Facile Synthesis of Silicon-Based Materials Modified Using Zinc(Ⅱ) 2-Bromoacetic as Heterogeneous Catalyst for the Fixation of CO2 into Cyclic Carbonates
Abstract
:1. Introduction
2. Discussion
2.1. Structure Characterization of Si-ZnBA-n Catalyst
2.2. Screening of Catalyst
2.3. The Optimization of Reaction Parameters for CO2 Cycloaddition Reaction
2.4. Recyclability of Si-ZnBA-1 Catalyst
2.5. Cycloaddition of CO2 with Various Epoxides
2.6. Plausible Mechanism
2.7. Calculation of Activation Energy
3. Experimental
3.1. Material
3.2. Synthesis of Catalyst
3.3. Characterization
3.4. Catalytic Test for CO2 Cycloaddition to Epoxides
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Martinez, J.; Fernandez-Baeza, J.; Sanchez-Barba, L.F.; Castro-Osma, J.A.; Lara-Sanchez, A.; Otero, A. An efficient and versatile catalyst for carbon dioxide fixation into cyclic carbonates. ChemSusChem 2017, 10, 2886–2890. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wu, L.P.; Jackstell, R.; Beller, M. Using carbon dioxide as a building block in organic synthesis. Nat. Commun. 2016, 47, 5933–5947. [Google Scholar] [CrossRef] [Green Version]
- Song, Q.W.; Zhou, Z.H.; He, L.N. Efficient, selective and sustainable catalysis of carbon dioxide. Green Chem. 2017, 19, 3707–3728. [Google Scholar] [CrossRef]
- Liu, M.S.; Lan, J.W.; Liang, L.; Sun, J.M.; Arai, M. Heterogeneous catalytic conversion of CO2 and epoxides to cyclic carbonates over multifunctional tris-triazine terminal-linked ionic liquids. J. Catal. 2017, 347, 138–147. [Google Scholar] [CrossRef]
- Yang, C.K.; Chen, Y.L.; Wang, X.; Sun, J.M. Polymeric ionic liquid with carboxyl anchored on mesoporous silica for efficient fixation of carbon dioxide. J. Colloid Interface Sci. 2022, 618, 44–55. [Google Scholar] [CrossRef]
- Cheng, B.; Deng, L.; Jiang, J.; Jiang, H. Catalytic cycloaddition of CO2 to epoxides by the synergistic effect of acidity and alkalinity in a functionalized biochar. Chem. Eng. J. 2022, 442, 136265. [Google Scholar] [CrossRef]
- Saptal, V.B.; Bhanage, B.M. Current advances in heterogeneous catalysts for the synthesis of cyclic carbonates from carbon dioxide. Curr. Opin. Green Sust. 2017, 3, 1–10. [Google Scholar] [CrossRef]
- Peng, H.; Zhang, Q.; Wang, Y.; Gao, H.; Zhang, N.; Zhou, J.; Zhang, L.; Yang, Q.; Yang, Q.; Lu, Z. Atomically dispersed lewis acid sites meet poly(ionic liquid)s networks for solvent-free and co-catalyst-free conversion of CO2 to cyclic carbonates. Appl. Catal. B-Environ. 2022, 313, 121463. [Google Scholar] [CrossRef]
- Caterina, D.; Paolo, S.; Matteo, C.; Gabriele, M.; Emma, G. The CO2 cycloaddition to epoxides and aziridines promoted by porphyrin-based catalysts. Inorg. Chim. Acta 2022, 540, 121065. [Google Scholar]
- Yue, Z.; Hu, T.; Zhao, W.; Su, H.; Li, W.; Chen, Z.; Chen, Y.; Li, S.; Wang, L.; Liu, Y.; et al. Triazinyl-imidazole polyamide network as an efficient multi-hydrogen bond donor catalyst for additive-free CO2 cycloaddition. Appl. Catal. A-Gen. 2022, 643, 118748. [Google Scholar] [CrossRef]
- Yue, S.; Wang, P.P.; Hao, X.J.; Zang, S.L. Dual amino-functionalized ionic liquids as efficient catalysts for carbonate synthesis from carbon dioxide and epoxide under solvent and cocatalyst-free conditions. J. CO2 Util. 2017, 21, 238–246. [Google Scholar] [CrossRef]
- Jiang, X.; Gou, F.L.; Fu, X.Y.; Jing, H.W. Ionic liquids-functionalized porphyrins as bifunctional catalysts for cycloaddition of carbon dioxide to epoxides. J. CO2 Util. 2016, 16, 264–271. [Google Scholar] [CrossRef]
- Yang, C.K.; Chen, Y.L.; Qu, Y.; Zhang, J.X.; Sun, J.M. Phase-controllable polymerized ionic liquids for CO2 fixation into cyclic carbonates. Sustain. Energ. Fuels 2021, 5, 1026–1033. [Google Scholar] [CrossRef]
- Ma, R.; He, L.N.; Zhou, Y.B. An efficient and recyclable tetraoxo-coordinated zinc catalyst for the cycloaddition of epoxides with carbon dioxide at atmospheric pressure. Green Chem. 2016, 18, 226–231. [Google Scholar] [CrossRef]
- Hatazawa, M.; Nakabayashi, K.; Ohkoshi, S.; Nozaki, K. In situ generation of Co-III-salen complexes for copolymerization of propylene oxide and CO2. Chem. Eur. J. 2016, 22, 13677–13681. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.Y.; Zhang, P.; Shi, Y.L.; Liu, D.H. Dual-ligand complex catalysts for the cycloaddition of propylene oxide and carbon dioxide. J. Mol. Struct. 2017, 1150, 329–334. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Qin, S.J.; Zhen, L.; Han, H.Y.; Hui, L.; Chang, T. Coupling reaction of epoxide and carbon dioxide catalysed by alkali metal salts in the presence of beta-cyclodextrin derivatives. World J. Eng. 2017, 14, 159–164. [Google Scholar]
- Liu, X.; Zhang, S.; Song, Q.W.; Liu, X.F.; Ma, R.; He, L.N. Cooperative calcium-based catalysis with 1,8-Diazabicyclo[5.4.0]-undec-7-ene for the cycloaddition of epoxides with CO2 at atmospheric pressure. Green Chem. 2016, 47, 2871–2876. [Google Scholar] [CrossRef]
- Li, P.Z.; Wang, X.J.; Liu, J.; Lim, J.S.; Zou, R.Q.; Zhao, Y.L. A triazole-containing metal-organic framework as a highly effective and substrate size-dependent catalyst for CO2 conversion. J. Am. Chem. Soc. 2016, 138, 142–2145. [Google Scholar] [CrossRef]
- Babu, R.; Kathalikkattil, A.C.; Roshan, R.; Tharun, J.; Kim, D.W.; Park, D.W. Dual-porous metal organic framework for room temperature CO2 fixation via cyclic carbonate synthesis. Green Chem. 2016, 18, 232–242. [Google Scholar] [CrossRef]
- Ahmad, A.; Khan, S.; Tariq, S.; Luque, R.; Verpoort, F. Self-sacrifice MOFs for heterogeneous catalysis: Synthesis mechanisms andfuture perspectives. Mater. Today 2022, 55, 137–169. [Google Scholar] [CrossRef]
- Zhi, Y.F.; Shao, P.P.; Feng, X.; Xia, H.; Zhang, Y.M.; Shi, Z.; Mu, Y.; Liu, X.M. Covalent organic frameworks: Efficient, metal-free, heterogeneous organocatalysts for chemical fixation of CO2 under mild conditions. J. Mater. Chem. A 2018, 6, 374–382. [Google Scholar] [CrossRef]
- Xu, K.K.; Dai, Y.H.; Ye, B.F.; Wang, M.H. Two dimensional covalent organic framework materials for chemical fixation of carbon dioxide: Excellent repeatability and high selectivity. Dalton T. 2017, 46, 10780–10785. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Aguila, B.; Perman, J.; Nguyen, N.; Ma, S. Flexibility matters: Cooperative active sites in covalent organic framework and threaded ionic polymer. J. Am. Chem. Soc. 2016, 138, 15790–15796. [Google Scholar] [CrossRef]
- Song, X.H.; Wu, Y.F.; Pan, D.H.; Cai, F.F.; Xiao, G.M. Carbon nitride as efficient catalyst for chemical fixation of CO2 into chloropropene carbonate: Promotion effect of Cl in epichlorohydrin. Mol. Catal. 2017, 436, 228–236. [Google Scholar] [CrossRef]
- Wang, Y.; Guan, X.; Chen, F.Y.; Zhu, S.S.; Ye, Y.S.; Peng, H.Y.; Zhou, X.P.; Xie, X.L.; Mai, Y.W. Noncovalent immobilization of pyrene-terminated hyperbranched triazole-based polymeric ionic liquid onto graphene for highly active and recyclable catalysis of CO2/epoxide cycloaddition. Catal. Sci. Technol. 2017, 7, 4173–4181. [Google Scholar] [CrossRef]
- Wang, X.; Yang, L.; Fu, G.; Chen, Y.L.; Yang, C.K.; Sun, J.M. Experimental and theoretical investigation for the cycloaddition of carbon dioxide to epoxides catalyzed by potassium and boron co-doped carbon nitride. J. Colloid Interface Sci. 2022, 609, 523–534. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Liu, J.J.; Huang, R.C.; Zhang, M.; Xiao, M.; Meng, Y.Z.; Sun, L.Y. Covalently immobilized ionic liquids on single layer nanosheets for heterogeneous catalysis applications. Dalton T. 2017, 46, 13126–13134. [Google Scholar] [CrossRef]
- Motokura, K.; Itagaki, S.; Iwasawa, Y.; Miyaji, A.; Baba, T. Silica-supported aminopyridinium halides for catalytic transformations of epoxides to cyclic carbonates under atmospheric pressure of carbon dioxide. Green Chem. 2009, 11, 1876–1880. [Google Scholar] [CrossRef]
- Li, Y.X.; Zhang, X.; Lan, J.W.; Li, D.Z.; Wang, Z.J.; Xu, P.; Sun, J.M. A High-performance zinc-organic framework with accessible open metal sites catalyzes CO2 and styrene oxide into styrene carbonate under mild conditions. ACS Sustain. Chem. Eng. 2021, 9, 2795–2803. [Google Scholar] [CrossRef]
- Yang, C.K.; Liu, M.S.; Zhang, J.X.; Wang, X.; Jiang, Y.C.; Sun, J.M. Facile synthesis of DBU-based ionic liquids cooperated with ZnI2 as catalysts for efficient cycloaddition of CO2 to epoxides under mild and solvent-free conditions. Mol. Catal. 2018, 450, 39–45. [Google Scholar] [CrossRef]
- Valdemar-Aguilar, C.M.; Manisekaran, R.; Avila, R.; Compean-Garcia, V.D.; Nava-Mendoza, R.; Lopez-Marin, L.M. Pathogen associated molecular pattern-decorated mesoporous silica-A colloidal model for studying bacterial-host cell interactions. Biointerphases 2020, 15, 041003. [Google Scholar] [CrossRef]
- Cheng, W.G.; Chen, X.; Sun, J.; Wang, J.Q.; Zhang, S.J. SBA-15 supported triazolium-based ionic liquids as highly efficient and recyclable catalysts for fixation of CO2 with epoxides. Catal. Today 2013, 200, 117–124. [Google Scholar] [CrossRef]
- Sadeghzadeh, S.M. A heteropolyacid-based ionic liquid immobilized onto fibrous nano-silica as an efficient catalyst for the synthesis of cyclic carbonate from carbon dioxide and epoxides. Green Chem. 2015, 17, 3059–3066. [Google Scholar] [CrossRef]
- Liu, M.S.; Liu, B.; Liang, L.; Wang, F.X.; Shi, L.; Sun, J.M. Design of bifunctional NH3I-Zn/SBA-15 single-component heterogeneous catalyst for chemical fixation of carbon dioxide to cyclic carbonates. J. Mol. Catal. A-Chem. 2016, 418, 78–85. [Google Scholar] [CrossRef]
- Zhong, S.F.; Liang, L.; Liu, M.S.; Liu, B.; Sun, J.M. DMF and mesoporous Zn/SBA-15 as synergistic catalysts for the cycloaddition of CO2 to propylene oxide. J. CO2 Util. 2015, 9, 58–65. [Google Scholar] [CrossRef]
- Sanjeevi, J.; Li, H.; Tao, L.; Li, C.; Liu, L.; Chen, J.; Yang, Q. Cationic Zn-porphyrin immobilized in mesoporous silicas as bifunctional catalyst for CO2 cycloaddition reaction under co-catalyst free conditions. ACS Sustain. Chem. Eng. 2018, 6, 9237–9245. [Google Scholar]
- Zhang, W.; Wang, H.; Han, J.; Song, Z. Multifunctional mesoporous materials with acid–base frameworks and ordered channels filled with ionic liquid: Synthesis, characterization and catalytic performance of Ti–Zr-SBA-15-IL. Appl. Surf. Sci. 2012, 258, 6158–6168. [Google Scholar] [CrossRef]
- Bayer, U.; Liang, Y.; Anwander, R. Cerium pyrazolates grafted onto mesoporous silica SBA-15: Reversible CO2 uptake and catalytic cycloaddition of epoxides and carbon dioxide. Inorg. Chem. 2020, 59, 14605–14614. [Google Scholar] [CrossRef]
- Hao, Y.J.; Xu, L.X.; Lei, J.Y.; Cui, F.; Cui, T.Y.; Qu, C.Y. Self-catalytic synthesis of ZnO nanoparticles@SiO2 composites with controllable fluorescence property. Chem. Lett. 2017, 46, 426–429. [Google Scholar] [CrossRef]
- Liu, M.S.; Zhao, P.; Ping, R.; Liu, F.; Liu, F.; Gao, J.; Sun, J.M. Squaramide-derived framework modified periodic mesoporous organosilica: A robust bifunctional platform for CO2 adsorption and cooperative conversion. Chem. Eng. J. 2020, 399, 125682. [Google Scholar] [CrossRef]
- Borah, P.; Mondal, J.; Zhao, Y.L. Urea-pyridine bridged periodic mesoporous organosilica: An efficient hydrogen-bond donating heterogeneous organocatalyst for Henry reaction. J. Catal. 2015, 330, 129–134. [Google Scholar] [CrossRef]
- Zhang, X.; Shao, C.L.; Zhang, Z.Y.; Li, J.H.; Zhang, P.; Zhang, M.Y.; Mu, J.B.; Guo, Z.C.; Liang, P.P.; Liu, Y.C. In situ generation of well-dispersed ZnO quantum dots on electrospun silica nanotubes with high photocatalytic activity. ACS Appl. Mater. Inter. 2012, 4, 785–790. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.N.; Wang, S.B.; Ren, H.; Hou, Y.D.; Wang, X.C. Photocatalytic reduction of CO2 by graphitic carbon nitride polymers derived from urea and barbituric acid. Appl. Catal. B-Environ. 2015, 179, 1–8. [Google Scholar] [CrossRef]
- Li, T.T.; He, Y.M.; Lin, H.J.; Cai, J.; Dong, L.Z.; Wang, X.X.; Luo, M.F.; Zhao, L.H.; Yi, X.D.; Weng, W.Z. Synthesis, characterization and photocatalytic activity of visible-light plasmonic photocatalyst AgBr-SmVO4. Appl. Catal. B-Environ. 2013, 138, 95–103. [Google Scholar] [CrossRef]
- Su, Q.; Qi, Y.; Yao, X.; Cheng, W.; Dong, L.; Chen, S.; Zhang, S. Ionic liquids tailored and confined by one-step assembly with mesoporous silica for boosting the catalytic conversion of CO2 into cyclic carbonates. Green Chem. 2018, 20, 3232–3241. [Google Scholar] [CrossRef]
- Wang, X.Z.; Wang, Z.; Jiang, X.S.; Zhang, M.; Wang, Y.F.; Lv, J.X.; He, G.; Sun, Z.Q. In-Situ deposition and growth of Cu2ZnSnS4 nanocrystals on TiO2 nanorod arrays for enhanced photoelectrochemical performance. J. Electrochem. Soc. 2017, 164, H863–H871. [Google Scholar] [CrossRef]
- Wang, X.; Yang, L.; Chen, Y.L.; Yang, C.K.; Lan, J.W.; Sun, J.M. Metal-Free triazine-incorporated organosilica framework catalyst for the cycloaddition of CO2 to epoxide under solvent-free conditions. Ind. Eng. Chem. Res. 2020, 59, 21018–21027. [Google Scholar] [CrossRef]
- Liu, M.S.; Gao, K.Q.; Liang, L.; Wang, F.X.; Shi, L.; Sheng, L.; Sun, J.M. Insights into hydrogen bond donor promoted fixation of carbon dioxide with epoxides catalyzed by ionic liquids. Phys. Chem. Chem. Phys. 2015, 17, 5959–5965. [Google Scholar] [CrossRef]
- Jang, M.W.; Kim, B.K. Low driving voltage holographic polymer dispersed liquid crystals with chemically incorporated graphene oxide. J. Mater. Chem. 2011, 21, 19226–19232. [Google Scholar] [CrossRef]
- Gao, X.X.; Liu, M.S.; Lan, J.W.; Liang, L.; Zhang, X.; Sun, J.M. Lewis acid-base bifunctional crystals with a three-dimensional framework for selective coupling of CO2 and epoxides under mild and solvent-free conditions. Cryst. Growth Des. 2017, 17, 51–57. [Google Scholar] [CrossRef]
- Zhong, H.; Gao, J.; Sa, R.; Yang, S.; Wu, Z.; Wang, R. Carbon dioxide conversion upgraded by host-guest cooperation between nitrogen-rich covalent organic framework and imidazolium-based ionic polymer. ChemSusChem 2020, 13, 6323–6329. [Google Scholar]
- Zhang, X.; Geng, W.; Yue, C.; Wu, W.; Xiao, L. Multilayered supported ionic liquids bearing a carboxyl group: Highly efficient catalysts for chemical fixation of carbon dioxide. J. Environ. Chem. Eng. 2016, 4, 2565–2572. [Google Scholar] [CrossRef]
- Zhang, D.D.; Xu, G.R.; Li, C.P.; Bai, J. Controllable synthesis of pompon-like carbon nitride with abundant intrinsic defect sites for the cycloaddition reaction of CO2 with epichlorohydrin. Mater. Lett. 2020, 277, 128365. [Google Scholar] [CrossRef]
- Xu, J.; Gan, Y.L.; Hu, P.; Zheng, H.; Xue, B. Comprehensive insight into the support effect of graphitic carbon nitride for zinc halides on the catalytic transformation of CO2 into cyclic carbonates. Catal. Sci. Technol. 2018, 8, 5582–5593. [Google Scholar] [CrossRef]
- Zhu, J.J.; Diao, T.T.; Wang, W.Y.; Xu, X.L.; Sun, X.Y.; Carabineiro, S.A.C.; Zhao, Z. Boron doped graphitic carbon nitride with acid-base duality for cycloaddition of carbon dioxide to epoxide under solvent-free condition. Appl. Catal. B 2017, 219, 92–100. [Google Scholar] [CrossRef]
- Xue, Z.M.; Liu, F.J.; Jiang, J.Y.; Wang, J.F.; Mu, T.C. Scalable and super-stable exfoliation of graphitic carbon nitride in biomass-derived c-valerolactone: Enhanced catalytic activity for the alcoholysis and cycloaddition of epoxides with CO2. Green Chem. 2017, 19, 5041–5045. [Google Scholar] [CrossRef]
- Zhu, X.R.; Hu, Y.H.; Zhou, J.S. Influence of ionic liquids microenvironment on the coupling reaction of epoxide and carbon dioxide: DFT and MD. J. Mol. Liquids 2020, 308, 113069. [Google Scholar] [CrossRef]
- Lagarde, F.; Srour, H.; Berthet, N.; Oueslati, N.; Bousquet, B.; Nunes, A.; Martinez, A.; Dufaud, V. Investigating the role of SBA-15 silica on the activity of quaternary ammonium halides in the coupling of epoxides and CO2. J. CO2 Util. 2019, 34, 34–39. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Zou, B.; Yang, G.P.; Yu, B.; Hu, C.W. Melaminebased mesoporous organic polymers as metal-free heterogeneous catalyst: Effect of hydroxyl on CO2 capture and conversion. J. CO2 Util. 2017, 22, 9–14. [Google Scholar] [CrossRef]
- Gao, Z.Y.; Zhang, X.; Xu, P.; Sun, J.M. Dual hydrogen-bond donor group-containing Zn-MOF for the highly effective coupling of CO2 and epoxides under mild and solvent-free conditions, Inorg. Chem. Front. 2020, 7, 1995–2005. [Google Scholar] [CrossRef]
- Zhang, M.; Chu, B.X.; Li, G.Y.; Xiao, J.Z.; Zhang, H.W.; Peng, Y.J.; Li, B.; Xie, P.; Fan, M.G.; Dong, L.H. Triethanolaminemodified mesoporous SBA-15: Facile one-pot synthesis and its catalytic application for cycloaddition of CO2 with epoxides under mild conditions. Micropor. Mesopor. Mater. 2019, 274, 363–372. [Google Scholar] [CrossRef]
- Michael, N.; Riccardo, P. Mechanism of cyclic carbonate synthesis from epoxides and CO2. Angew. Chem. Int. Ed. 2009, 121, 2990–2992. [Google Scholar]
- Yang, C.K.; Chen, Y.L.; Xu, P.; Yang, L.; Zhang, J.X.; Sun, J.M. Facile synthesis of zinc halide-based ionic liquid for efficient conversion of carbon dioxide to cyclic carbonates. Mol. Catal. 2020, 480, 110637. [Google Scholar] [CrossRef]
- Chen, Y.P.; Chen, C.; Li, X.; Feng, N.J.; Wang, L.; Wan, H.; Guan, G.F. Hydroxyl-ionic liquid functionalized metalloporphyrin as an efficient heterogeneous catalyst for cooperative cycloaddition of CO2 with epoxides. J. CO2 Util. 2022, 62, 102107. [Google Scholar] [CrossRef]
Sample | C (wt.%) | N (wt.%) | H (wt.%) | C/N Molar Ratio | Zn (wt.%, XPS) | Zn (wt.%, ICP) |
---|---|---|---|---|---|---|
ZnBA@SiO2-1 | 13.98 | 4.95 | 3.84 | 2.82 | 1.95 | 3.3 |
ZnBA@SiO2-2 | 12.15 | 4.21 | 3.31 | 2.88 | 1.48 | 2.3 |
ZnBA@SiO2-3 | 10.80 | 3.63 | 2.90 | 2.97 | 1.21 | 1.8 |
Sample | Specific Surface Area (m2 g−1) | Pore Volume (cm3 g−1) | Pore Size (nm) |
---|---|---|---|
Si-ZnBA-1 | 120.4 | 0.52 | 17.4 |
Si-ZnBA-2 | 149.5 | 0.25 | 6.8 |
Si-ZnBA-3 | 103.4 | 0.44 | 17.2 |
Entry | Catalyst | Cocatalyst | Reaction Results b | |
---|---|---|---|---|
Yield/% | Selectivity/% | |||
1 | Si-ZnBA-1 | — | trace | — |
2 | Si-ZnBA-2 | — | trace | — |
3 | Si-ZnBA-3 | — | trace | — |
4 | Si-ZnBA-1 | KI | 97 | ≥99 |
5 | Si-ZnBA-1 | KBr | 24 | ≥99 |
6 | Si-ZnBA-1 | KCl | 11 | ≥99 |
7 | Si-ZnBA-1 | TBAI | 67 | ≥99 |
8 | Si-ZnBA-1 | TBAB | 64 | ≥99 |
9 | Si-ZnBA-2 | KI | 71 | ≥99 |
10 | Si-ZnBA-3 | KI | 59 | ≥99 |
11 | — | KI | 30 | ≥98 |
12 c | Si-ZnBA-1 | KI | 99 | ≥98 |
13 d | Si-ZnBA-1 | KI | 99 | ≥98 |
Entry | C (wt.%) | N (wt.%) | H (wt.%) | C/N Molar Ratio |
---|---|---|---|---|
Fresh | 13.98 | 4.95 | 3.84 | 2.82 |
Reused | 18.93 | 4.03 | 3.93 | 4.70 |
Entry | Epoxides | Product | Yield (%) b | Selectivity (%) b |
---|---|---|---|---|
1 | 97 | 99 | ||
2 | 96 | 99 | ||
3 | 98 | 98 | ||
4 | 41 | 95 | ||
5 | 23 | 95 |
Entry | Catalyst | Cocatalyst | Epoxide | Solvent | T (°C) | P (MPa) | t (h) | Yield (%) | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | Pompon-like CN | – | PO | DMF | 140 | 2 | 4 | 98 | [54] |
2 | ZnCl2/CN | – | PO | DMF | 140 | 2 | 6 | 52 | [55] |
3 | B doped CN/SBA-15 | – | SO | – | 130 | 3 | 24 | 95 | [56] |
4 | Exfoliation bulk CN | – | – | 120 | 3 | 20 | 97 | [57] | |
5 | IL[HCPImBr] | – | PO | – | 120 | 1.5 | 2 | 97 | [58] |
6 | K,B codoped C3N4 | Bu4NBr | PO | – | 110 | 2 | 6 | 87 | [27] |
7 | Triethylamine/SBA-15 | – | PO | MEK | 110 | 2 | 5 | 93 | [59] |
8 | Mesoporous organic polymers | KI | PO | – | 100 | 1 | 24 | 55 | [60] |
9 | SiTIOF | Bu4NBr | PO | – | 90 | 2 | 5 | 95 | [48] |
10 | MOF[Zn3(L)3(H2L)] | Bu4NBr | PO | – | 80 | 1 | 5 | 99 | [61] |
11 | ultra-large pore SBA-15 silica | Bu4NI | ECH | – | 80 | 1 | 3 | 71 | [62] |
12 | Si-ZnBA-1 | KI | PO | – | 130 | 2 | 5 | 97 | This work |
T (°C) | Kinetic Equation | R2 | kobs (min−1) | 1/T (K−1) |
---|---|---|---|---|
100 | y = 0.0011x − 0.0517 | 0.8841 | 0.0011 | 0.00268 |
110 | y = 0.0039x − 0.2517 | 0.7673 | 0.0039 | 0.00261 |
120 | y = 0.0049x − 0.2593 | 0.9124 | 0.0049 | 0.00255 |
130 | y = 0.0172x − 1.2758 | 0.7103 | 0.0172 | 0.00248 |
140 | y = 0.0185x − 1.2470 | 0.7769 | 0.0185 | 0.00242 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Ma, X.; Li, M.; Yang, T.; Zhao, X. Facile Synthesis of Silicon-Based Materials Modified Using Zinc(Ⅱ) 2-Bromoacetic as Heterogeneous Catalyst for the Fixation of CO2 into Cyclic Carbonates. Catalysts 2023, 13, 1116. https://doi.org/10.3390/catal13071116
Yang C, Ma X, Li M, Yang T, Zhao X. Facile Synthesis of Silicon-Based Materials Modified Using Zinc(Ⅱ) 2-Bromoacetic as Heterogeneous Catalyst for the Fixation of CO2 into Cyclic Carbonates. Catalysts. 2023; 13(7):1116. https://doi.org/10.3390/catal13071116
Chicago/Turabian StyleYang, Chaokun, Xiangning Ma, Meng Li, Tuantuan Yang, and Xin Zhao. 2023. "Facile Synthesis of Silicon-Based Materials Modified Using Zinc(Ⅱ) 2-Bromoacetic as Heterogeneous Catalyst for the Fixation of CO2 into Cyclic Carbonates" Catalysts 13, no. 7: 1116. https://doi.org/10.3390/catal13071116
APA StyleYang, C., Ma, X., Li, M., Yang, T., & Zhao, X. (2023). Facile Synthesis of Silicon-Based Materials Modified Using Zinc(Ⅱ) 2-Bromoacetic as Heterogeneous Catalyst for the Fixation of CO2 into Cyclic Carbonates. Catalysts, 13(7), 1116. https://doi.org/10.3390/catal13071116