond cleavage. Catal. Sci. Technol. 2019, 9, 2144–2151. [Google Scholar] [CrossRef]
- Fang, Q.; Jiang, Z.; Guo, K.; Liu, X.; Li, Z.; Li, G.; Hu, C. Low temperature catalytic conversion of oligomers derived from lignin in pubescens on Pd/NbOPO4. Appl. Catal. B Environ. 2020, 263, 118325. [Google Scholar] [CrossRef]
- Zhao, W.; Li, X.; Li, H.; Zheng, X.; Ma, H.; Long, J.; Li, X. Selective hydrogenolysis of lignin catalyzed by a cost-effective Ni metal supported on alkaline MgO. ACS Sust. Chem. Eng. 2019, 7, 19750–19760. [Google Scholar] [CrossRef]
- Jiang, M.; Chen, X.; Wang, L.; Liang, J.; Wei, X.; Nong, W. Anchoring Single Ni Atoms on CeO2 Nanospheres as an Efficient Catalyst for the Hydrogenolysis of Lignin to Aromatic Monomers. Fuel 2022, 324, 124499. [Google Scholar] [CrossRef]
- Li, L.; Dong, L.; Li, D.; Guo, Y.; Liu, X.; Wang, Y. Hydrogen-Free Production of 4-Alkylphenols from Lignin via Self-Reforming-Driven Depolymerization and Hydrogenolysis. ACS Catal. 2020, 10, 15197–15206. [Google Scholar] [CrossRef]
- Karnitski, A.; Choi, J.-W.; Suh, D.J.; Yoo, C.-J.; Lee, H.; Kim, K.H.; Kim, C.S.; Kim, K.; Ha, J.-M. Roles of Metal and Acid Sites in the Reductive Depolymerization of Concentrated Lignin over Supported Pd Catalysts. Catal. Today 2022, 411–412, 113844. [Google Scholar] [CrossRef]
- Li, T.; Lin, H.; Ouyang, X.; Qiu, X.; Wan, Z. In Situ Preparation of Ru@N-Doped Carbon Catalyst for the Hydrogenolysis of Lignin to Produce Aromatic Monomers. ACS Catal. 2019, 9, 5828–5836. [Google Scholar] [CrossRef]
- Ding, T.; Wu, Y.; Zhu, X.; Lin, G.; Hu, X.; Sun, H.; Huang, Y.; Zhang, S.; Zhang, H. Promoted Production of Phenolic Monomers from Lignin-First Depolymerization of Lignocellulose over Ru Supported on Biochar by N,P-Co-Doping. ACS Sustain. Chem. Eng. 2022, 10, 2343–2354. [Google Scholar] [CrossRef]
- Huang, J.B.; He, C. Pyrolysis mechanism of α-O-4 linkage lignin dimer: A theoretical study. J. Anal. Appl. Pyrol. 2015, 113, 655–664. [Google Scholar] [CrossRef]
- Zhu, C.; Cao, J.-P.; Feng, X.-B.; Zhao, X.-Y.; Yang, Z.; Li, J.; Zhao, M.; Zhao, Y.-P.; Bai, H.-C. Theoretical insight into the hydrogenolysis mechanism of lignin dimer compounds based on experiments. Renew. Energy 2021, 163, 1831–1837. [Google Scholar] [CrossRef]
- Huang, J.B.; Liu, C.; Wu, D.; Tong, H.; Ren, L. Density functional theory studies on pyrolysis mechanism of β-O-4 type lignin dimer model compound. J. Anal. Appl. Pyrol. 2014, 109, 98–108. [Google Scholar] [CrossRef]
- Huang, J.; He, C.; Liu, C.; Tong, H.; Wu, L.Q.; Wu, S.B. A computational study on thermal decomposition mechanism of β-1 linkage lignin dimer. Comput. Theor. Chem. 2015, 1054, 80–87. [Google Scholar] [CrossRef]
- Zhang, H.; Deng, S.X.; Cao, X.L. Density functional theory investigation of gasification mechanism of a lignin dimer with β-5 linkage. Renew. Energy 2018, 115, 937–945. [Google Scholar] [CrossRef]
- Kim, S.; Chmely, S.C.; Nimlos, M.R.; Bomble, Y.J.; Foust, T.D.; Paton, R.S.; Beckham, G.T. Computational study of bond cleavage enthalpies for a large range of native and modified lignins. J. Phys. Chem. Lett. 2011, 2, 2846–2852. [Google Scholar] [CrossRef]
- Qi, S.-C.; Zhang, L.; Kudo, S.; Norinaga, K.; Hayashi, J. Theoretical Study on Hydrogenolytic Cleavage of Intermonomer Linkages in Lignin. J. Phys. Chem. A 2017, 121, 2868–2877. [Google Scholar] [CrossRef]
- Wu, A.; Patrick, B.O.; Chung, E.; James, B.R. Hydrogenolysis of β-O-4 lignin model dimers by a ruthenium-xantphos catalyst. Dalton Trans. 2012, 41, 11093–11106. [Google Scholar] [CrossRef]
- Atesin, A.C.; Ray, N.A.; Stair, P.C.; Marks, T.J. Etheric C-O Bond Hydrogenolysis Using a Tandem Lanthanide Triflate/Supported Palladium Nanoparticle Catalyst System. J. Am. Chem. Soc. 2012, 134, 14682–14685. [Google Scholar] [CrossRef]
- Sang, Y.; Chen, H.; Khalifeh, M.; Li, Y. Catalysis and chemistry of lignin depolymerization in alcohol solvents–A review. Catal. Today. 2023, 408, 168–181. [Google Scholar] [CrossRef]
- Selvaraj, M.; Shanthi, K.; Maheswari, R.; Ramanathan, A. Hydrodeoxygenation of guaiacol over MoO3-NiO/mesoporous silicates: Effect of incorporated heteroatom. Energy Fuels 2014, 28, 2598–2607. [Google Scholar] [CrossRef]
- Ambursa, M.M.; Sudarsanam, P.; Voon, L.H.; Hamid, S.B.A.; Bhargava, S.K. Bimetallic CuNi catalysts supported on MCM-41 and Ti-MCM-41 porous materials for hydrodeoxygenation of lignin model compound into transportation fuels. Fuel Process Technol. 2017, 162, 87–97. [Google Scholar] [CrossRef]
- Güvenatam, B.; Heeres, E.H.J.; Pidko, E.A.; Hensen, E.J.M. Lewis-acid catalyzed depolymerization of Protobind lignin in supercritical water and ethanol. Catal. Today 2016, 259, 460–466. [Google Scholar] [CrossRef]
- Lohr, T.L.; Li, Z.; Marks, T.J. Thermodynamic strategies for C–O bond formation and cleavage via tandem catalysis. Acc. Chem. Res. 2016, 49, 824–834. [Google Scholar] [CrossRef]
- Jastrzebski, R.; Constant, S.; Lancefield, C.S.; Westwood, N.J.; Weckhuysen, B.M.; Bruijnincx, P.C.A. Tandem catalytic depolymerization of lignin by Water Tolerant Lewis acids and rhodium complexes. ChemSusChem 2016, 9, 2074–2079. [Google Scholar] [CrossRef]
- Yang, L.; Li, Y.; Savage, P.E. Hydrolytic cleavage of C–O linkages in lignin model compounds catalyzed by Water-Tolerant Lewis acids. Ind. Eng. Chem. Res. 2014, 53, 2633–2639. [Google Scholar] [CrossRef]
- Cai, Q.; Gong, T.; Yu, T.; Zhang, S. Comparison of Hydrocracking and Cracking of Pyrolytic Lignin over Different Ni-Based Catalysts for Light Aromatics Production. Fuel Process. Technol. 2023, 240, 107564. [Google Scholar] [CrossRef]
- He, J.; Tang, D.; Hu, C.; Luo, Y.; Kim, C.K.; Su, Z. Mechanistic Study on the Depolymerization of Typical Lignin-Derived Oligomers Catalyzed by Pd/NbOPO4. Mol. Catal. 2022, 528, 112500. [Google Scholar] [CrossRef]
- Jiang, W.; Cao, J.-P.; Yang, Z.; Xie, J.-X.; Zhao, L.; Zhu, C.; Zhang, C.; Zhao, X.-Y.; Zhao, Y.-P.; Zhang, J.-L. Hydrodeoxygenation of Lignin and Its Model Compounds to Hydrocarbon Fuels over a Bifunctional Ga-Doped HZSM-5 Supported Metal Ru Catalyst. Appl. Catal. A Gen. 2022, 633, 118516. [Google Scholar] [CrossRef]
- Yue, X.; Zhang, L.; Sun, L.; Gao, S.; Gao, W.; Cheng, X.; Shang, N.; Gao, Y.; Wang, C. Highly efficient hydrodeoxygenation of lignin-derivatives over Ni-based catalyst. Appl. Catal. B Environ. 2021, 293, 120243. [Google Scholar] [CrossRef]
- Yan, S.; Ding, W.; Lin, X.; Cai, Q.; Zhang, S. Selective hydrogenolysis of lignin for phenolic monomers with a focus on β-O-4 cleavage and C = O hydrodeoxygenation. Fuel 2022, 320, 123732. [Google Scholar] [CrossRef]
- Bykov, A.V.; Demidenko, G.N.; Nikoshvili, L.Z.; Kiwi-Minsker, L. Hyper-Cross-Linked Polystyrene as a Stabilizing Medium for Small Metal Clusters. Molecules 2021, 26, 5294. [Google Scholar] [CrossRef] [PubMed]
- Grigorev, M.E.; Mikhailov, S.P.; Bykov, A.V.; Sidorov, A.I.; Tiamina, I.Y.; Vasiliev, A.L.; Nikoshvili, L.Z.; Matveeva, V.G.; Meneghetti, S.M.P.; Sulman, M.G. Mono-and Bimetallic (Ru-Co) Polymeric Catalysts for Levulinic Acid Hydrogenation. Catal. Today 2021, 378, 167–175. [Google Scholar] [CrossRef]
- Stepacheva, A.A.; Markova, M.E.; Bykov, A.V.; Sidorov, A.I.; Sulman, M.G.; Matveeva, V.G.; Sulman, E.M. Ni catalyst synthesized by hydrothermal deposition on the polymeric matrix in the supercritical deoxygenation of fatty acids. React. Kinet. Catal. Lett. 2018, 125, 213–226. [Google Scholar] [CrossRef]
- Stepacheva, A.A.; Markova, M.E.; Monzharenko, M.A.; Matveeva, V.G.; Sulman, M.G. Polymer-based bifunctional catalysts for anthracene hydrocracking in the medium of supercritical propanol-2. Catal. Today 2021, 378, 158–166. [Google Scholar] [CrossRef]
- Grebennikova, O.V.; Mikhailova, A.N.; Molchanov, V.P.; Sulman, A.M.; Doluda, V.Y.; Matveeva, V.G. Polymeric supports for enzymes immobilization in synthesis of biologically active compounds. ChemChemTech 2021, 64, 67–72. [Google Scholar] [CrossRef]
- Cueto-Díaz, E.J.; Castro-Muñiz, A.; Suárez-García, F.; Gálvez-Martínez, S.; Torquemada-Vico, M.C.; Valles-González, M.P.; Mateo-Martí, E. APTES-Based Silica Nanoparticles as a Potential Modifier for the Selective Sequestration of CO2 Gas Molecules. Nanomaterials 2021, 11, 2893. [Google Scholar] [CrossRef]
- Smith, E.A.; Chen, W. How to prevent the loss of surface functionality derived from aminosilanes. Langmuir 2008, 24, 12405–12409. [Google Scholar] [CrossRef]
- Ayu Lestari, R.; Elma, M.; AtikaRampun, E.L.; Sumardi, A.; Paramitha, A.; Lestari Eka, A.; Rabiah, S.; Assyaifi, Z.L.; Satriaji, G. Functionalization of Si-C Using TEOS (Tetra Ethyl Ortho Silica) as Precursor and Organic Catalyst. E3S Web Conf. 2020, 148, 07008. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodrigues-Reinoso, F.; Rouquerol, J.; Sing, K.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Logofatu, C.; Negrila, C.-C.; Ghita, R.; Ungureanu, F.; Cotirlan, C.; Ghica, C.; Manea, A.S.; Lazarescu, M.F. Study of SiO2/Si Interface by Surface Techniques. In Crystalline Silicon—Properties and Uses; Basu, S., Ed.; InTech: Rijeka, Croatia, 2011; pp. 23–42. [Google Scholar]
- Ren, S.; Guo, Y.; Zhao, L.; Ma, X.; Xiao, Y.; Yu, Y.; Liu, Y.; Zhao, X.; Wang, Z. The preparation of tridymite crystal by chemical processing. Phase Transit. 2008, 81, 395–402. [Google Scholar] [CrossRef]
- Wen, X.; Su, Y.; Liu, G.; Muller, A.J.; Kumar, S.K.; Wang, D. Direct Relationship between Dispersion and Crystallization Behavior in Poly(ethylene oxide)/Poly(ethylene glycol)-g-Silica Nanocomposites. Macromolecules 2021, 54, 1870–1880. [Google Scholar] [CrossRef]
- Lan, C.-H.; Sun, Y.-M. Dispersion, crystallization behavior, and mechanical properties of poly(3-hydroxybutyrate) nanocomposites with various silica nanoparticles: Effect of surface modifiers. J. Polym. Res. 2018, 25, 121. [Google Scholar] [CrossRef]
- Siot, A.; Longuet, C.; Léger, R.; Otazaghine, B.; Ienny, P.; Caro-Bretelle, A.-S.; Azema, N. Correlation between process and silica dispersion/distribution into composite: Impact on mechanical properties and Weibull statistical analysis. Polym. Test. 2018, 70, 92–101. [Google Scholar] [CrossRef]
- Cordero-Lanzac, T.; Palos, R.; Hita, I.; Arandes, J.M.; Rodriguez-Mirasol, J.; Cordero, T.; Bilbao, J.; Castano, P. Revealing the pathways of catalyst deactivation by coke during the hydrodeoxygenation of raw bio-oil. Appl. Catal. B Environ. 2018, 239, 513–524. [Google Scholar] [CrossRef]
- Zhang, J.G.; Asakura, H.; van Rijn, J.; Yang, J.; Duchesne, P.; Zhang, B.; Chen, X.; Zhang, P.; Saeys, M.; Yan, N. Highly efficient, NiAu-catalyzed hydrogenolysis of lignin into phenolic chemicals. Green Chem. 2014, 16, 2432–2437. [Google Scholar] [CrossRef]
- De, S.; Zhang, J.; Luque, R.; Yan, N. Ni-based bimetallic heterogeneous catalysts for energy and environmental applications. Energy Environ. Sci. 2016, 9, 3314–3347. [Google Scholar] [CrossRef]
- Hu, J.; Zhao, M.; Jiang, B.; Wu, S.; Lu, P. Catalytic Transfer Hydrogenolysis of Native Lignin to Monomeric Phenols over a Ni–Pd Bimetallic Catalyst. Energy Fuels 2020, 34, 9754–9762. [Google Scholar] [CrossRef]
- Lu, X.; Guo, H.; Wang, D.; Xiu, P.; Qin, Y.; Chen, J.; Xu, C.; Gu, X. A Review on Catalytic Conversion of Lignin into High-Value Chemicals over Ni-Based Catalysts. Biomass Convers. Biorefin. 2021, 1–43. [Google Scholar] [CrossRef]
- Li, F.; France, L.J.; Cai, Z.; Li, Y.; Liu, S.; Lou, H.; Long, J.; Li, X. Catalytic transfer hydrogenation of butyl levulinate to gamma-valerolactone over zirconium phosphates with adjustable lewis and bronsted acid sites. Appl. Catal. B Environ. 2017, 214, 67–77. [Google Scholar] [CrossRef]
- Dong, L.; Lin, L.; Han, X.; Si, X.; Liu, X.; Guo, Y.; Lu, F.; Rudić, S.; Parker, S.F.; Yang, S.; et al. Breaking the limit of lignin monomer production via cleavage of interunit carbon–carbon linkages. Chem 2019, 5, 1521–1536. [Google Scholar] [CrossRef]
- Ma, H.; Li, H.; Zhao, W.; Li, L.; Liu, S.; Long, J.; Li, X. Selective depolymerization of lignin catalyzed by nickel supported on zirconium phosphate. Green Chem. 2019, 21, 658–668. [Google Scholar] [CrossRef]
Sample | Vpores, cm3/g | SBET, m2/g | t-Plot Surface Area, m2/g |
---|---|---|---|
HPS (MN-100) | 0.52 ± 0.01 | 814 ± 1 | External 208 ± 1 Micropore 696 ± 1 |
SiO2@HPS as synthesized | 0.40 ± 0.01 | 611 ± 1 | External 197 ± 1 Micropore 435 ± 1 |
SiO2@HPS after heating | 0.65 ± 0.01 | 951 ± 1 | External 380 ± 1 Micropore 597 ± 1 |
Sample | Elemental Composition, wt.% | ||||
---|---|---|---|---|---|
C | O | N | Si | Cl | |
SiO2@HPS as-synthesized | 86.2 ± 0.3 | 6.9 ± 0.1 | 3.1 ± 0.1 | 2.8 ± 0.1 | 1.0 ± 0.1 |
SiO2@HPS after heating | 83.8 ± 0.3 | 8.7 ± 0.1 | 0.6 ± 0.1 | 6.0 ± 0.1 | 0.8 ± 0.1 |
Sample | SBET, m2/g | Metal Compound * | Dm, nm | Total Acidity, μmol/g |
---|---|---|---|---|
Ni-SiO2@HPS | 584 ± 1 | NiO | 17 ± 5 | 965 ± 5 |
Ni-SiO2@HPS after reaction | 521 ± 1 | NiO, Ni | 21 ± 6 | 782 ± 5 |
Ru-SiO2@HPS | 736 ± 1 | RuO2 | 5 ± 3 | 903 ± 5 |
Ru-SiO2@HPS after reaction | 694 ± 1 | RuO2, Ru | 5 ± 3 | 726 ± 5 |
Ni-Ru-SiO2@HPS | 628 ± 1 | NiO, RuO2 | 7 ± 4 | 942 ± 5 |
Ni-Ru-SiO2@HPS after reaction | 589 ± 1 | NiO, RuO2, Ni, Ru | 7 ± 4 | 788 ± 5 |
Sample | Lignin Conversion, wt.% | Monophenol Yield, wt.% |
---|---|---|
Ni-SiO2@HPS | 75.4 ± 0.2 | 24.8 ± 0.1 |
Ru-SiO2@HPS | 78.3 ± 0.1 | 17.8 ± 0.2 |
Ni-Ru-SiO2@HPS | 85.7 ± 0.3 | 32.7 ± 0.2 |
Ni-Ru-SiO2 | 54.3 ± 0.2 | 15.3 ± 0.2 |
Ni-Ru-HPS | 37.4 ± 0.1 | 9.7 ± 0.1 |
Number of Cycles | Lignin Conversion, wt.% | Monophenol Yield, wt.% | Element Concentration *, wt.% | Dm, nm | Total Acidity, μmol/g | |
---|---|---|---|---|---|---|
Si | Metal | |||||
1 | 85.7 ± 0.3 | 32.7 ± 0.2 | 9.8 | 4.5 (Ni), 4.7 (Ru) | 7 ± 4 | 942 ± 5 |
2 | 85.6 ± 0.2 | 32.5 ± 0.3 | 9.8 | 4.5 (Ni), 4.7 (Ru) | 7 ± 4 | 788 ± 5 |
3 | 85.8 ± 0.3 | 32.6 ± 0.2 | 9.8 | 4.5 (Ni), 4.7 (Ru) | 7 ± 4 | 782 ± 5 |
5 | 85.5 ± 0.2 | 32.6 ± 0.3 | 9.8 | 4.5 (Ni), 4.7 (Ru) | 7 ± 4 | 766 ± 5 |
8 | 85.2 ± 0.3 | 32.5 ± 0.2 | 9.8 | 4.5 (Ni), 4.7 (Ru) | 7 ± 4 | 735 ± 5 |
10 | 83.6 ± 0.2 | 31.3 ± 0.3 | 9.8 | 4.5 (Ni), 4.7 (Ru) | 8 ± 4 | 702 ± 5 |
Entry | Sample | Lignin Conversion, wt.% | Monophenol Yield, wt.% |
---|---|---|---|
Temperature, °C Process conditions: solvent—isopropanol; hydrogen pressure—2.0 MPa; lignin/catalyst ratio—2000 g/g; stirring rate—2000 rpm; process duration—3 h. | |||
1 | 260 | 85.7 ± 0.3 | 32.7 ± 0.2 |
2 | 270 | 88.1 ± 0.2 | 35.2 ± 0.1 |
3 | 280 | 92.8 ± 0.1 | 39.8 ± 0.2 |
4 | 290 | 94.4 ± 0.2 | 34.7 ± 0.1 |
5 | 300 | 95.2 ± 0.1 | 29.4 ± 0.2 |
Hydrogen pressure, MPa Process conditions: solvent—isopropanol; temperature—280 °C; lignin/catalyst ratio—2000 g/g; stirring rate—2000 rpm; process duration—3 h. | |||
6 | 2.0 | 92.8 ± 0.1 | 39.8 ± 0.2 |
7 | 3.0 | 94.5 ± 0.2 | 42.1 ± 0.1 |
8 | 4.0 | 96.2 ± 0.1 | 37.4 ± 0.2 |
9 | 5.0 | 97.8 ± 0.2 | 34.8 ± 0.1 |
Catalyst loading, g (lignin)/g (catalyst) Process conditions: solvent—isopropanol; temperature—280 °C; hydrogen pressure—3.0 MPa; stirring rate—2000 rpm; process duration—3 h. | |||
10 | 1000 | 97.8 ± 0.2 | 29.4 ± 0.1 |
11 | 1500 | 96.3 ± 0.1 | 34.9 ± 0.2 |
12 | 2000 | 94.5 ± 0.2 | 42.1 ± 0.1 |
Sample | Element Concentration *, wt.% | |
---|---|---|
Si | Metal | |
Ni-SiO2@HPS | 9.8 | 4.6 |
Ru-SiO2@HPS | 9.8 | 4.3 |
Ni-Ru-SiO2@HPS | 9.8 | 4.5 (Ni), 4.7 (Ru) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stepacheva, A.A.; Manaenkov, O.V.; Markova, M.E.; Sidorov, A.I.; Bykov, A.V.; Sulman, M.G.; Kiwi-Minsker, L. Lignin Hydrogenolysis over Bimetallic Ni–Ru Nanoparticles Supported on SiO2@HPS. Catalysts 2023, 13, 856. https://doi.org/10.3390/catal13050856
Stepacheva AA, Manaenkov OV, Markova ME, Sidorov AI, Bykov AV, Sulman MG, Kiwi-Minsker L. Lignin Hydrogenolysis over Bimetallic Ni–Ru Nanoparticles Supported on SiO2@HPS. Catalysts. 2023; 13(5):856. https://doi.org/10.3390/catal13050856
Chicago/Turabian StyleStepacheva, Antonina A., Oleg V. Manaenkov, Mariia E. Markova, Alexander I. Sidorov, Alexsey V. Bykov, Mikhail G. Sulman, and Lioubov Kiwi-Minsker. 2023. "Lignin Hydrogenolysis over Bimetallic Ni–Ru Nanoparticles Supported on SiO2@HPS" Catalysts 13, no. 5: 856. https://doi.org/10.3390/catal13050856
APA StyleStepacheva, A. A., Manaenkov, O. V., Markova, M. E., Sidorov, A. I., Bykov, A. V., Sulman, M. G., & Kiwi-Minsker, L. (2023). Lignin Hydrogenolysis over Bimetallic Ni–Ru Nanoparticles Supported on SiO2@HPS. Catalysts, 13(5), 856. https://doi.org/10.3390/catal13050856