Salophen-Type Schiff Bases Functionalized with Pyridinium Halide Units as Metal-Free Catalysts for Synthesis of Cyclic Carbonates from Carbon Dioxide and Terminal Epoxides
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
Catalytic Examination—General Procedure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dziejarski, B.; Krzyżyńska, R.; Andersson, K. Current Status of Carbon Capture, Utilization, and Storage Technologies in the Global Economy: A Survey of Technical Assessment. Fuel 2023, 342, 127776. [Google Scholar] [CrossRef]
- Ekemezie, I.O.; Digitemie, W.N. Carbon Capture and Utilization (CCU): A Review of Emerging Applications and Challenges. Eng. Sci. Technol. J. 2024, 5, 949–961. [Google Scholar] [CrossRef]
- Lin, Q.; Zhang, X.; Wang, T.; Zheng, C.; Gao, X. Technical Perspective of Carbon Capture, Utilization, and Storage. Engineering 2022, 14, 27–32. [Google Scholar] [CrossRef]
- Kamkeng, A.D.N.; Wang, M.; Hu, J.; Du, W.; Qian, F. Transformation Technologies for CO2 Utilisation: Current Status, Challenges and Future Prospects. Chem. Eng. J. 2021, 409, 128138. [Google Scholar] [CrossRef]
- Gabrielli, P.; Gazzani, M.; Mazzotti, M. The Role of Carbon Capture and Utilization, Carbon Capture and Storage, and Biomass to Enable a Net-Zero-CO2 Emissions Chemical Industry. Ind. Eng. Chem. Res. 2020, 59, 7033–7045. [Google Scholar] [CrossRef]
- Zhanga, Z.; Pan, S.Y.; Li, H.; Cai, J.; Olabi, A.G.; Anthony, E.J.; Manovic, V. Recent Advances in Carbon Dioxide Utilization. Renew. Sustain. Energy Rev. 2020, 125, 109799. [Google Scholar] [CrossRef]
- Chu, H.; Huang, Z.; Zhang, Z.; Yan, X.; Qiu, B.; Xu, N. Integration of Carbon Emission Reduction Policies and Technologies: Research Progress on Carbon Capture, Utilization and Storage Technologies. Sep. Purif. Technol. 2024, 343, 127153. [Google Scholar] [CrossRef]
- Osorio-Tejada, J.; Escriba-Gelonch, M.; Vertongen, R.; Bogaerts, A.; Hessel, V. CO2 Conversion to CO Via Plasma and Electrolysis: A Techno-Economic and Energy Cost Analysis. Energy Environ. Sci. 2024, 17, 5833–5853. [Google Scholar] [CrossRef]
- Ra, E.C.; Kim, K.Y.; Kim, E.H.; Lee, H.; An, K.; Lee, J.S. Recycling Carbon Dioxide through Catalytic Hydrogenation: Recent Key Developments and Perspectives. ACS Catal. 2020, 10, 11318–11345. [Google Scholar] [CrossRef]
- Meunier, N.; Chauvy, R.; Mouhoubi, S.; Thomas, D.; De Weireld, G. Alternative Production of Methanol from Industrial CO2. Renew. Energy 2020, 146, 1192–1203. [Google Scholar] [CrossRef]
- Mei, Z.; Zhou, Y.; Lv, W.; Tong, S.; Yang, X.; Chen, L.; Zhang, N. Recent Progress in Electrocatalytic Urea Synthesis under Ambient Conditions. ACS Sustain. Chem. Eng. 2022, 10, 12477–12496. [Google Scholar] [CrossRef]
- Kohli, K.; Sharma, B.K.; Panchal, C.B. Dimethyl Carbonate: Review of Synthesis Routes and Catalysts Used. Energies 2022, 15, 5133. [Google Scholar] [CrossRef]
- Lopes, E.J.C.; Ribeiro, A.P.C.; Martins, L.M.D.R.S. New Trends in the conversion of CO2 to cyclic carbonates. Catalysts 2020, 10, 479. [Google Scholar] [CrossRef]
- Pescarmona, P.P. Cyclic Carbonates Synthesised from CO2: Applications, Challenges and Recent Research Trends. Curr. Opin. Green Sustain. Chem. 2021, 29, 100457. [Google Scholar] [CrossRef]
- North, M.; Pasquale, R.; Young, C. Synthesis ff Cyclic Carbonates from Epoxides and CO2. Green Chem. 2010, 12, 1514–1539. [Google Scholar] [CrossRef]
- Alves, M.; Grignard, B.; Mereau, R.; Jerome, C.; Tassaing, T.; Detrembleur, C. Organocatalyzed Coupling of Carbon Dioxide with Epoxides for the Synthesis of Cyclic Carbonates: Catalyst Design and Mechanistic Studies. Catal. Sci. Technol. 2017, 7, 2651–2684. [Google Scholar] [CrossRef]
- Ogasawara, T.; Débart, A.; Holzapfel, M.; Novák, P.; Bruce, P.G. Rechargeable Li2O2 Electrode for Lithium Batteries. J. Am. Chem. Soc. 2006, 128, 1390–1393. [Google Scholar] [CrossRef]
- Kamphuis, A.J.; Picchioni, F.; Pescarmona, P.P. CO2-Fixation into Cyclic and Polymeric Carbonates: Principles and Applications. Green Chem. 2019, 21, 406–448. [Google Scholar] [CrossRef]
- Lanzia, M.; Kleij, A.W. Recent Advances in the Synthesis and Polymerization of New CO2-Based Cyclic Carbonates. Chin. J. Chem. 2024, 42, 430–443. [Google Scholar] [CrossRef]
- Li, H.; Wang, W.; Liu, S.; Xue, D.; Wang, J.; Liu, Y.; Huang, Q. Design and Syntheses of Functional Carbon Dioxide-Based Polycarbonates via Ternary Copolymerization. J. CO2 Util. 2024, 80, 102689. [Google Scholar] [CrossRef]
- Büttner, H.; Longwitz, L.; Steinbauer, J.; Wulf, C.; Werner, T. Recent Developments in the Synthesis of Cyclic Carbonates from Epoxides and CO2. In Chemical Transformations of Carbon Dioxide. Topics in Current Chemistry Collections; Springer: Cham, Switzerland, 2017; Volume 375, pp. 89–144. [Google Scholar]
- Calabrese, C.; Giacalone, F.; Aprile, C. Hybrid Catalysts for CO2 Conversion into Cyclic Carbonates. Catalysts 2019, 9, 325. [Google Scholar] [CrossRef]
- Guo, L.; Lamb, K.J.; North, M. Recent Developments in Organocatalysed Transformations of Epoxides and Carbon Dioxide into Cyclic Carbonates. Green Chem. 2021, 23, 77–118. [Google Scholar] [CrossRef]
- Fonseca-Lopez, D.; Ezenarro-Salcedo, D.; Zapata-Rivera, J.; Rojas, R.S.; Hurtado, J.J. Salophen-Type Organocatalysts for the Cycloaddition of CO2 and Epoxides under Solvent, Halide, and Metal-Free Conditions. ACS Omega 2024, 9, 19385–19394. [Google Scholar] [CrossRef] [PubMed]
- North, M.; Young, C. Bimetallic Aluminium(Acen)Complexes as Catalysts for the Synthesis of Cyclic Carbonates from Carbon Dioxide and Epoxides. Catal. Sci. Technol. 2011, 1, 93–99. [Google Scholar] [CrossRef]
- Wu, X.; North, M. Bimetallic Aluminium(Salphen) Complex for the Synthesis of Cyclic Carbonates from Epoxides and Carbon Dioxide. ChemSusChem 2017, 10, 74–78. [Google Scholar] [CrossRef]
- Rulev, Y.A.; Larionov, V.A.; Lokutova, A.V.; Moskalenko, M.A.; Lependina, O.L.; Maleev, V.I.; North, M.; Belokon, Y.N. Chiral Cobalt(III) Complexes as Bifunctional Brönsted Acid-Lewis Base Catalysts for the Preparation of Cyclic Organic Carbonates. ChemSusChem 2016, 9, 216–222. [Google Scholar] [CrossRef]
- Castro-Osma, J.A.; Lamb, K.J.; North, M. Cr(Salophen) Complex Catalyzed Cyclic Carbonate Synthesis at Ambient Temperature and Pressure. ACS Catal. 2016, 6, 5012–5025. [Google Scholar] [CrossRef]
- Taherimehr, M.; Decortes, A.; Al-Amsyar, S.M.; Lueangchaichaweng, W.; Whiteoak, C.J.; Escudero-Ad’an, E.C.; Kleij, A.W.; Pescarmona, P.P. A Highly Active Zn(Salphen) Catalyst for Production of Organic Carbonates in a Green CO2 Medium. Catal. Sci. Technol. 2012, 2, 2231–2237. [Google Scholar] [CrossRef]
- Hui, Z.; Wen-Zhen, Z.; Cui-Hua, L.; Jing-Ping, Q.; Xiao-Bing, L. CO2 Adducts of N-Heterocyclic Carbenes: Thermal Stability and Catalytic Activity toward the Coupling of CO2 with Epoxides. J. Org. Chem. 2008, 73, 8039–8044. [Google Scholar]
- Souleymanou, M.Y.; El-Ouahabi, F.; Masdeu-Bultó, A.M.; Godard, C. Cooperative NHC-based Catalytic System Immobilised onto Carbon Materials for the Cycloaddition of CO2 to Epoxides. ChemCatChem 2021, 13, 1706–1710. [Google Scholar] [CrossRef]
- Peng, J.; Wang, S.; Yang, H.J.; Ban, B.; Wei, Z.; Wang, L.; Lei, B. Highly Efficient Fixation of Carbon Dioxide to Cyclic Carbonates with New Multi-Hydroxyl Bis-(Quaternary Ammonium) Ionic Liquids as Metal-Free Catalysts under Mild Conditions. Fuel 2018, 224, 481–488. [Google Scholar] [CrossRef]
- Toda, Y.; Komiyama, Y.; Esaki, H.; Fukushima, K.; Suga, H. Methoxy Groups Increase Reactivity of Bifunctional Tetraarylphosphonium Salt Catalysts for Carbon Dioxide Fixation: A Mechanistic Study. J. Org. Chem. 2019, 84, 15578–15589. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zheng, D.; Zhang, J.; Fan, B.; Ma, Y.; Ren, T.; Wang, L.; Zhang, J. Protic Pyrazolium Ionic Liquids: An Efficient Catalyst for Conversion of CO2 in the Absence of Metal and Solvent. ACS Sustain. Chem. Eng. 2018, 6, 2574–2582. [Google Scholar] [CrossRef]
- Rostami, A.; Mahmoodabadi, M.; Hossein Ebrahimi, A.; Khosravi, H.; Al-Harrasi, A. An Electrostatically Enhanced Phenol as a Simple and Efficient Bifunctional Organocatalyst for Carbon Dioxide Fixation. ChemSusChem 2018, 11, 4262–4268. [Google Scholar] [CrossRef]
- Wang, B.; Cao, X.; Wang, L.; Meng, X.; Wang, Y.; Sun, W. Co(II)−N4 Catalysts for the Coupling of CO2 with Epoxides into Cyclic Carbonates: Catalytic Activity, Computational and Kinetic Studies. Inorg. Chem. 2024, 63, 9156–9163. [Google Scholar] [CrossRef] [PubMed]
- Paradiso, V.; Capaccio, V.; Lamparelli, D.H.; Capacchione, C. Metal Complexes Bearing Sulfur-Containing Ligands as Catalysts in the Reaction of CO2 with Epoxides. Catalysts 2020, 10, 825. [Google Scholar] [CrossRef]
- Bester, K.; Bukowska, A.; Kawka, A.; Pytel, M.; Bukowski, W. Salophen Chromium(III) Complexes Functionalized with Pyridinium Salts as Catalysts for Carbon Dioxide Cycloaddition to Epoxides. RSC Adv. 2024, 14, 2466–2480. [Google Scholar] [CrossRef]
- Zhou, Y.; Hu, S.; Ma, X.; Liang, S.; Jiang, T.; Han, B. Synthesis of Cyclic Carbonates from Carbon Dioxide and Epoxides Over Betaine-Based Catalysts. J. Mol. Catal. A Chem. 2008, 284, 52–57. [Google Scholar] [CrossRef]
- Chen, J.-X.; Jin, B.; Dai, W.-L.; Deng, S.-L.; Cao, L.-R.; Cao, Z.-J.; Luo, S.-L.; Luo, X.-B.; Tu, X.-M.; Au, C.-T. Catalytic fixation of CO2 to cyclic carbonates over biopolymer chitosan-grafted quarternary phosphonium ionic liquid as a recylable catalyst. Appl. Catal. A Gen. 2014, 484, 26–32. [Google Scholar]
- Wu, X.; Chen, C.; Guo, Z.; North, M.; Whitwood, A.C. Metal and Halide-Free Catalyst for the Synthesis of Cyclic Carbonates from Epoxides and Carbon Dioxide. ACS. Catal. 2019, 9, 1895–1906. [Google Scholar] [CrossRef]
- Shen, Y.M.; Duan, W.L.; Shi, M. Chemical Fixation of Carbon Dioxide Co-Catalyzed by a Combination of Schiff Bases or Phenols and Organic Bases. Eur. J. Org. Chem. 2004, 2004, 3080–3089. [Google Scholar] [CrossRef]
- Caló, V.; Nacci, A.; Monopoli, A.; Fanizz, A. Cyclic Carbonate Formation from Carbon Dioxide and Oxiranes in Tetrabutylammonium Halides as Solvents and Catalysts. Org. Lett. 2002, 4, 2561–2563. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhang, S.; Cheng, W.; Ren, J. Hydroxyl-Functionalized Ionic Liquid: A Novel Efficient Catalyst for Chemical Fixation of CO2 to Cyclic Carbonate. Tetrahedron Lett. 2008, 49, 3588–3591. [Google Scholar] [CrossRef]
- Wang, J.Q.; Dong, K.; Cheng, W.G.; Sun, J.; Zhang, S.J. Insights into Quaternary Ammonium Salts-Catalyzed Fixation Carbon Dioxide with Epoxides. Catal. Sci. Technol. 2012, 2, 1480–1484. [Google Scholar] [CrossRef]
- Zhao, Y.; Tian, J.S.; Qi, X.H.; Han, Z.N.; Zhuang, Y.Y.; He, L.N. Quaternary Ammonium Salt-Functionalized Chitosan: An Easily Recyclable Catalyst for Efficient Synthesis of Cyclic Carbonates from Epoxides and Carbon Dioxide. J. Mol. Catal. A Chem. 2007, 271, 284–289. [Google Scholar] [CrossRef]
- Clegg, W.; Harrington, R.W.; North, M.; Pasquale, R. Cyclic Carbonate Synthesis Catalysed by Bimetallic Aluminium–Salen Complexes. Chem. Eur. J. 2010, 16, 6828–6843. [Google Scholar] [CrossRef]
- Guo, C.-H.; Liang, M.; Jiao, H. Cycloaddition Mechanisms of CO2 and Epoxide Catalyzed by Salophen—An Organocatalyst Free from Metals and Halides. Catal. Sci. Technol. 2021, 11, 2529–2539. [Google Scholar] [CrossRef]
- Cho, W.; Shin, M.S.; Hwang, S.; Kim, H.; Kim, M.; Gon Kim, J.; Kim, Y. Tertiary Amines: A New Class of Highly Efficient Organocatalysts for CO2 Fixations. J. Ind. Eng. Chem. 2016, 44, 210–215. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, G.; Kodama, K.; Hirose, T. An Efficient Metal- and Solvent-Free Organocatalytic System for Chemical Fixation of CO2 into Cyclic Carbonates under Mild Conditions. Green Chem. 2016, 18, 1229–1233. [Google Scholar] [CrossRef]
- Azzouz, R.; Moreno, V.C.; Herasme-Grullon, C.; Levacher, V.; Estel, L.; Ledoux, A.; Derrouiche, S.; Marsais, F.; Bischoff, L. Efficient Conversion of Epoxides into Carbonates with CO2 and a Single Organocatalyst: Laboratory and Kilogram-Scale Experiments. Synlett 2020, 31, 183–188. [Google Scholar] [CrossRef]
- Wang, Z.; Li, D.; Chen, S.; Hu, J.; Gong, Y.; Guo, Y.; Deng, T. Ionic Liquid [DBUH][BO2]: An Excellent Catalyst for Chemical Fixation of CO2 under Mild Conditions. New J. Chem. 2021, 45, 4611–4616. [Google Scholar] [CrossRef]
- Zhang, Z.; Fan, F.; Xing, H.; Yang, Q.; Bao, Z.; Ren, Q. Efficient Synthesis of Cyclic Carbonates from Atmospheric CO2 Using a Positive Charge Delocalized Ionic Liquid Catalyst. ACS Sustain. Chem. Eng. 2017, 5, 2841–2846. [Google Scholar] [CrossRef]
- Yue, Z.; Pudukudy, M.; Chen, S.; Liu, Y.; Zhao, W.; Wang, J.; Shan, S.; Jia, Q. A Non-Metal Acen-H Catalyst for the Chemical Fixation of CO2 into Cyclic Carbonates under Solvent- and Halide-Free Mild Reaction Conditions. Appl. Catal. A Gen. 2020, 601, 117646. [Google Scholar] [CrossRef]
- Larrow, J.F.; Jacobsen, E.N.; Gao, Y.; Hong, Y.; Nie, X.; Zepp, C.M. A Practical Method for the Large-Scale Preparation of [N,N’-Bis(3,5-di-tertbutylsalicylidene)-1,2-cyclohexanediaminato(2-)]manganese(III) chloride, a Highly Enantioselective Epoxidation Catalyst. J. Org. Chem. 1994, 59, 1939–1942. [Google Scholar] [CrossRef]
- Casiraghi, G.; Casnati, G.; Puglia, G.; Sartori, G.; Terenghi, G.J. Selective reactions between phenols and formaldehyde. A novel route to salicylaldehydes. Chem. Soc. Perkin Trans. 1980, 1, 1862–1865. [Google Scholar] [CrossRef]
- Meier, P.; Broghammer, F.; Latendorf, K.; Rauhut, G.; Peters, R. Cooperative Al(Salen)-Pyridinium Catalysts for the Asymmetric Synthesis of trans-Configured β-Lactones by [2+2]-Cyclocondensation of Acylbromides and Aldehydes: Investigation of Pyridinium Substituent Effects. Molecules 2012, 17, 7121–7150. [Google Scholar] [CrossRef]
- Titze, M.; Heitkämper, J.; Junge, T.; Kästner, J.; Peters, R. Highly active cooperative Lewis acid—Ammonium salt catalyst for the enantioselective hydroboration of ketones. Angew. Chem. Int. Ed. 2021, 60, 5544–5553. [Google Scholar] [CrossRef]
No. | Cat. | Temp. [°C] | Conversion a [%] | TON [-] | TOF [h−1] |
---|---|---|---|---|---|
1 | S1 | 80 | 20 | 36 | 18 |
2 | S2 | 4 | 8 | 4 | |
3 | S3 | 52 | 100 | 50 | |
4 | S4 | 36 | 72 | 36 | |
5 | S5 | 37 | 72 | 36 | |
6 | S1 | 100 | 44 | 84 | 42 |
7 | S2 | 15 | 28 | 14 | |
8 | S3 | 73 | 140 | 70 | |
9 | S4 | 68 | 128 | 64 | |
10 | S5 | 69 | 132 | 66 | |
11 | S1 | 120 | 62 | 112 | 56 |
12 | S2 | 47 | 90 | 45 | |
13 | S3 | 83 | 156 | 78 | |
14 | S4 | 77 | 142 | 71 | |
15 | S5 | 72 | 136 | 68 | |
16 | S6 | 86 | 158 | 79 | |
17 | S7 | 77 | 138 | 69 | |
18 | S8 | 0 | 0 | 0 | |
19 | S1 | 140 | 59 | 96 | 48 |
20 | S2 | 48 | 78 | 39 | |
21 | S3 | 78 | 136 | 68 | |
22 | S4 | 67 | 118 | 59 | |
23 | S5 | 70 | 122 | 61 | |
24 | DMAP | 120 | 49 | 92 | 46 |
25 | [BnDMAP]Cl | 52 | 98 | 49 |
No. | Cat. | Time [h] | pCO2 [bar] | Temp. [°C] | Conversion a [%] | TON [-] | TOF [h−1] |
---|---|---|---|---|---|---|---|
1 | S1 | 2 | 4 | 100 | 56 | 106 | 53 |
2 | S2 | 2 | 4 | 15 | 28 | 14 | |
3 | S3 | 2 | 4 | 82 | 156 | 78 | |
4 | S4 | 2 | 4 | 68 | 132 | 66 | |
5 | S5 | 2 | 4 | 74 | 144 | 72 | |
6 | S3 | 2 | 2 | 120 | 83 | 156 | 78 |
7 | S3 | 4 | 2 | 91 | 162 | 41 | |
8 | S3 | 6 | 2 | 95 | 166 | 28 | |
9 | S3 | 2 | 4 | 85 | 156 | 78 | |
10 | S3 | 2 | 6 | 87 | 158 | 79 |
No. | Loading S3, [mol%] | Conversion E3 a [%] | TON [-] | TOF [h−1] |
---|---|---|---|---|
1 | 0.05 | 48 | 893 | 447 |
2 | 0.1 | 56 | 513 | 257 |
3 | 0.2 | 66 | 300 | 150 |
4 | 0.5 | 83 | 156 | 78 |
No. | Catalyst | Temperature [°C] | Pressure [bar] | Time [h] | Conversion [%] | Yield [%] | TON | TOF [h−1] | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | 0.1 mol% | 120 | 10 | 10 | 97 | 97 | 967 | 97 | [49] |
2 | 8 mol% + 8 mol% nBu4NI | 25 | 1 | 20 | - | 97 | - | - | [50] |
3 | 5 mol% | 45 | 12 | 16 | - | 95 | - | - | [51] |
4 | 75 mol% | 30 | 1 | 6 | - | 94 | - | - | [52] |
5 | 1 mol% | 120 | 1 | 4 | 96 | - | - | - | [53] |
6 | 0.2 mol% | 110 | 10 | 4 | 99 | 98.5 | 495.2 | 123.8 | [54] |
7 | 1 mol% | 120 | 10 | 3.5 | 84 | 76 | - | - | [41] |
8 | 0.5 mol% | 100 | 8 | 9 | 92 | - | 184 | 20.4 | [24] |
9 | S3 | 100 | 4 | 2 | 82 | - | 156 | 78 | This work |
10 | S3 | 120 | 6 | 2 | 87 | 78 | 158 | 79 | This work |
No. | Epoxide | Epoxide Ab’br. | Conversion a [%] | Cyclic Carbonate | Cyclic Carbonate Abbr. | Yield b [%] | TON | TOF [h−1] |
---|---|---|---|---|---|---|---|---|
1 c | E1 | 53 | C1 | 26 | 56 | 28 | ||
2 c | E2 | 38 | C2 | 26 | 58 | 29 | ||
3 | E3 | 87 | C3 | 78 | 158 | 79 | ||
4 | E4 | 92 | C4 | 87 | 178 | 89 | ||
5 | E5 | 59 | C5 | 50 | 107 | 54 | ||
6 | E6 | 52 | C6 | 47 | 96 | 48 | ||
7 | E7 | 0 | C7 | 0 | 0 | 0 | ||
8 | E8 | 0 | C8 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawka, A.; Bester, K.; Bukowska, A.; Bukowski, W. Salophen-Type Schiff Bases Functionalized with Pyridinium Halide Units as Metal-Free Catalysts for Synthesis of Cyclic Carbonates from Carbon Dioxide and Terminal Epoxides. Catalysts 2024, 14, 658. https://doi.org/10.3390/catal14100658
Kawka A, Bester K, Bukowska A, Bukowski W. Salophen-Type Schiff Bases Functionalized with Pyridinium Halide Units as Metal-Free Catalysts for Synthesis of Cyclic Carbonates from Carbon Dioxide and Terminal Epoxides. Catalysts. 2024; 14(10):658. https://doi.org/10.3390/catal14100658
Chicago/Turabian StyleKawka, Aleksandra, Karol Bester, Agnieszka Bukowska, and Wiktor Bukowski. 2024. "Salophen-Type Schiff Bases Functionalized with Pyridinium Halide Units as Metal-Free Catalysts for Synthesis of Cyclic Carbonates from Carbon Dioxide and Terminal Epoxides" Catalysts 14, no. 10: 658. https://doi.org/10.3390/catal14100658
APA StyleKawka, A., Bester, K., Bukowska, A., & Bukowski, W. (2024). Salophen-Type Schiff Bases Functionalized with Pyridinium Halide Units as Metal-Free Catalysts for Synthesis of Cyclic Carbonates from Carbon Dioxide and Terminal Epoxides. Catalysts, 14(10), 658. https://doi.org/10.3390/catal14100658