Effect of Different Zinc Species on Mn-Ce/CuX Catalyst for Low-Temperature NH3-SCR Reaction: Comparison of ZnCl2, Zn(NO3)2, ZnSO4 and ZnCO3
Abstract
:1. Introduction
2. Results and Discussions
2.1. Denitration Performance
2.2. Structural Properties
2.3. XPS Analysis
2.4. Acidity and Redox Property
2.5. In Situ DRIFTS Studies
2.5.1. NO + O2 Reacting with Pre-Adsorbed NH3 Species
2.5.2. NH3 Reacting with Pre-Adsorbed NO + O2 Species
3. Discussion
4. Materials and Methods
4.1. Catalysts Preparation
4.2. Catalytic Activity Tests
4.3. Catalyst Characterization
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Anenberg, S.C.; Miller, J.; Minjares, R.; Du, L.; Henze, D.K.; Lacey, F.; Malley, C.S.; Emberson, L.; Franco, V.; Klimont, Z.; et al. Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets. Nature 2017, 545, 467–471. [Google Scholar] [CrossRef]
- Wuebbles, D.J. Atmosphere. Nitrous oxide: No laughing matter. Science 2009, 326, 56–57. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Dong, T.; Yang, S.; Chen, H.; Yang, Z.; Liu, W.; He, C.; Wu, P.; Tian, J.; Peng, Y.; et al. Intra-crystalline mesoporous zeolite encapsulation-derived thermally robust metal nanocatalyst in deep oxidation of light alkanes. Nat. Commun. 2022, 13, 295. [Google Scholar] [CrossRef] [PubMed]
- Inomata, Y.; Kubota, H.; Hata, S.; Kiyonaga, E.; Morita, K.; Yoshida, K.; Sakaguchi, N.; Toyao, T.; Shimizu, K.I.; Ishikawa, S.; et al. Bulk tungsten-substituted vanadium oxide for low-temperature NOx removal in the presence of water. Nat. Commun. 2021, 12, 557. [Google Scholar] [CrossRef] [PubMed]
- Song, I.; Lee, H.; Jeon, S.W.; Ibrahim, I.A.M.; Kim, J.; Byun, Y.; Koh, D.J.; Han, J.W.; Kim, D.H. Simple physical mixing of zeolite prevents sulfur deactivation of vanadia catalysts for NOx removal. Nat. Commun. 2021, 12, 901. [Google Scholar] [CrossRef]
- Guo, Y.; Xu, X.; Gao, H.; Zheng, Y.; Luo, L.; Zhu, T. Ca-poisoning effect on V2O5-WO3/TiO2 and V2O5-WO3-CeO2/TiO2 catalysts with different vanadium loading. Catalysts 2021, 11, 445. [Google Scholar] [CrossRef]
- Negri, C.; Selleri, T.; Borfecchia, E.; Martini, A.; Lomachenko, K.A.; Janssens, T.V.W.; Cutini, M.; Bordiga, S.; Berlier, G. Structure and reactivity of oxygen-bridged diamino dicopper(II) complexes in Cu-ion-exchanged Chabazite catalyst for NH3-mediated selective catalytic reduction. J. Am. Chem. Soc. 2020, 142, 15884–15896. [Google Scholar] [CrossRef]
- Hu, W.; Gramigni, F.; Nasello, N.D.; Usberti, N.; Iacobone, U.; Liu, S.; Nova, I.; Gao, X.; Tronconi, E. Dynamic binuclear CuII sites in the reduction half-cycle of low-temperature NH3–SCR over Cu-CHA catalysts. ACS Catal. 2022, 12, 5263–5274. [Google Scholar] [CrossRef]
- Wang, H.; Jia, J.; Liu, S.; Chen, H.; Wei, Y.; Wang, Z.; Zheng, L.; Wang, Z.; Zhang, R. Highly efficient NO abatement over Cu-ZSM-5 with special nanosheet features. Environ. Sci. Technol. 2021, 55, 5422–5434. [Google Scholar] [CrossRef]
- Hu, W.; Iacobone, U.; Gramigni, F.; Zhang, Y.; Wang, X.; Liu, S.; Zheng, C.; Nova, I.; Gao, X.; Tronconi, E. Unraveling the hydrolysis of Z2Cu2+ to ZCu2+(OH)− and its consequences for the low-temperature selective catalytic reduction of NO on Cu-CHA catalysts. ACS Catal. 2021, 11, 11616–11625. [Google Scholar] [CrossRef]
- Abdul Nasir, J.; Guan, J.; Keal, T.W.; Desmoutier, A.W.; Lu, Y.; Beale, A.M.; Catlow, C.R.A.; Sokol, A.A. Influence of solvent on selective catalytic reduction of nitrogen oxides with ammonia over Cu-CHA zeolite. J. Am. Chem. Soc. 2023, 145, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Tarach, K.A.; Jabłońska, M.; Pyra, K.; Liebau, M.; Reiprich, B.; Gläser, R.; Góra-Marek, K. Effect of zeolite topology on NH3-SCR activity and stability of Cu-exchanged zeolites. Appl. Catal. B 2021, 284, 119752. [Google Scholar] [CrossRef]
- Chen, L.; Ren, S.; Xing, X.; Yang, J.; Yang, J.; Wang, M.; Chen, Z.; Liu, Q. Low-cost CuX catalyst from blast furnace slag waste for low-temperature NH3-SCR: Nature of Cu active sites and influence of SO2/H2O. ACS Sustain. Chem. Eng. 2022, 10, 7739–7751. [Google Scholar] [CrossRef]
- Chen, L.; Ren, S.; Jiang, Y.; Liu, L.; Wang, M.; Yang, J.; Chen, Z.; Liu, W.; Liu, Q. Effect of Mn and Ce oxides on low-temperature NH3-SCR performance over blast furnace slag-derived zeolite X supported catalysts. Fuel 2022, 320, 123969. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Y.; Wu, Z. The poisoning mechanisms of different zinc species on a ceria-based NH3-SCR catalyst and the co-effects of zinc and gas-phase sulfur/chlorine species. J. Colloid Interface Sci. 2020, 566, 153–162. [Google Scholar] [CrossRef]
- Su, Z.; Ren, S.; Yang, J.; Yao, L.; Zhou, Y.; Chen, Z.; Zhang, T. Poisoning effect comparison of ZnCl2 and ZnSO4 on Mn-Ce/AC catalyst for low-temperature SCR of NO. ChemistrySelect 2020, 5, 9226–9234. [Google Scholar] [CrossRef]
- Zhou, Y.; Su, B.; Ren, S.; Chen, Z.; Su, Z.; Yang, J.; Chen, L.; Wang, M. Nb2O5-modified Mn-Ce/AC catalyst with high ZnCl2 and SO2 tolerance for low-temperature NH3-SCR of NO. J. Environ. Chem. Eng. 2021, 9, 106323. [Google Scholar] [CrossRef]
- Chen, L.; Ren, S.; Peng, H.; Yang, J.; Wang, M.; Chen, Z.; Liu, Q. Low-cost Mn-Ce/CuX catalyst from blast furnace slag waste for efficient low-temperature NH3-SCR. Appl. Catal. A-Gen. 2022, 646, 118868. [Google Scholar] [CrossRef]
- Usberti, N.; Gramigni, F.; Nasello, N.D.; Iacobone, U.; Selleri, T.; Hu, W.; Liu, S.; Gao, X.; Nova, I.; Tronconi, E. An experimental and modelling study of the reactivity of adsorbed NH3 in the low temperature NH3-SCR reduction half-cycle over a Cu-CHA catalyst. Appl. Catal. B 2020, 279, 119397. [Google Scholar] [CrossRef]
- Guo, A.; Xie, K.; Lei, H.; Rizzotto, V.; Chen, L.; Fu, M.; Chen, P.; Peng, Y.; Ye, D.; Simon, U. Inhibition effect of phosphorus poisoning on the dynamics and redox of Cu active sites in a Cu-SSZ-13 NH3-SCR catalyst for NOx reduction. Environ. Sci. Technol. 2021, 55, 12619–12629. [Google Scholar] [CrossRef]
- Chen, P.; Rauch, D.; Weide, P.; Schönebaum, S.; Simons, T.; Muhler, M.; Moos, R.; Simon, U. The effect of Cu and Fe cations on NH3-supported proton transport in DeNOx-SCR zeolite catalysts. Catal. Sci. Technol. 2016, 6, 3362–3366. [Google Scholar] [CrossRef]
- Li, G.; Mao, D.; Chao, M.; Li, G.; Yu, J.; Guo, X. Significantly enhanced Pb resistance of a Co-modified Mn–Ce–Ox/TiO2 catalyst for low-temperature NH3-SCR of NOx. Catal. Sci. Technol. 2020, 10, 6368–6377. [Google Scholar] [CrossRef]
- Chen, L.; Ren, S.; Xing, X.; Yang, J.; Li, X.; Wang, M.; Chen, Z.; Liu, Q. Poisoning mechanism of KCl, K2O and SO2 on Mn-Ce/CuX catalyst for low-temperature SCR of NO with NH3. Process Saf. Environ. Prot. 2022, 167, 609–619. [Google Scholar] [CrossRef]
- Fang, X.; Liu, Y.; Cheng, Y.; Cen, W. Mechanism of Ce-modified birnessite-MnO2 in promoting SO2 poisoning resistance for low-temperature NH3-SCR. ACS Catal. 2021, 11, 4125–4135. [Google Scholar] [CrossRef]
- Yang, W.; Su, Z.a.; Xu, Z.; Yang, W.; Peng, Y.; Li, J. Comparative study of α-, β-, γ- and δ-MnO2 on toluene oxidation: Oxygen vacancies and reaction intermediates. Appl. Catal. B 2020, 260, 118150. [Google Scholar] [CrossRef]
- Fan, H.; Fan, J.; Chang, T.; Wang, X.; Wang, X.; Huang, Y.; Zhang, Y.; Shen, Z. Low-temperature Fe–MnO2 nanotube catalysts for the selective catalytic reduction of NOx with NH3. Catal. Sci. Technol. 2021, 11, 6553–6563. [Google Scholar] [CrossRef]
- Yan, R.; Lin, S.; Li, Y.; Liu, W.; Mi, Y.; Tang, C.; Wang, L.; Wu, P.; Peng, H. Novel shielding and synergy effects of Mn-Ce oxides confined in mesoporous zeolite for low temperature selective catalytic reduction of NOx with enhanced SO2/H2O tolerance. J. Hazard. Mater. 2020, 396, 122592. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, R.; Zhou, R. A new insight into active Cu2+ species properties in one-pot synthesized Cu-SSZ-13 catalysts for NOx reduction by NH3. ChemCatChem 2018, 10, 5182–5189. [Google Scholar] [CrossRef]
- Chen, B.; Xu, R.; Zhang, R.; Liu, N. Economical way to synthesize SSZ-13 with abundant ion-exchanged Cu+ for an extraordinary performance in selective catalytic reduction (SCR) of NOx by ammonia. Environ. Sci. Technol. 2014, 48, 13909–13916. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, L.; Li, L.; Liu, L.; Cao, Y.; Dong, X.; Gao, F.; Deng, Y.; Tang, C.; Chen, Z. Investigation of the structure, acidity, and catalytic performance of CuO/Ti0.95Ce0.05O2 catalyst for the selective catalytic reduction of NO by NH3 at low temperature. Appl. Catal. B 2014, 150–151, 315–329. [Google Scholar] [CrossRef]
- Kang, K.; Yao, X.; Huang, Y.; Cao, J.; Rong, J.; Zhao, W.; Luo, W.; Chen, Y. Insights into the co-doping effect of Fe3+ and Zr4+ on the anti-K performance of CeTiOx catalyst for NH3-SCR reaction. J. Hazard. Mater. 2021, 416, 125821. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Wang, Z.; Liu, Y.; Guo, G.; Dai, H.; Cui, S.; Deng, J. Support promotion effect on the SO2 and K+ co-poisoning resistance of MnO2/TiO2 for NH3-SCR of NO. J. Hazard. Mater. 2021, 416, 126117. [Google Scholar] [CrossRef]
- Yu, Y.; Geng, M.; Li, J.; Wang, J.; Wei, D.; He, C. The different effect of SO2 on Zn-poisoned commercial V2O5-WO3/TiO2 catalysts with varied Zn loading. Chem. Phys. Impact 2023, 6, 100150. [Google Scholar] [CrossRef]
- Xue, H.; Guo, X.; Meng, T.; Mao, D.; Ma, Z. Poisoning effect of K with respect to Cu/ZSM-5 used for NO reduction. Colloid Interface Sci. Commun. 2021, 44, 100465. [Google Scholar] [CrossRef]
- Negri, C.; Hammershoi, P.S.; Janssens, T.V.W.; Beato, P.; Berlier, G.; Bordiga, S. Investigating the low temperature formation of Cu(II)-(N,O) species on Cu-CHA zeolites for the selective catalytic reduction of NOx. Chemistry 2018, 24, 12044–12053. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Guo, R.; Shi, X.; Liu, X.; Qin, H.; Liu, Y.; Duan, C.; Guo, D.; Pan, W. The superior performance of CoMnOx catalyst with ball-flowerlike structure for low-temperature selective catalytic reduction of NOx by NH3. Chem. Eng. J. 2020, 381, 122753. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, H.; Zhang, T.; Li, J.; Chen, J.; Peng, Y.; Li, J. Revealing the synergistic deactivation mechanism of hydrothermal aging and SO2 poisoning on Cu/SSZ-13 under SCR condition. Environ. Sci. Technol. 2022, 56, 1917–1926. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Y.; Wu, Z. Highly active NbOPO4 supported Cu-Ce catalyst for NH3-SCR reaction with superior sulfur resistance. Chem. Eng. J. 2020, 382, 122941. [Google Scholar] [CrossRef]
- Stanciulescu, M.; Bulsink, P.; Caravaggio, G.; Nossova, L.; Burich, R. NH3-TPD-MS study of Ce effect on the surface of Mn- or Fe-exchanged zeolites for selective catalytic reduction of NOx by ammonia. Appl. Surf. Sci. 2014, 300, 201–207. [Google Scholar] [CrossRef]
- Zhou, X.; Huang, X.; Xie, A.; Luo, S.; Yao, C.; Li, X.; Zuo, S. V2O5-decorated Mn-Fe/attapulgite catalyst with high SO2 tolerance for SCR of NOx with NH3 at low temperature. Chem. Eng. J. 2017, 326, 1074–1085. [Google Scholar] [CrossRef]
- Li, Y.; Deng, J.; Song, W.; Liu, J.; Zhao, Z.; Gao, M.; Wei, Y.; Zhao, L. Nature of Cu species in Cu–SAPO-18 catalyst for NH3–SCR: Combination of experiments and DFT calculations. J. Phys. Chem. C 2016, 120, 14669–14680. [Google Scholar] [CrossRef]
- Yang, J.; Ren, S.; Zhou, Y.; Su, Z.; Yao, L.; Cao, J.; Jiang, L.; Hu, G.; Kong, M.; Yang, J.; et al. In situ IR comparative study on N2O formation pathways over different valence states manganese oxides catalysts during NH3–SCR of NO. Chem. Eng. J. 2020, 397, 125446. [Google Scholar] [CrossRef]
- Li, Q.; Gu, H.C.; Li, P.; Zhou, Y.H.; Liu, Y.; Qi, Z.N.; Xin, Y.; Zhang, Z.L. In situ IR studies of selective catalytic reduction of NO with NH3 on Ce-Ti amorphous oxides. Chin. J. Catal. 2014, 35, 1289. [Google Scholar] [CrossRef]
- Yang, S.; Xiong, S.; Liao, Y.; Xiao, X.; Qi, F.; Peng, Y.; Fu, Y.; Shan, W.; Li, J. Mechanism of N2O formation during the low-temperature selective catalytic reduction of NO with NH3 over Mn-Fe spinel. Environ. Sci. Technol. 2014, 48, 10354–10362. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Liu, Q.; Mossin, S.; Nielsen, D.; Kong, M.; Jiang, L.; Yang, J.; Ren, S.; Wen, J. Promotional effects of nitrogen doping on catalytic performance over manganese-containing semi-coke catalysts for the NH3-SCR at low temperatures. J. Hazard. Mater. 2020, 387, 121704. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Ren, S.; Chen, T.; Li, X.; Chen, Z.; Wang, M.; Liu, Q.; Yang, J. Effect of Different Zinc Species on Mn-Ce/CuX Catalyst for Low-Temperature NH3-SCR Reaction: Comparison of ZnCl2, Zn(NO3)2, ZnSO4 and ZnCO3. Catalysts 2023, 13, 1219. https://doi.org/10.3390/catal13081219
Chen L, Ren S, Chen T, Li X, Chen Z, Wang M, Liu Q, Yang J. Effect of Different Zinc Species on Mn-Ce/CuX Catalyst for Low-Temperature NH3-SCR Reaction: Comparison of ZnCl2, Zn(NO3)2, ZnSO4 and ZnCO3. Catalysts. 2023; 13(8):1219. https://doi.org/10.3390/catal13081219
Chicago/Turabian StyleChen, Lin, Shan Ren, Tao Chen, Xiaodi Li, Zhichao Chen, Mingming Wang, Qingcai Liu, and Jie Yang. 2023. "Effect of Different Zinc Species on Mn-Ce/CuX Catalyst for Low-Temperature NH3-SCR Reaction: Comparison of ZnCl2, Zn(NO3)2, ZnSO4 and ZnCO3" Catalysts 13, no. 8: 1219. https://doi.org/10.3390/catal13081219
APA StyleChen, L., Ren, S., Chen, T., Li, X., Chen, Z., Wang, M., Liu, Q., & Yang, J. (2023). Effect of Different Zinc Species on Mn-Ce/CuX Catalyst for Low-Temperature NH3-SCR Reaction: Comparison of ZnCl2, Zn(NO3)2, ZnSO4 and ZnCO3. Catalysts, 13(8), 1219. https://doi.org/10.3390/catal13081219