Oxide-Derived Copper Nanowire Bundles for Efficient CO2 Reduction to Multi-Carbon Products
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization and Performance of OD-Cu NWBs
2.2. Effects of Precipitation Temperature
2.3. Effects of Calcination Temperature
2.4. Effects of Per-Reduction Potential
2.5. Discussion
3. Materials and Methods
3.1. Chemicals, Reagents and Materials
3.2. Preparation of OD-Cu NWBs
3.3. Characterization and Electrochemical Measurements
3.4. Product Quantifications and Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Birdja, Y.Y.; Pérez-Gallent, E.; Figueiredo, M.C.; Göttle, A.J.; Calle-Vallejo, F.; Koper, M.T.M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 2019, 4, 732–745. [Google Scholar] [CrossRef]
- Graves, C.; Ebbesen, S.D.; Mogensen, M.; Lackner, K.S. Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy. Renew. Sust. Energ. Rev. 2011, 15, 1–23. [Google Scholar] [CrossRef]
- Olah, G.A.; Prakash, G.K.S.; Goeppert, A. Anthropogenic chemical carbon cycle for a sustainable future. J. Am. Chem. Soc. 2011, 133, 12881–12898. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.D.; Liu, J.L.; Qiao, S.Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 2016, 28, 3423–3452. [Google Scholar] [CrossRef]
- Nitopi, S.; Bertheussen, E.; Scott, S.B.; Liu, X.Y.; Engstfeld, A.K.; Horch, S.; Seger, B.; Stephens, I.E.L.; Chan, K.; Hahn, C.; et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672. [Google Scholar] [CrossRef]
- Hori, Y.; Kikuchi, K.; Suzuki, S. Production of CO and CH4 in electrochemical reduction of CO2 at metal-electrodes in aqueous hydrogencarbonate solution. Chem. Lett. 1985, 14, 1695–1698. [Google Scholar] [CrossRef]
- Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at mental electrodes in aqueous media. Electrochim. Acta 1994, 39, 1833–1839. [Google Scholar] [CrossRef]
- Wen, G.; Ren, B.; Wang, X.; Luo, D.; Dou, H.; Zheng, Y.; Gao, R.; Gostick, J.; Yu, A.; Chen, Z. Continuous CO2 electrolysis using a CO2 exsolution-induced flow cell. Nat. Energy 2022, 7, 978–988. [Google Scholar] [CrossRef]
- Huang, J.-R.; Qiu, X.-F.; Zhao, Z.-H.; Zhu, H.-L.; Liu, Y.-C.; Shi, W.; Liao, P.-Q.; Chen, X.-M. Single-product faradaic efficiency for electrocatalytic of CO2 to CO at current density larger than 1.2 A cm−2 in neutral aqueous solution by a single-atom nanozyme. Angew. Chem. Int. Ed. 2022, 61, e202210985. [Google Scholar] [CrossRef]
- Bagger, A.; Ju, W.; Varela, A.S.; Strasser, P.; Rossmeisl, J. Electrochemical CO2 reduction: A classification problem. ChemPhysChem 2017, 18, 3266–3273. [Google Scholar] [CrossRef]
- Peterson, A.A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J.K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energ. Environ. Sci. 2010, 3, 1311–1315. [Google Scholar] [CrossRef]
- Lee, S.Y.; Jung, H.; Kim, N.K.; Oh, H.S.; Min, B.K.; Hwang, Y.J. Mixed copper states in anodized Cu electrocatalyst for stable and selective ethylene production from CO2 reduction. J. Am. Chem. Soc. 2018, 140, 8681–8689. [Google Scholar] [CrossRef]
- Pang, Y.J.; Li, J.; Wang, Z.Y.; Tang, C.S.; Hsieh, P.L.; Zhuang, T.T.; Liang, Z.Q.; Zou, C.Q.; Wang, X.; De Luna, P.; et al. Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper. Nat. Catal. 2019, 2, 251–258. [Google Scholar] [CrossRef]
- Ma, W.; Xie, S.; Liu, T.; Fan, Q.; Ye, J.; Sun, F.; Jiang, Z.; Zhang, Q.; Cheng, J.; Wang, Y. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C-C coupling over fluorine-modified copper. Nat. Catal. 2020, 3, 478–487. [Google Scholar] [CrossRef]
- Al Sadat, W.I.; Archer, L.A. The O2-assisted Al/CO2 electrochemical cell: A system for CO2 capture/conversion and electric power generation. Science Advances 2016, 2, e1600968. [Google Scholar] [CrossRef] [PubMed]
- Jouny, M.; Luc, W.; Jiao, F. General techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 2018, 57, 2165–2177. [Google Scholar] [CrossRef]
- Reske, R.; Mistry, H.; Behafarid, F.; Roldan Cuenya, B.; Strasser, P. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J. Am. Chem. Soc. 2014, 136, 6978–6986. [Google Scholar] [CrossRef]
- De Luna, P.; Quintero-Bermudez, R.; Dinh, C.T.; Ross, M.B.; Bushuyev, O.S.; Todorovic, P.; Regier, T.; Kelley, S.O.; Yang, P.D.; Sargent, E.H. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 2018, 1, 103–110. [Google Scholar] [CrossRef]
- Kim, D.; Resasco, J.; Yu, Y.; Asiri, A.M.; Yang, P. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles. Nat. Commun. 2014, 5, 4948. [Google Scholar] [CrossRef]
- Grote, J.-P.; Zeradjanin, A.R.; Cherevko, S.; Savan, A.; Breitbach, B.; Ludwig, A.; Mayrhofer, K.J.J. Screening of material libraries for electrochemical CO2 reduction catalysts—Improving selectivity of Cu by mixing with Co. J. Catal. 2016, 343, 248–256. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Dinh, C.-T.; Li, J.; Ozden, A.; Golam Kibria, M.; Seifitokaldani, A.; Tan, C.-S.; Gabardo, C.M.; Luo, M.; et al. Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nat. Catal. 2020, 3, 98–106. [Google Scholar] [CrossRef]
- Feng, X.; Jiang, K.; Fan, S.; Kanan, M.W. A direct grain-boundary-activity correlation for CO electroreduction on Cu nanoparticles. ACS Central Sci. 2016, 2, 169–174. [Google Scholar] [CrossRef]
- Hori, Y.; Takahashi, I.; Koga, O.; Hoshi, N. Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J. Phys. Chem. B 2002, 106, 15–17. [Google Scholar] [CrossRef]
- Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S.E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem. Int. Ed. 2009, 48, 60–103. [Google Scholar] [CrossRef]
- Yang, H.-J.; He, S.-Y.; Tuan, H.-Y. Self-seeded growth of five-fold twinned copper nanowires: Mechanistic study, characterization, and SERS applications. Langmuir 2014, 30, 602–610. [Google Scholar] [CrossRef]
- Li, Y.; Cui, F.; Ross, M.B.; Kim, D.; Sun, Y.; Yang, P. Structure-sensitive CO2 electroreduction to hydrocarbons on ultrathin 5-fold twinned copper nanowires. Nano Lett. 2017, 17, 1312–1317. [Google Scholar] [CrossRef]
- Zhang, B.A.; Nocera, D.G. Cascade electrochemical reduction of carbon dioxide with bimetallic nanowire and foam electrodes. ChemElectroChem 2021, 8, 1918–1924. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Niu, C. Surface and length effects for aqueous electrochemical reduction of CO2 as studied over copper nanowire arrays. J. Phys. Chem. Solids 2020, 144, 109507. [Google Scholar] [CrossRef]
- Wang, Y.; Niu, C.; Zhu, Y.; He, D.; Huang, W. Tunable syngas formation from electrochemical CO2 reduction on copper nanowire arrays. ACS Appl. Energ. Mater. 2020, 3, 9841–9847. [Google Scholar] [CrossRef]
- Wang, Y.; Niu, C.; Zhu, Y. Copper-silver bimetallic nanowire arrays for electrochemical reduction of carbon dioxide. Nanomaterials 2019, 9, 173. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Cai, F.; Qi, F.; Ma, D.-K. Cu nanowire bridged Bi nanosheet arrays for efficient electrochemical CO2 reduction toward formate. J. Alloys Compd. 2020, 841, 155789. [Google Scholar] [CrossRef]
- Cui, E.; Zhang, W.; Zhou, X.; Lv, L.; Chen, W.; Zhou, L.; Mai, L. Cu2S nanoparticle-modified copper hydroxide nanowire arrays for optimized electrochemical CO2 reduction selectivity. ACS Appl. Nano Mater. 2023, 6, 9361–9368. [Google Scholar] [CrossRef]
- Ulrich, N.; Schaefer, M.; Roemer, M.; Straub, S.D.; Zhang, S.; Broetz, J.; Trautmann, C.; Scheu, C.; Etzold, B.J.M.; Toimil-Molares, M.E. Cu nanowire networks with well-defined geometrical parameters for catalytic electrochemical CO2 reduction. ACS Appl. Nano Mater. 2023, 6, 4190–4200. [Google Scholar] [CrossRef]
- Wu, Y.; Deng, X.; Yuan, H.; Yang, X.; Wang, J.; Wang, X. Engineering bimetallic copper-tin based core-shell alloy@oxide nanowire as efficient catalyst for electrochemical CO2 reduction. ChemElectroChem 2021, 8, 2701–2707. [Google Scholar] [CrossRef]
- Ma, M.; Djanashvili, K.; Smith, W.A. Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays. Angew. Chem. Int. Ed. 2016, 55, 6680–6684. [Google Scholar] [CrossRef]
- Zhu, W.; Zhao, K.; Liu, S.; Liu, M.; Peng, F.; An, P.; Qin, B.; Zhou, H.; Li, H.; He, Z. Low-overpotential selective reduction of CO2 to ethanol on electrodeposited CuxAuy nanowire arrays. J. Energy. Chem. 2019, 37, 176–182. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Y.; Li, Y.; Ahn, S.; Palmore, G.T.R.; Fu, J.; Peterson, A.A.; Sun, S. Cu nanowire-catalyzed electrochemical reduction of CO or CO2. Nanoscale 2019, 11, 12075–12079. [Google Scholar] [CrossRef]
- Conte, A.; Baron, M.; Bonacchi, S.; Antonello, S.; Aliprandi, A. Copper and silver nanowires for CO2 electroreduction. Nanoscale 2023, 15, 3693–3703. [Google Scholar] [CrossRef]
- Kim, T.; Kargar, A.; Luo, Y.; Mohammed, R.; Martinez-Loran, E.; Ganapathi, A.; Shah, P.; Fenning, D.P. Enhancing C2-C3 production from CO2 on copper electrocatalysts via a potential-dependent mesostructure. ACS Appl. Energ. Mater. 2018, 1, 1965–1972. [Google Scholar] [CrossRef]
- He, K.; Kim, K.; Villa, C.J.; Ribet, S.M.; Smeets, P.; dos Reis, R.; Voorhees, P.W.; Hu, X.; Dravid, V.P. Degeneration behavior of Cu nanowires under carbon dioxide environment: An in situ/operando study. Nano Lett. 2021, 21, 6813–6819. [Google Scholar] [CrossRef] [PubMed]
- Filipic, G.; Cvelbar, U. Copper oxide nanowires: A review of growth. Nanotechnology 2012, 23, 194001. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, K.; Hu, Z.; Duan, W.; Cheng, F.; Chen, J. Porous CuO nanowires as the anode of rechargeable Na-ion batteries. Nano Res. 2013, 7, 199–208. [Google Scholar] [CrossRef]
- Wu, M.; Dong, X.; Chen, W.; Chen, A.; Zhu, C.; Feng, G.; Li, G.; Song, Y.; Wei, W.; Sun, Y. Investigating the effect of the initial valence states of copper on CO2 electroreduction. ChemElectroChem 2021, 8, 3366–3370. [Google Scholar] [CrossRef]
- Li, G.; Zhao, Y.; Li, J.P.H.; Chen, W.; Li, S.; Dong, X.; Song, Y.; Yang, Y.; Wei, W.; Sun, Y. Insight into composition and intermediate evolutions of copper-based catalysts during gas-phase CO2 electroreduction to multicarbon oxygenates. Catalysts 2021, 11, 1502. [Google Scholar] [CrossRef]
- Zhu, C.; Song, Y.; Dong, X.; Li, G.; Chen, A.; Chen, W.; Wu, G.; Li, S.; Wei, W.; Sun, Y. Ampere-level CO2 reduction to multicarbon products over a copper gas penetration electrode. Energ. Environ. Sci. 2022, 15, 5391–5404. [Google Scholar] [CrossRef]
- Choi, C.; Kwon, S.; Cheng, T.; Xu, M.; Tieu, P.; Lee, C.; Cai, J.; Lee, H.M.; Pan, X.; Duan, X.; et al. Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4. Nat. Catal. 2020, 3, 804–812. [Google Scholar] [CrossRef]
- Fu, Y.; Xie, Q.; Wu, L.; Luo, J. Crystal facet effect induced by different pretreatment of Cu2O nanowire electrode for enhanced electrochemical CO2 reduction to C2+ products. Chinese J. Catal. 2022, 43, 1066–1073. [Google Scholar] [CrossRef]
- Fu, J.; Zhu, W.; Chen, Y.; Yin, Z.; Li, Y.; Liu, J.; Zhang, H.; Zhu, J.-J.; Sun, S. Bipyridine-assisted assembly of Au nanoparticles on Cu nanowires to enhance the electrochemical reduction of CO2. Angew. Chem. Int. Ed. 2019, 58, 14100–14103. [Google Scholar] [CrossRef]
- Ting, L.R.L.; Piqué, O.; Lim, S.Y.; Tanhaei, M.; Calle-Vallejo, F.; Yeo, B.S. Enhancing CO2 electroreduction to ethanol on copper–silver composites by opening an alternative catalytic pathway. ACS Catal. 2020, 10, 4059–4069. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Yu, J.; Hu, B.; Zhao, H.; Tsiakaras, P.; Song, S. Copper oxide derived nanostructured self-supporting Cu electrodes for electrochemical reduction of carbon dioxide. Electrochim. Acta 2019, 328, 135083. [Google Scholar] [CrossRef]
- Li, C.W.; Kanan, M.W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 2012, 134, 7231–7234. [Google Scholar] [CrossRef] [PubMed]
- Moller, T.; Scholten, F.; Thanh, T.N.; Sinev, I.; Timoshenko, J.; Wang, X.L.; Jovanov, Z.; Gliech, M.; Roldan Cuenya, B.; Varela, A.S.; et al. Electrocatalytic CO2 reduction on CuOx nanocubes: Tracking the evolution of chemical state, geometric structure, and catalytic selectivity using operando spectroscopy. Angew. Chem. Int. Ed. 2020, 59, 17974–17983. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Louisia, S.; Yu, S.; Jin, J.; Roh, I.; Chen, C.; Fonseca Guzman, M.V.; Feijóo, J.; Chen, P.-C.; Wang, H.; et al. Operando studies reveal active Cu nanograins for CO2 electroreduction. Nature 2023, 614, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Fang, M.; Wang, M.; Wang, Z.; Zhang, Z.; Zhou, H.; Dai, L.; Zhu, Y.; Jiang, L. Hydrophobic, ultrastable Cuδ+ for robust CO2 electroreduction to C2 products at ampere-current levels. J. Am. Chem. Soc. 2023, 145, 11323–11332. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, D.; Wu, M.; Huang, Y.; Gu, Y.; Wang, G.; Yang, L.; Liu, Y.; Gao, T.; Li, S.; Wei, W.; et al. Oxide-Derived Copper Nanowire Bundles for Efficient CO2 Reduction to Multi-Carbon Products. Catalysts 2023, 13, 1278. https://doi.org/10.3390/catal13091278
Xu D, Wu M, Huang Y, Gu Y, Wang G, Yang L, Liu Y, Gao T, Li S, Wei W, et al. Oxide-Derived Copper Nanowire Bundles for Efficient CO2 Reduction to Multi-Carbon Products. Catalysts. 2023; 13(9):1278. https://doi.org/10.3390/catal13091278
Chicago/Turabian StyleXu, Dong, Minfang Wu, Yan Huang, Yongzheng Gu, Guiwen Wang, Long Yang, Yongping Liu, Tengfei Gao, Shoujie Li, Wei Wei, and et al. 2023. "Oxide-Derived Copper Nanowire Bundles for Efficient CO2 Reduction to Multi-Carbon Products" Catalysts 13, no. 9: 1278. https://doi.org/10.3390/catal13091278
APA StyleXu, D., Wu, M., Huang, Y., Gu, Y., Wang, G., Yang, L., Liu, Y., Gao, T., Li, S., Wei, W., Chen, W., & Dong, X. (2023). Oxide-Derived Copper Nanowire Bundles for Efficient CO2 Reduction to Multi-Carbon Products. Catalysts, 13(9), 1278. https://doi.org/10.3390/catal13091278