Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (119)

Search Parameters:
Keywords = CO2 electroreduction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2590 KB  
Review
Development of Catalysts for the Electrochemical CO2 Reduction Reaction
by Lucija Josipovic, Deema Alyones, Shawn Roybal, Quanwen Sun, Yuhuan Fei, Meng Zhou and Hongmei Luo
Inorganics 2025, 13(8), 276; https://doi.org/10.3390/inorganics13080276 - 21 Aug 2025
Viewed by 364
Abstract
The electrochemical reduction of CO2 (eCO2RR) has emerged as a promising route for carbon-neutral fuel and chemical production, offering a sustainable alternative to fossil-based processes. This article begins with an overview of conventional CO2 conversion methods, highlighting their limitations and the [...] Read more.
The electrochemical reduction of CO2 (eCO2RR) has emerged as a promising route for carbon-neutral fuel and chemical production, offering a sustainable alternative to fossil-based processes. This article begins with an overview of conventional CO2 conversion methods, highlighting their limitations and the advantages of electrochemical approaches under ambient conditions. We focus on recent advancements in electrocatalyst development for the eCO2RR, including metal-based, Cu-based, and metal-free catalysts. Metal-based catalysts are categorized by product selectivity (formate, CO, and multicarbon products), emphasizing their structures and practical performance. Cu-based catalysts are discussed in detail due to their unique capability to produce multicarbon products, with emphasis on design strategies, material types, and performance trends. Additionally, we review emerging metal-free catalysts, including their synthesis, mechanisms, and potential applications. This article provides a comparative analysis to guide future research toward efficient, selective, and durable catalysts for CO2 electroreduction, aiming to accelerate the deployment of carbon capture and utilization technologies. Full article
Show Figures

Graphical abstract

18 pages, 6481 KB  
Article
Integrating Carbon-Coated Cu/Cu2O Nanoparticles with Biochars Enabled Efficient Capture and Electrocatalytic Reduction of CO2
by Yutong Hong, Xiaokai Zhou and Fangang Zeng
Catalysts 2025, 15(8), 767; https://doi.org/10.3390/catal15080767 - 11 Aug 2025
Viewed by 569
Abstract
Because the interfacial Cu0/Cu+ in Cu-based electrocatalyst promotes CO2 electroreduction activity, it would be highly desirable to physically separate Cu-based nanoparticles through coating shells and load them onto porous carriers. Herein, multilayered graphene-coated Cu (Cu@G) nanoparticles with tailorable core [...] Read more.
Because the interfacial Cu0/Cu+ in Cu-based electrocatalyst promotes CO2 electroreduction activity, it would be highly desirable to physically separate Cu-based nanoparticles through coating shells and load them onto porous carriers. Herein, multilayered graphene-coated Cu (Cu@G) nanoparticles with tailorable core diameters (28.2–24.2 nm) and shell thicknesses (7.8–3.0 layers) were fabricated via lased ablation in liquid. A thin Cu2O layer was confirmed between the interface of the Cu core and the graphene shell, providing an interfacial Cu0/Cu+. Cu@G cross-linked biochars (Cu@G/Bs) with developed porosity (31.8–155.9 m2/g) were synthesized. Morphology, crystalline structure, porosity, and elemental chemical states of Cu@G and Cu@G/Bs were characterized. Cu@G/Bs captured CO2 with a maximum sorption capacity of 107.03 mg/g at 0 °C. Furthermore, 95.3–97.1% capture capacity remained after 10 cycles. Cu@G/Bs exhibited the most superior performance with 40.7% of FEC2H4 and 21.7 mA/cm2 of current density at −1.08 V vs. RHE, which was 1.7 and 2.7 times higher than Cu@G. Synergistic integration of developed porosity for efficient CO2 capture and the fast charge transfer rate of interfacial Cu2O/Cu enabled this improvement. Favorable long-term stability of the phase/structure and CO2 electroreduction activity were present. This work provides new insight for integrating Cu@G and a biochar platform to efficiently capture and electro-reduce CO2. Full article
Show Figures

Graphical abstract

17 pages, 4184 KB  
Review
Molecular Modification Strategies for Enhancing CO2 Electroreduction
by Yali Wang, Leibing Chen, Guoying Li, Jing Mei, Feng Zhang, Jiaxing Lu and Huan Wang
Molecules 2025, 30(14), 3038; https://doi.org/10.3390/molecules30143038 - 20 Jul 2025
Viewed by 511
Abstract
Electrocatalytic CO2 reduction reaction (CO2RR) is a crucial technology for achieving carbon cycling and renewable energy conversion, yet it faces challenges such as complex reaction pathways, competition for intermediate adsorption, and low product selectivity. In recent years, molecular modification has [...] Read more.
Electrocatalytic CO2 reduction reaction (CO2RR) is a crucial technology for achieving carbon cycling and renewable energy conversion, yet it faces challenges such as complex reaction pathways, competition for intermediate adsorption, and low product selectivity. In recent years, molecular modification has emerged as a promising strategy. By adjusting the surface properties of catalysts, molecular modification alters the electronic structure, steric hindrance, promotes the adsorption of reactants, stabilizes intermediates, modifies the hydrophilic–hydrophobic environment, and regulates pH, thereby significantly enhancing the conversion efficiency and selectivity of CO2RR. This paper systematically reviews the modification strategies and mechanisms of molecularly modified materials in CO2RR. By summarizing and analyzing the existing literature, this review provides new perspectives and insights for future research on molecularly modified materials in electrocatalytic CO2 reduction. Full article
(This article belongs to the Special Issue Functional Materials for Small Molecule Electrocatalysis)
Show Figures

Figure 1

12 pages, 2577 KB  
Article
Single-Atom Catalysts Dispersed on Graphitic Carbon Nitride (g-CN): Eley–Rideal-Driven CO-to-Ethanol Conversion
by Jing Wang, Qiuli Song, Yongchen Shang, Yuejie Liu and Jingxiang Zhao
Nanomaterials 2025, 15(14), 1111; https://doi.org/10.3390/nano15141111 - 17 Jul 2025
Viewed by 427
Abstract
The electrochemical reduction of carbon monoxide (COER) offers a promising route for generating value-added multi-carbon (C2+) products, such as ethanol, but achieving high catalytic performance remains a significant challenge. Herein, we performed comprehensive density functional theory (DFT) computations to evaluate CO-to-ethanol [...] Read more.
The electrochemical reduction of carbon monoxide (COER) offers a promising route for generating value-added multi-carbon (C2+) products, such as ethanol, but achieving high catalytic performance remains a significant challenge. Herein, we performed comprehensive density functional theory (DFT) computations to evaluate CO-to-ethanol conversion on single metal atoms anchored on graphitic carbon nitride (TM/g–CN). We showed that these metal atoms stably coordinate with edge N sites of g–CN to form active catalytic centers. Screening 20 TM/g–CN candidates, we identified V/g–CN and Zn/g–CN as optimal catalysts: both exhibit low free-energy barriers (<0.50 eV) for the key *CO hydrogenation steps and facilitate C–C coupling via an Eley–Rideal mechanism with a negligible kinetic barrier (~0.10 eV) to yield ethanol at low limiting potentials, which explains their superior COER performance. An analysis of d-band centers, charge transfer, and bonding–antibonding orbital distributions revealed the origin of their activity. This work provides theoretical insights and useful guidelines for designing high-performance single-atom COER catalysts. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

7 pages, 1785 KB  
Proceeding Paper
Optimizing a Cu-Ni Nanoalloy-Coated Mesoporous Carbon for Efficient CO2 Electroreduction
by Manal B. Alhamdan, Ahmed Bahgat Radwan and Noora Al-Qahtani
Mater. Proc. 2025, 22(1), 2; https://doi.org/10.3390/materproc2025022002 - 16 Jul 2025
Viewed by 459
Abstract
Reducing atmospheric carbon dioxide is a critical global priority. This study investigates the influence of Cu-Ni nanoalloy loading on the CO2 electroreduction efficiency in the context of mesoporous carbon supports. Current methods struggle when it comes to catalyst efficiency, selectivity, and longevity. [...] Read more.
Reducing atmospheric carbon dioxide is a critical global priority. This study investigates the influence of Cu-Ni nanoalloy loading on the CO2 electroreduction efficiency in the context of mesoporous carbon supports. Current methods struggle when it comes to catalyst efficiency, selectivity, and longevity. By synthesizing copper–nickel nanoparticles through chemical reduction and depositing them on porous carbon, this research aimed to optimize catalyst loading and understand the structure–activity relationships. Catalyst performance was evaluated using chronoamperometry and linear sweep voltammetry (LSV). The results showed that 12 wt% catalyst loading achieved optimal CO2 reduction, outperforming its 36 wt% counterpart by balancing the catalyst quantity. This study reveals that 12 wt% Cu-Ni loading provides a higher CO2 reduction current density and greater long-term stability than 36 wt% loading, owing to better nanoparticle dispersion and reduced aggregation. Unlike previous Cu-Ni/mesoporous carbon studies, this work uniquely compares different loadings to directly correlate the structure, electrochemical performance, and catalyst durability. Full article
Show Figures

Figure 1

21 pages, 2610 KB  
Article
Analysis of Transition from Compact to Mossy Structures During Galvanostatic Zinc Electrodeposition and Its Implications for CO2 Electroreduction
by Pietro Altimari, Silvia Iacobelli, Pier Giorgio Schiavi, Gianluca Zanellato, Francesco Amato, Andrea Giacomo Marrani, Olga Russina, Alessia Sanna and Francesca Pagnanelli
Nanomaterials 2025, 15(13), 1025; https://doi.org/10.3390/nano15131025 - 2 Jul 2025
Viewed by 465
Abstract
The galvanostatic electrodeposition of zinc on carbon paper from mildly acidic solutions (ZnCl2: 0.05–0.1 M; H3BO3: 0.05 M) was investigated. The deposits’ growth mechanisms were analyzed through the study of the electrodeposition potential transients and the physical [...] Read more.
The galvanostatic electrodeposition of zinc on carbon paper from mildly acidic solutions (ZnCl2: 0.05–0.1 M; H3BO3: 0.05 M) was investigated. The deposits’ growth mechanisms were analyzed through the study of the electrodeposition potential transients and the physical characterization of the electrodes synthesized by varying the current density, transferred charge, and zinc precursor concentration. The analysis reveals that the transition from crystalline to amorphous mossy deposits takes place via the electrodeposition of metallic zinc followed by the formation of oxidized zinc structures. The time required for this transition can be controlled by varying the zinc precursor concentration and electrodeposition current density, allowing for the synthesis of composite zinc/oxidized zinc electrodes with varying ratios of the oxidized to underlying metallic phases. The impact of this ratio on the electrode activity for CO2 electroreduction is analyzed, highlighting that composite zinc/oxidized zinc electrodes can achieve a faradaic efficiency to CO equal to 82% at −1.8 V vs. Ag/AgCl. The mechanisms behind the variations in the catalytic activity with varying morphologies and structures are discussed, providing guidelines for the synthesis of composite zinc/oxidized zinc electrodes for CO2 electroreduction. Full article
Show Figures

Figure 1

28 pages, 3751 KB  
Article
Quantum Mechanics MP2 and CASSCF Study of Coordinate Quasi-Double Bonds in Cobalt(II) Complexes as Single Molecule Magnets
by Yuemin Liu, Salah S. Massoud, Oleg N. Starovoytov, Tariq Altalhi, Yunxiang Gao and Boris I. Yakobson
Nanomaterials 2025, 15(12), 938; https://doi.org/10.3390/nano15120938 - 17 Jun 2025
Viewed by 1683
Abstract
Co(II) complexes have shown promising applications as single-molecule magnets (SMMs) in quantum computing and structural biology. Deciphering the Co(II) complexes may facilitate the development of SMM materials. Structural optimizations and calculations of chemical and magnetic properties were performed for Co(II) complexes with a [...] Read more.
Co(II) complexes have shown promising applications as single-molecule magnets (SMMs) in quantum computing and structural biology. Deciphering the Co(II) complexes may facilitate the development of SMM materials. Structural optimizations and calculations of chemical and magnetic properties were performed for Co(II) complexes with a tripodal tetradentate phenolate-amine ligand using MP2/aug-cc-pvdz, MP2/Def2svp, and CASSCF/Def2svp methods. The Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis unravels that Co(II) ions form unusual coordinate quasi-double bonds with ligand oxygen donor atoms, and the bond strengths range from 142.01 kcal/mol to 167.36 kcal/mol but lack further spectrometric evidence. The average 151.70 kcal/mol of the Co(II-O coordinates quasi-double bonds are formed mainly by two lone pairs of electrons from the ligand phenolate donor oxygen atoms. Dispersion forces contribute 24%, 28%, 27%, and 31% to the Co(II)-ligand interaction. Theoretical results of ZFS D, transversal ZFS E, and g-factor agree well with the experimental values. Magnetic susceptibility parameters calculated based on 5 doublet roots account for 85% of results computed 40 doublet roots are specified. These insights may aid in the rational design of SMM materials and Co(II) porphyrin fullerene conjugate for CO2 electroreduction with superior magnetic properties. Full article
Show Figures

Figure 1

16 pages, 6298 KB  
Article
Electronic Modulation of Cu Catalytic Interfaces by Functionalized Ionic Liquids for Enhanced CO2 Reduction
by Chuanhui Wang, Wei Zhou, Jiamin Ma, Zhi Wang and Congyun Zhang
Molecules 2025, 30(11), 2352; https://doi.org/10.3390/molecules30112352 - 28 May 2025
Cited by 1 | Viewed by 581
Abstract
The electrocatalytic CO2 reduction reaction (CO2RR) into value-added multi-carbon C2+ products holds significant promise for sustainable chemical synthesis and carbon-neutral energy cycles. Among the various strategies developed to enhance CO2RR, the use of ionic liquids (ILs) has [...] Read more.
The electrocatalytic CO2 reduction reaction (CO2RR) into value-added multi-carbon C2+ products holds significant promise for sustainable chemical synthesis and carbon-neutral energy cycles. Among the various strategies developed to enhance CO2RR, the use of ionic liquids (ILs) has emerged as a powerful approach for modulating the local microenvironment and electronic structure of Cu-based metal catalysts. In this study, to unravel the molecular-level mechanisms underlying these enhancements, density functional theory calculations (DFTs) were employed to systematically explore how ILs with different terminal groups modulate the electronic reconstruction of the Cu surface, further affecting the *CO–*CO coupling and product selectivity. Electronic structure analyses reveal that ILs bearing polar moieties (–SH, –COOH) can synergistically enhance the interfacial electron accumulation and induce an upshift of the Cu d-band center, thereby strengthening *CO adsorption. In contrast, nonpolar IL (CH3) exhibits negligible effects, underscoring the pivotal role of ILs’ polarity in catalyst surface-state engineering. The free energy diagrams and transition state analyses reveal that ILs with polar groups significantly lower both the reaction-free energy and activation barrier associated with the *CO–*CO coupling step. This energetic favorability selectively inhibits the C1 product pathways and hydrogen evolution reaction (HER), further improving the selectivity of C2 products. These theoretical insights not only unveil the mechanistic origins of IL-induced performance enhancement but also offer predictive guidance for the rational design of advanced IL–catalyst systems for efficient CO2 electroreduction. Full article
(This article belongs to the Special Issue Advances in Molecular Modeling in Chemistry, 2nd Edition)
Show Figures

Figure 1

12 pages, 1482 KB  
Article
Design and Optimization of Chromium-Based Polymeric Catalysts for Selective Electrocatalytic Synthesis of Hydrogen Peroxide
by Huiying Meng, Wen Luo, Yang Wu and Yifan Zhang
Catalysts 2025, 15(6), 513; https://doi.org/10.3390/catal15060513 - 23 May 2025
Cited by 10 | Viewed by 693
Abstract
In this study, we designed and synthesized a series of chromium-based polymers (Cr-Ps) and their composites using oxidized carbon nanotubes (O-CNTs) through one-pot ligand engineering. The H2O2 production capacity of Cr-Ps increased with an increasing ratio of C–O and Cr–O [...] Read more.
In this study, we designed and synthesized a series of chromium-based polymers (Cr-Ps) and their composites using oxidized carbon nanotubes (O-CNTs) through one-pot ligand engineering. The H2O2 production capacity of Cr-Ps increased with an increasing ratio of C–O and Cr–O bonds, which is consistent with the trend observed in the Cr-Ps@O-CNT. The addition of O-CNTs during Cr-Ps synthesis led to a dense structure, which enhanced the electron donor effect and effectively improved the selectivity of the materials for the electrocatalytic production of H2O2. Furthermore, during the modulation of different ligands, we observed that the polymers and their complexes formed with terephthalic acid ligands containing para-carboxyl groups had the highest coordination activity and selectivity. The Cr-BDC@O-CNT, using terephthalic acid as the ligand, had the highest C–O and Cr–O densities, resulting in an H2O2 yield of 87% in an alkaline solution and an electron transfer number of about 2.2. Compared with Cr-BDC without O-CNTs, its selectivity increased by 32%, due to the higher number of C–O and Cr–O bonds in its dense structure. Moreover, the mass activity of the Cr-BDC@O-CNT reached 19.42 A g−1 at 0.2 V and the Faraday efficiency reached up to 94%, demonstrating excellent electroreduction activity. Our work provides insight into the design of efficient H2O2 electrocatalysts through ligand engineering, opening up new ideas for future research. Full article
(This article belongs to the Special Issue Powering the Future: Advances of Catalysis in Batteries)
Show Figures

Figure 1

15 pages, 2053 KB  
Article
Kinetic Understanding of the Enhanced Electroreduction of Nitrate to Ammonia for Co3O4–Modified Cu2+1O Nanowire Electrocatalyst
by Hao Yu, Shen Yan, Jiahua Zhang and Hua Wang
Catalysts 2025, 15(5), 491; https://doi.org/10.3390/catal15050491 - 19 May 2025
Viewed by 806
Abstract
Electrocatalytic nitrate reduction reaction (NO3RR) to ammonia (NH3) presents an alternative, sustainable approach to ammonia production. However, the existing catalysts suffer from poor NH3 yield under lower concentrations of NO3, and the kinetic understanding [...] Read more.
Electrocatalytic nitrate reduction reaction (NO3RR) to ammonia (NH3) presents an alternative, sustainable approach to ammonia production. However, the existing catalysts suffer from poor NH3 yield under lower concentrations of NO3, and the kinetic understanding of bimetal catalysis is lacking. In this study, a Co3O4–modified Cu2+1O nanowire (CoCuNWs) catalyst with a high specific surface area was synthesized to effectively produce NH3 from a 10 mM KNO3 basic solution. CoCuNWs demonstrated a high NH3 yield rate of 0.30 mmol h−1 cm−2 with an NH3 Faradaic efficiency (FE) of 96.7% at −0.2 V vs. RHE, which is 1.5 times higher than the bare Cu2+1O NWs. The synergistic effect between Co3O4 and Cu2+1O significantly enhanced both the nitrate conversion and ammonia yield. Importantly, it is revealed that the surface of CoCuNWs is kinetically more easily saturated with NO3 (NO2) ions than that of Cu2+1O NWs, as evidenced by both the higher current density and the plateau occurring at higher NOx concentrations. In addition, CoCuNWs exhibit a higher diffusion coefficient of NO3, being 1.6 times higher than that of Cu2+1O NWs, which also indicates that the presence of Co3O4 could promote the diffusion and adsorption of NO3 on CoCuNWs. Moreover, the ATR–SEIRAS analysis was applied to illustrate the reduction pathway of NO3 to NH3 on CoCuNWs, which follows the formation of the key intermediate from *NO2, *NO, *NH2OH to *NH3. This work presents a strategy for constructing dual–metal catalysts for NO3RR and provides an insight to understand the catalysis from the perspective of the kinetics. Full article
(This article belongs to the Special Issue Powering the Future: Advances of Catalysis in Batteries)
Show Figures

Graphical abstract

16 pages, 3239 KB  
Article
Cu-Sn Electrocatalyst Prepared with Chemical Foaming and Electroreduction for Electrochemical CO2 Reduction
by Caibo Zhu, Ao Yu, Yin Zhang, Wenbo Chen, Zhijian Wu, Manni Xu, Deyu Qu, Junxin Duan and Xi Li
Catalysts 2025, 15(5), 484; https://doi.org/10.3390/catal15050484 - 16 May 2025
Cited by 1 | Viewed by 676
Abstract
The conversion of CO2 through the electrochemical reduction reaction (ECO2RR) into chemicals or fuels is regarded as one of the effective ways to decrease atmospheric CO2 concentrations. In this study, a Cu-Sn bimetallic electrocatalyst (ER-SnmCunO [...] Read more.
The conversion of CO2 through the electrochemical reduction reaction (ECO2RR) into chemicals or fuels is regarded as one of the effective ways to decrease atmospheric CO2 concentrations. In this study, a Cu-Sn bimetallic electrocatalyst (ER-SnmCunOx-t/CC) was successfully prepared via a chemical foaming method and electrochemical reduction. SEM showed that ER-Sn1Cu1Ox-500 nanoparticles were uniformly distributed on the carbon cloth, which benefited from foaming. The XPS results demonstrated the synergistic interaction between Cu and Sn and the existence of oxygen vacancies originating from the electroreduction. Due to the above features, ER-Sn1Cu1Ox-500/CC achieved 84.1% FE for HCOOH at −1.1 V vs. RHE, and the corresponding JHCOOH was up to 32.4 mA·cm−2 in the H-type cell. Especially in the flow cell, ER-Sn1Cu1Ox-500/GDE could reach a high JHCOOH of 190 mA·cm−2 at −1.1 V vs. RHE and maintained JHCOOH higher than 100 mA·cm−2 for 24 h with a formic acid selectivity over 70%, indicating both excellent catalytic activity and high HCOOH selectivity. In situ FTIR results revealed that synergism between Cu and Sn could regulate the adsorption of intermediates, thus enhancing the catalytic performance of ER-Sn1Cu1Ox-500 for ECO2RR. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Graphical abstract

21 pages, 10470 KB  
Article
Optimizing Hydrophobicity of Cu@Zn Foam Catalysts for Efficient CO2 Electroreduction in a Microchannel Reactor
by Qing Hu, Zhihang Wei, Linjie Chao, Yujing Liu, Lin Luo, Bo Zhang and Zhenmin Cheng
Processes 2025, 13(5), 1454; https://doi.org/10.3390/pr13051454 - 9 May 2025
Viewed by 569
Abstract
CO2 electrochemical reduction is a promising way to convert CO2 to valuable fuels and chemicals. This study presents a porous Cu@Zn foam catalyst with a tailored hydrophobic surface for enhanced CO2 reduction. The catalyst is synthesized via a modified dynamic [...] Read more.
CO2 electrochemical reduction is a promising way to convert CO2 to valuable fuels and chemicals. This study presents a porous Cu@Zn foam catalyst with a tailored hydrophobic surface for enhanced CO2 reduction. The catalyst is synthesized via a modified dynamic hydrogen bubble template method, incorporating polytetrafluoroethylene (PTFE) during electrodeposition to control wettability. This strategy creates a hydrophobic microenvironment that significantly increases the three-phase (gas–liquid–solid) contact area, promoting CO2 mass transfer and suppressing the competing hydrogen evolution reaction. The optimized Cu@Zn-8PTFE catalyst achieves a CO Faraday efficiency (FECO) of 87.53% at −35 mA cm−2, a 40% improvement over the unmodified Cu@Zn. Furthermore, it also exhibits excellent stability, maintaining FECO > 90% for 64 h at −15 mA cm−2. While hydrophobic modification is beneficial, excess PTFE loading reduces performance by covering active sites and diminishing the three-phase interface. This work highlights the importance of controlling catalyst wettability to optimize the three-phase interface for enhanced CO2 electroreduction. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

15 pages, 2194 KB  
Article
Boosting C-C Coupling for Electrochemical CO2 Reduction over Novel Cu-Cubic Catalysts with an Amorphous Shell
by Hanlin Wang, Tian Wang, Gaigai Dong, Linbo Zhang, Fan Pan and Yunqing Zhu
Inorganics 2025, 13(5), 130; https://doi.org/10.3390/inorganics13050130 - 23 Apr 2025
Viewed by 745
Abstract
Currently, the electrochemical reduction of carbon dioxide faces significant challenges, including poor selectivity for C2 products and low conversion efficiency. An effective strategy for optimizing the reduction reaction pathway and enhancing catalytic performance involves manipulating highly unsaturated atomic sites on the catalyst’s [...] Read more.
Currently, the electrochemical reduction of carbon dioxide faces significant challenges, including poor selectivity for C2 products and low conversion efficiency. An effective strategy for optimizing the reduction reaction pathway and enhancing catalytic performance involves manipulating highly unsaturated atomic sites on the catalyst’s surface, thereby increasing the number of active sites. In this study, we employed sodium dodecylbenzenesulfonate (SDBS) as a surfactant in the electrodeposition method to synthesize copper cubes encapsulated with an amorphous shell (100 nm–250 nm) containing numerous defect sites on its surface. The electrocatalytic CO2 reduction reactions in an H-type reactor showed that, compared to ED-Cu synthesized without additives, AS (amorphous shell)-Cu-5 exhibited a Faradaic efficiency value for ethylene that was 1.7 times greater than that of ED-Cu while significantly decreasing the Faradaic efficiency of hydrogen production. In situ attenuated total reflectance surface-enhanced infrared spectroscopy (ATR-SEIRAS) revealed that introducing an amorphous shell and abundant defects altered both the intermediate species and reaction pathways on the AS-Cu-5 catalyst’s surface, favoring C2H4 formation. The density functional theory (DFT) calculations further confirmed that amorphous copper lowers the energy barrier required for C-C coupling, resulting in a marked enhancement in FE-C2H4. Therefore, additive-assisted electrodeposition presents a simple and rapid synthesis method for improving ethylene selectivity in copper catalysts. Full article
Show Figures

Graphical abstract

13 pages, 4220 KB  
Article
Synergistic Effect of the Heteronuclear Double Sites in C9N4 on the Electrochemical Reduction of CO2 to CO
by Rui Wan, Bin Zhao and Zhongyao Li
Catalysts 2025, 15(4), 370; https://doi.org/10.3390/catal15040370 - 10 Apr 2025
Viewed by 438
Abstract
In response to the detrimental impact of excessive fossil fuel usage on the environment and the looming energy crisis, the electrochemical reduction of carbon dioxide (CO2RR) has emerged as a promising solution. This study investigates the potential of dual-atom catalysts, specifically [...] Read more.
In response to the detrimental impact of excessive fossil fuel usage on the environment and the looming energy crisis, the electrochemical reduction of carbon dioxide (CO2RR) has emerged as a promising solution. This study investigates the potential of dual-atom catalysts, specifically boron (B) and transition metal (TM) co-modified C9N4, for efficient CO2RR. The 2 × 2 × 1 supercell of C9N4, considering modification with 26 TM and B atoms, demonstrated stability, confirmed by binding and formation energy calculations. Molecular dynamics simulations further supported the thermal stability of the studied catalysts. The modified structures exhibited metallic behavior, suggesting potential facilitation of electron transfer during electroreduction. Furthermore, by conducting Gibbs free energy calculations on CO2 reduction pathways, seven low overpotential catalysts were screened out. Considering the competitive hydrogen evolution reaction (HER), Sc-B and Hf-B demonstrate excellent selectivity towards CO2, with Faradaic efficiencies (FE) close to 100%, and possess low limiting potentials of −0.30 and −0.53 eV, showcasing their potential to be excellent catalysts. The introduction of pre-adsorbed hydrogen atoms further optimized the advantage of CO2RR over HER, with the efficiencies of Ti-B@C9N4-H and Hf-B@C9N4-H methods increasing from 0% and 28% to over 99%, respectively, providing new insights into overcoming the low selectivity of CO2 reduction. Full article
(This article belongs to the Special Issue Recent Advances in Electrocatalysis and Future Perspective)
Show Figures

Figure 1

17 pages, 2732 KB  
Article
Assessing the CO2 Capture and Electro-Reduction in Imidazolium-Based Ionic Liquids: Role of the Ion Exchange Membrane
by Mario Gallone, Alessia Fortunati and Simelys Hernández
Catalysts 2025, 15(4), 318; https://doi.org/10.3390/catal15040318 - 26 Mar 2025
Viewed by 1026
Abstract
The electrochemical CO2 reduction (eCO2RR) to valuable chemicals offers a promising method to combat global warming by recycling carbon. Among the possible products, syngas—a CO and H2 mixture—is especially valuable for industrial reactions. The use of Room Temperature Ionic [...] Read more.
The electrochemical CO2 reduction (eCO2RR) to valuable chemicals offers a promising method to combat global warming by recycling carbon. Among the possible products, syngas—a CO and H2 mixture—is especially valuable for industrial reactions. The use of Room Temperature Ionic Liquids (RTILs) electrolytes presents a promising pathway for eCO2RR because of the lower overpotential required and the increased CO2 solubility with respect to the aqueous ones. Ensuring a constant CO/H2 production is essential, and it relies on both the catalyst and reactor design. This study explores eCO2RR in RTIL mixtures of 1-butyl-3-methyl imidazolium trifluoromethanesulfonate (good for CO2 conversion) and 1-butyl-3-methyl imidazolium acetate (good for CO2 capture), with various amounts of water as a proton source. We evaluated syngas production stability across different electrochemical cells and ion exchange membranes after determining the appropriate electrolyte mixture for a suitable CO/H2 ratio near 1:1. The two-chamber cell configuration outperformed single-cell designs by reducing oxidative RTILs degradation and by-products formation. Using a bipolar membrane (BPM) in forward mode led to catholyte acidification, causing an increase of HER relative to eCO2RR over time, confirmed by Multiphysics modeling. Conversely, an anionic exchange membrane (AEM) maintained constant syngas production over extended periods. This work offers guidelines for syngas generation in RTIL-based systems from waste-CO2 reduction, which can be useful for other green chemical synthesis processes. Full article
(This article belongs to the Special Issue Green Heterogeneous Catalysis for CO2 Reduction)
Show Figures

Graphical abstract

Back to TopTop