The Improved para-Selective C(sp2)-H Borylation of Anisole Derivatives Enabled by Bulky Lewis Acid
Abstract
:1. Introduction
2. Results and Discussion
3. Material and Methods
3.1. Materials
3.2. Methods
3.2.1. Preparation of Lewis Acid (Pentafluorophenyl Borate ArFB-1 to ArFB-3) [44]
3.2.2. Preparation of 2-alkyl Anisole Derivatives (3c to 3e) [45]
3.2.3. Preparation of 2-Methoxy-N,N-Dimethylbenzamide (3m) [46]
3.2.4. Preparation of 2-(2-Methoxylphenyl)-1,3-dioxolane (3p) [47]
3.2.5. Preparation of 2-heterocycle Substituted Anisole (3r and 3s) [48]
3.2.6. Preparation of Para-Selective C-H Borylation of Anisole Derivatives (1a to 1x)
3.2.7. Preparation of PED4 Inhibitor [41]
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jeong, S.; Joo, J.-M. Transoition-Metal-Catalyzed Divergent C-H Functionalization of Five-Membered Heteroarenes. Acc. Chem. Res. 2021, 54, 4158. [Google Scholar] [CrossRef] [PubMed]
- Niu, B.; Yang, K.; Lawrence, B.; Ge, H. Transient Ligand-Enabled Transition Metal-Catayzed C-H Functionalization. ChemSusChem 2019, 13, 2955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Britton, L.; Docherty, J.H.; Nichol, G.S.; Dominey, A.P.; Thomas, S.P. Iron-Catalysed C(sp2)-H Borylation with Expanded Functional Group Tolerance. Chin. J. Chem. 2022, 40, 2875–2881. [Google Scholar] [CrossRef]
- Sauermann, N.; Meyer, T.H.; Ackermann, L. Electrochemical Cobalt-Catalyzed C-H Activation. Chem. Eur. J. 2018, 24, 16209. [Google Scholar] [CrossRef]
- Nakanowatari, S.; Müller, T.; Oliveira, J.; Ackermann, L. Bifurcated Nickel-Catalyzed Functionalizations: Heteroarene C-H Activation with Allenes. Angew. Chem. Int. Ed. 2017, 56, 15891. [Google Scholar] [CrossRef]
- Haito, A.; Yamaguchi, M.; Chatani, M. Ru3(CO)12-Catalyzed Carbonylation of C-H Bonds by Triazole-Directed C-H Activation. Asian J. Org. Chem. 2018, 7, 1315. [Google Scholar] [CrossRef]
- Vásquez-Céspedes, S.; Wang, X.M.; Glorius, F. Plausible Rh(V) Intermediates in Catalytic C-H Activation Reaction. ACS Catal. 2018, 8, 242. [Google Scholar] [CrossRef]
- Yang, X.; Jiang, M.X.; Zhou, T.; Han, Y.Q.; Xu, Y.T.; Zhang, K.; Shi, B.F. Pd(II)-Catalyzed Enantioselective Arylation of Unbiased Methylene C(sp3)-H Bonds Enabled by a 3,3’-F2-BINOL Ligand. Chem. Commun. 2021, 57, 5562–5565. [Google Scholar]
- Zhang, Y.F.; Wu, B.; Shi, Z.J. Ir-Catalyzed C-H Amidation of Aldehydes with Stoichiometric/Catalytic Directing Group. Chem. Eur. J. 2016, 22, 17808. [Google Scholar] [CrossRef]
- Marcinkowski, M.D.; Darby, M.T.; Liu, J.L.; Wimble, J.M.; Lucci, F.R.; Lee, S.; Michaelides, A.; Flytzani-Stephanopoulos, M.; Stamatakis, M.; Sykes, E. Pt/Cu Single-Atom Alloys as Coke-Resistant Catalysts for Efficent C-H Activation. Nat. Chem. 2016, 8, 531. [Google Scholar]
- Kalyani, D.; Deprez, N.R.; Desai, L.V.; Sanford, M.S. Oxidative C−H Activation/C−C Bond Forming Reactions: Synthetic Scope and Mechanistic Insights. J. Am. Chem. Soc. 2005, 127, 7330. [Google Scholar] [CrossRef]
- Kawamorita, S.; Murakami, R.; Iwai, T.; Sawamura, M. Synthesis of Primary and Secondary Alkylboronates through Site-Selectivity C(sp3)-H Activation with Silica-Supported Monophosphine-Ir Catalysts. J. Am. Chem. Soc. 2013, 135, 2947. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Zhao, H.; Li, Y.; Gao, Q.; Ke, Z.; Xu, S. Chiral Bidentate Boryl Ligand Enabled Iridium-Catalyzed Asymmetric C(sp2)-H Borylation of Diarylmethylamines. J. Am. Chem. Soc. 2019, 141, 5334. [Google Scholar] [CrossRef]
- Daugulis, O.; Roane, J.; Tran, L.D. Bidentate, Monoanionic Auxiliary-Directed Functionalization of Carbon-Hydrogen Bonds. Acc. Chem. Res. 2015, 48, 1053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, N.M.; Sharma, S.; Park, J.; Han, S.; Kim, I.S. Recent Advances in Catalytic C(sp2)-H Allylation Reactions. ACS Catal. 2017, 7, 2821. [Google Scholar] [CrossRef]
- Liao, G.; Zhou, T.; Yao, Q.-J.; Shi, B.-F. Recent Advacnes in the Synthesis of Axially Chiral Biaryl via Transition Metal-Catalyzed Asymmetric C-H Functionalization. Chem. Commun. 2019, 55, 8514. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, T.; Ikemoto, H.; Matsunaga, S.; Kanai, M. A Cationic High-Valent Cp*CoIII Complex for the Catalytic Generation of Nucleophilic Organometallic Species: Directed C-H Bond Activation. Angew. Chem. Int. Ed. 2013, 52, 2207. [Google Scholar] [CrossRef]
- Chen, X.; Goodhue, C.E.; Yu, J.-Q. Palladium-Catalyzed Alkylation of sp2 and sp3 C-H Bonds with Methylboroxine and Alkylboronic Acids: Two Distinct C-H Activation Pathways. J. Am. Chem. Soc. 2006, 128, 12634. [Google Scholar] [CrossRef]
- Shabashov, D.; Daugulis, O. Auxiliary-Assisted Palladium-Catalyzed Arylation and Alkylation of sp2 and sp3 Carbon-Hydrogen Bonds. J. Am. Chem. Soc. 2010, 132, 3965. [Google Scholar] [CrossRef] [Green Version]
- Cho, J.Y.; Tse, M.K.; Holmes, D.; Maleczka, R.E., Jr.; Smith, M.R., III. Remarkably Selective Iridium Catalysts for the Elaboration of Aromatic C-H Bonds. Science 2002, 295, 305. [Google Scholar] [CrossRef] [Green Version]
- Ishiyama, T.; Miyaura, N.; Hartiwg, J.F. Mild Iridium-Catalyzed Borylation of Arenes. High Turnover Numbers, Room Temperature Reactions, and Isolation of a Potential Intermediate. J. Am. Chem. Soc. 2002, 124, 390. [Google Scholar] [CrossRef]
- Tajuddin, H.; Harrisson, P.; Bitterlich, B.; Collings, J.C.; Sim, N.; Batsanov, A.S.; Cheung, M.S.; Kawamorita, S.; Maxwell, A.C.; Shukla, L.; et al. Iridium-Catalyzed C-H Borylation of Quinolines and Unsymmetrical 1,2-Disubstituted Benzenes: Insights into Steric and Electronic Effects on Selectivity. Chem. Sci. 2012, 3, 3505. [Google Scholar]
- Ishiyama, T.; Takagi, J.; Yonekawa, Y.; Hartwig, J.F.; Miyaura, N. Iridium-Catalyzed Direct Borylation of Five-Membered Heteroarenes by Bis(pinacolato)diboron: Regioselective, Stoichiometric, and Room Temperature Reactions. Adv. Synth. Catal. 2003, 345, 1103. [Google Scholar] [CrossRef]
- Ishiyama, T.; Nobuta, Y.; Hartwig, J.F.; Miyaura, N. Room Temperature Borylation of Arenes and Heteroarenes using Stoichiometric Amounts of Pinacolborane Catalyzed by Iridium Complexes in An Inert Solvent. Chem. Commun. 2003, 2924. [Google Scholar] [CrossRef]
- Saito, Y.; Segawa, Y.; Itami, K. Para-C-H Borylation of Benzene Derivatives by a Bulky Iridium. Catalyst. J. Am. Chem. Soc. 2015, 137, 5193. [Google Scholar] [CrossRef]
- Saito, Y.; Yamanoue, K.; Segawa, Y.; Itami., K. Selective Transformmation of Strychnine and 1,2-Disubstituted Benzenes by C-H Borylation. Chem 2020, 6, 985. [Google Scholar] [CrossRef]
- Yang, L.; Semba, K.; Nakao, Y. Para-Selective C-H Borylation of (Hetero) Arenes by Cooperative Iridium/Aluminum Catalysis. Angew. Chem. Int. Ed. 2017, 56, 4853. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Hartwig, J.F. Rhodium-Catalyzed Intermolecular C-H Sililation of Arenes with High Steric Control. Science 2014, 343, 853. [Google Scholar] [CrossRef]
- Bastidas, J.R.; Chhabra, A.; Feng, Y.; Oleskey, T.J.; Smith, M.R.; Maleczka, R.E. Steric Shielding Effects Induced by Intramolecular C-H-O Hydrogen Bonding: Remote Borylation Directed by Bpin Group. ACS Catal. 2022, 12, 2694. [Google Scholar] [CrossRef]
- Kuninobu, Y.; Ida, H.; Nishi, M.; Kanai, M. A Meta-Selective C–H Borylation Directed by A Secondary Interaction between Ligand and Substrate. Nat. Chem. 2015, 7, 712. [Google Scholar]
- Lu, X.; Yoshigoe, Y.; Ida, H.; Nishi, M.; Kanai, M.; Kuninobu, Y. Hydrogen Bond-Accelerated meta-selective C-H Borylation of Aromatic Compounds and Expression of Functional Group and Substrate Specificites. ACS Catal. 2019, 9, 1705. [Google Scholar] [CrossRef]
- Davis, H.J.; Mihai, M.T.; Phipps, R.J. Ion Pair-Directed Regiocontrol in Transition-Metal Catalysis: A Meta-Selective C-H Borylation of Aromatic Quaternary Ammonium Salts. J. Am. Chem. Soc. 2016, 138, 12759. [Google Scholar] [CrossRef] [PubMed]
- Golding, W.A.; Pearce-Higgins, R.; Phipps, R.J. Site-Selective Cross-Coupling of Remote Chorides Enabled by Electrostatically-Directed Palladium Catalysis. J. Am. Chem. Soc. 2018, 140, 13570. [Google Scholar] [CrossRef] [Green Version]
- Mihai, M.T.; Genov, G.R.; Phipps, R.J. Access to the Meta Position of Arenes Through Transition Metal Catalyzed C-H Bond Functionalization: A focus on metals other than palladium. Chem. Soc. Rev. 2018, 47, 149. [Google Scholar] [CrossRef] [Green Version]
- Chattopadhyay, B.; Dannatt, J.E.; Andujar-De Sanctis, I.L.; Gore, K.A.; Maleczka, E.E.; Singleton, D.A.; Smith, M.R., III. Ir-Catalyzed ortho-Borylation of Phenols Directed by Substrate-Ligand Electrosatic Interactions: A Combined Experimental/in Silico Strategy for Optimizing Weak Interactions. J. Am. Chem. Soc. 2017, 139, 7864. [Google Scholar] [CrossRef] [Green Version]
- Hoque, M.E.; Bisht, R.; Haldar, C. Chattopadhyay, B. Noncovalent Interactions in Ir-Catalyzed C–H Activation: L-Shaped Ligand for Para-Selective Borylation of Aromatic Esters. J. Am. Chem. Soc. 2017, 139, 7745. [Google Scholar] [CrossRef] [PubMed]
- Bisht, R.; Haldar, C.; Hassan, M.; Hoque, M.E.; Chaturvadi, J.; Chattopadhyay, B. Metal-Catalyzed C-H Bond Activation and Borylation. Chem. Soc. Rev. 2022, 51, 5042. [Google Scholar] [CrossRef]
- Li, H.L.; Kuninobu, Y.; Kanai, M. Lewis Acid-Base Interaction-Controlled ortho-Selective C-H Borylation of Aryl Sulfides. Angew. Chem. Int. Ed. 2017, 56, 1495. [Google Scholar] [CrossRef]
- Li, H.L.; Kanai, M.; Kuninobu, Y. Iridium/Bipyridine-Catalyzed ortho-Selective C-H Boylation of Phenol and Aniline Derivatives. Org. Lett. 2017, 19, 5944. [Google Scholar] [CrossRef]
- Wojcieszyk, M.; Knuutila, L.; Kroyan, Y.; Balsemao, M.; Tripathi, R.; Keskivali, J.; Karvo, A.; Santasalo-Aarnio, A.; Blomstedt, O.; Larmi, L. Performance of Anisole and Isobutanol as Gasoline Bio-Blendstocks for Spark Ignition Engines. Sustainability 2021, 13, 8729. [Google Scholar] [CrossRef]
- Prieto, M.; Zurita, E.; Rosa, E.; Munoz, L.; Lloyd-Williams, P.; Giralt, E. Arylboronic Acids and Arylpinacolboronate Esters in Suzuki Coupling Reactions Involving Indoles. Partner Role Swapping and Heterocycle Protection. J. Org. Chem. 2004, 69, 6812. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, P.L.; Bremer, R.E.; Gillette, S.J.; Cho, H.; Nespi, M.; Mamo, S.; Zhang, C.; Artis, D.R.; Lee, B.; Zuckerman, R.L. Bicyclic Heteroaryl PDE4B Inhibitors. WO2006026754, 22 February 2005. [Google Scholar]
- Ajvazi, N.; Stavber, S. Alcohols in direct carbon-carbon and carbon-heteroatom bond-forming reactions: Recent advances. Arkivoc 2018, 2018, 288. [Google Scholar] [CrossRef] [Green Version]
- Adamczyk, A.; Jakubczyk, M.; Jankowski, P.; Sporzynski, A.; Urbánski, P.M. Influence of the Diol Structure on the Lewis Acidity of Phenylboronates. J. Phys. Org. Chem. 2013, 26, 415. [Google Scholar] [CrossRef]
- Kinoshita, H.; Yaguchi, K.; Tohjima, T.; Miura, K. Diisobutylaluminum Hydrode Pomoted Cyclization of Silylated 1,3-dien-5-ynes: Application to Total Synthesis of A 20-Norabietane Derivative. Tetrahedron Lett. 2017, 58, 1607. [Google Scholar] [CrossRef]
- Chen, J.; Lim, J.W.; Ong, D.Y.; Chiba, S. Iterative Addition of Carbon Nucleophiles to N,N-dialkyl Carboxamides for Synthesis of α-Tertiary Amines. Chem. Sci. 2022, 13, 99. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Bao, S.H.; Yang, J.G. Synthesis of A Novel Multi-SO3H Functionalized Strong Bronsted Acidic Ionic Liquid and its Catalytic Activities for Acetalization. Chin. Sci. Bull. 2009, 54, 3958. [Google Scholar] [CrossRef]
- Rao, G.A.; Periasamy, M. Cycloaddition of Enamine and Iminium Ion Intermediates Formed in the Reaction of N-Arylpyrrolidines with T-HYDRO. Synth. Lett. 2015, 26, 2231. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.-Y.; Yu, R.-M.; Li, J.-P.; Yang, D.-F.; Pang, Q.; Li, H.-L. The Improved para-Selective C(sp2)-H Borylation of Anisole Derivatives Enabled by Bulky Lewis Acid. Catalysts 2023, 13, 1193. https://doi.org/10.3390/catal13081193
Li D-Y, Yu R-M, Li J-P, Yang D-F, Pang Q, Li H-L. The Improved para-Selective C(sp2)-H Borylation of Anisole Derivatives Enabled by Bulky Lewis Acid. Catalysts. 2023; 13(8):1193. https://doi.org/10.3390/catal13081193
Chicago/Turabian StyleLi, Dai-Yu, Rui-Mu Yu, Jin-Ping Li, Deng-Feng Yang, Qi Pang, and Hong-Liang Li. 2023. "The Improved para-Selective C(sp2)-H Borylation of Anisole Derivatives Enabled by Bulky Lewis Acid" Catalysts 13, no. 8: 1193. https://doi.org/10.3390/catal13081193
APA StyleLi, D.-Y., Yu, R.-M., Li, J.-P., Yang, D.-F., Pang, Q., & Li, H.-L. (2023). The Improved para-Selective C(sp2)-H Borylation of Anisole Derivatives Enabled by Bulky Lewis Acid. Catalysts, 13(8), 1193. https://doi.org/10.3390/catal13081193