Modification of High-Surface-Area Carbons Using Self-Limited Atomic Layer Deposition
Abstract
:1. Introduction
2. Results and Discussion
2.1. ALD of Metal Oxide Films on Carbon
2.2. ALD of Pt on Carbon
3. Materials and Methods
4. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Flandrois, S.; Simon, B. Carbon Materials for Lithium-Ion Rechargeable Batteries. Carbon 1999, 37, 165–180. [Google Scholar] [CrossRef]
- Yuan, S.; Lai, Q.; Duan, X.; Wang, Q. Carbon-Based Materials as Anode Materials for Lithium-Ion Batteries and Lithium-Ion Capacitors: A Review. J. Energy Storage 2023, 61, 106716. [Google Scholar] [CrossRef]
- Lobato-Peralta, D.R.; Okoye, P.U.; Alegre, C. A Review on Carbon Materials for Electrochemical Energy Storage Applications: State of the Art, Implementation, and Synergy with Metallic Compounds for Supercapacitor and Battery Electrodes. J. Power Sources 2024, 617, 235140. [Google Scholar] [CrossRef]
- Jaleh, B.; Nasrollahzadeh, M.; Eslamipanah, M.; Nasri, A.; Shabanlou, E.; Manwar, N.R.; Zboril, R.; Fornasiero, P.; Gawande, M.B. The Role of Carbon-Based Materials for Fuel Cells Performance. Carbon 2022, 198, 301–352. [Google Scholar] [CrossRef]
- Gibi, C.; Liu, C.-H.; Barton, S.C.; Anandan, S.; Wu, J.J. Carbon Materials for Electrochemical Sensing Application—A Mini Review. J. Taiwan Inst. Chem. Eng. 2024, 154, 105071. [Google Scholar] [CrossRef]
- Antolini, E. Carbon Supports for Low-Temperature Fuel Cell Catalysts. Appl. Catal. B Environ. 2009, 88, 1–24. [Google Scholar] [CrossRef]
- Trogadas, P.; Fuller, T.F.; Strasser, P. Carbon as Catalyst and Support for Electrochemical Energy Conversion. Carbon 2014, 75, 5–42. [Google Scholar] [CrossRef]
- Badam, R.; Hara, M.; Huang, H.-H.; Yoshimura, M. Synthesis and Electrochemical Analysis of Novel IrO2 Nanoparticle Catalysts Supported on Carbon Nanotube for Oxygen Evolution Reaction. Int. J. Hydrogen Energy 2018, 43, 18095–18104. [Google Scholar] [CrossRef]
- Olowoyo, J.O.; Gharahshiran, V.S.; Zeng, Y.; Zhao, Y.; Zheng, Y. Atomic/Molecular Layer Deposition Strategies for Enhanced CO2 Capture, Utilisation and Storage Materials. Chem. Soc. Rev. 2024, 53, 5428–5488. [Google Scholar] [CrossRef]
- Kinoshita, K. Particle Size Effects for Oxygen Reduction on Highly Dispersed Platinum in Acid Electrolytes. J. Electrochem. Soc. 1990, 137, 845. [Google Scholar] [CrossRef]
- Mukerjee, S.; McBreen, J. Effect of Particle Size on the Electrocatalysis by Carbon-Supported Pt Electrocatalysts: An in Situ XAS Investigation. J. Electroanal. Chem. 1998, 448, 163–171. [Google Scholar] [CrossRef]
- Zhou, W.; Li, M.; Ding, O.L.; Chan, S.H.; Zhang, L.; Xue, Y. Pd Particle Size Effects on Oxygen Electrochemical Reduction. Int. J. Hydrogen Energy 2014, 39, 6433–6442. [Google Scholar] [CrossRef]
- Abbott, D.F.; Lebedev, D.; Waltar, K.; Povia, M.; Nachtegaal, M.; Fabbri, E.; Copéret, C.; Schmidt, T.J. Iridium Oxide for the Oxygen Evolution Reaction: Correlation between Particle Size, Morphology, and the Surface Hydroxo Layer from Operando XAS. Chem. Mater. 2016, 28, 6591–6604. [Google Scholar] [CrossRef]
- Gopiraman, M.; Ganesh Babu, S.; Khatri, Z.; Kai, W.; Kim, Y.A.; Endo, M.; Karvembu, R.; Kim, I.S. An Efficient, Reusable Copper-Oxide/Carbon-Nanotube Catalyst for N-Arylation of Imidazole. Carbon 2013, 62, 135–148. [Google Scholar] [CrossRef]
- Shen, J.; Huang, W.; Wu, L.; Hu, Y.; Ye, M. Study on Amino-Functionalized Multiwalled Carbon Nanotubes. Mater. Sci. Eng. A 2007, 464, 151–156. [Google Scholar] [CrossRef]
- Shen, K.; Lee, S.; Kwon, O.; Fan, M.; Gorte, R.J.; Vohs, J.M. Effect of Perovskite-Fluorite Phase Transition on the Catalytic Activity of Pt/CeFeOx. ACS Catal. 2023, 13, 11144–11152. [Google Scholar] [CrossRef]
- Mao, X.; Foucher, A.C.; Montini, T.; Stach, E.A.; Fornasiero, P.; Gorte, R.J. Epitaxial and Strong Support Interactions between Pt and LaFeO3 Films Stabilize Pt Dispersion. J. Am. Chem. Soc. 2020, 142, 10373–10382. [Google Scholar] [CrossRef]
- Leskelä, M.; Ritala, M. Atomic Layer Deposition (ALD): From Precursors to Thin Film Structures. Thin Solid Film. 2002, 409, 138–146. [Google Scholar] [CrossRef]
- Knisley, T.J.; Kalutarage, L.C.; Winter, C.H. Precursors and Chemistry for the Atomic Layer Deposition of Metallic First Row Transition Metal Films. Coord. Chem. Rev. 2013, 257, 3222–3231. [Google Scholar] [CrossRef]
- Johnson, R.W.; Hultqvist, A.; Bent, S.F. A Brief Review of Atomic Layer Deposition: From Fundamentals to Applications. Mater. Today 2014, 17, 236–246. [Google Scholar] [CrossRef]
- Ponraj, J.S.; Attolini, G.; Bosi, M. Review on Atomic Layer Deposition and Applications of Oxide Thin Films. Crit. Rev. Solid State Mater. Sci. 2013, 38, 203–233. [Google Scholar] [CrossRef]
- Onn, T.M.; Küngas, R.; Fornasiero, P.; Huang, K.; Gorte, R.J. Atomic Layer Deposition on Porous Materials: Problems with Conventional Approaches to Catalyst and Fuel Cell Electrode Preparation. Inorganics 2018, 6, 34. [Google Scholar] [CrossRef]
- Fiorentino, G.; Vollebregt, S.; Tichelaar, F.D.; Ishihara, R.; Sarro, P.M. Impact of the Atomic Layer Deposition Precursors Diffusion on Solid-State Carbon Nanotube Based Supercapacitors Performances. Nanotechnology 2015, 26, 064002. [Google Scholar] [CrossRef] [PubMed]
- Marichy, C.; Pinna, N. Carbon-Nanostructures Coated/Decorated by Atomic Layer Deposition: Growth and Applications. Coord. Chem. Rev. 2013, 257, 3232–3253. [Google Scholar] [CrossRef]
- Guan, C.; Wang, J. Recent Development of Advanced Electrode Materials by Atomic Layer Deposition for Electrochemical Energy Storage. Adv. Sci. 2016, 3, 1500405. [Google Scholar] [CrossRef]
- Rasteiro, L.F.; Motin, M.A.; Vieira, L.H.; Assaf, E.M.; Zaera, F. Growth of ZrO2 Films on Mesoporous Silica Sieve via Atomic Layer Deposition. Thin Solid Film. 2023, 768, 139716. [Google Scholar] [CrossRef]
- Niinistö, J.; Kukli, K.; Kariniemi, M.; Ritala, M.; Leskelä, M.; Blasco, N.; Pinchart, A.; Lachaud, C.; Laaroussi, N.; Wang, Z.; et al. Novel Mixed Alkylamido-Cyclopentadienyl Precursors for ALD of ZrO2 Thin Films. J. Mater. Chem. 2008, 18, 5243–5247. [Google Scholar] [CrossRef]
- Shim, J.H.; Chao, C.-C.; Huang, H.; Prinz, F.B. Atomic Layer Deposition of Yttria-Stabilized Zirconia for Solid Oxide Fuel Cells. Chem. Mater. 2007, 19, 3850–3854. [Google Scholar] [CrossRef]
- Sempel, J.D.; Kaariainen, M.-L.; Colleran, T.A.; Lifschitz, A.M.; George, S.M. Ultrathin ZrO2 Thickness Control on TiO2/ZrO2 Core/Shell Nanoparticles Using ZrO2 Atomic Layer Deposition and Etching. J. Vac. Sci. Technol. A 2024, 42, 052604. [Google Scholar] [CrossRef]
- Fan, M.; Ji, Y.; Lawal, A.; Abdelrahman, O.A.; Gorte, R.J.; Vohs, J.M. Site and Structural Requirements for the Dehydra-Decyclization of Cyclic Ethers on ZrO2. Catalysts 2022, 12, 902. [Google Scholar] [CrossRef]
- Fan, M.; Wang, C.-Y.; Gorte, R.J.; Vohs, J.M. Synthesis of Lewis Acid Sites in SBA-15 and Amorphous Silica Using Vapor Phase Infiltration of Zr and Sn. Catal. Lett. 2024, 154, 2725–2734. [Google Scholar] [CrossRef]
- Sundqvist, J.; Lu, J.; Ottosson, M.; Hårsta, A. Growth of SnO2 Thin Films by Atomic Layer Deposition and Chemical Vapour Deposition: A Comparative Study. Thin Solid Film. 2006, 514, 63–68. [Google Scholar] [CrossRef]
- Ramachandran, R.K.; Dendooven, J.; Botterman, J.; Pulinthanathu Sree, S.; Poelman, D.; Martens, J.A.; Poelman, H.; Detavernier, C. Plasma Enhanced Atomic Layer Deposition of Ga2O3 Thin Films. J. Mater. Chem. A 2014, 2, 19232–19238. [Google Scholar] [CrossRef]
- Onn, T.M.; Arroyo-Ramirez, L.; Monai, M.; Oh, T.-S.; Talati, M.; Fornasiero, P.; Gorte, R.J.; Khader, M.M. Modification of Pd/CeO2 Catalyst by Atomic Layer Deposition of ZrO2. Appl. Catal. B Environ. 2016, 197, 280–285. [Google Scholar] [CrossRef]
- Onn, T.M.; Zhang, S.; Arroyo-Ramirez, L.; Xia, Y.; Wang, C.; Pan, X.; Graham, G.W.; Gorte, R.J. High-Surface-Area Ceria Prepared by ALD on Al2O3 Support. Appl. Catal. B Environ. 2017, 201, 430–437. [Google Scholar] [CrossRef]
Component | Ligand | Growth Rate on Carbon per Cycle |
---|---|---|
ZrO2 | TDMA | 1.3 × 1018 atoms/m2 |
SnO2 | Chloride | 1.0 × 1017 atoms/m2 |
Ga2O3 | TMHD | 4.0 × 1017 atoms/m2 |
Pt | acac | 1.3 × 1018 atoms/m2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, M.; Shen, K.; Gorte, R.J.; Vohs, J.M. Modification of High-Surface-Area Carbons Using Self-Limited Atomic Layer Deposition. Catalysts 2024, 14, 786. https://doi.org/10.3390/catal14110786
Fan M, Shen K, Gorte RJ, Vohs JM. Modification of High-Surface-Area Carbons Using Self-Limited Atomic Layer Deposition. Catalysts. 2024; 14(11):786. https://doi.org/10.3390/catal14110786
Chicago/Turabian StyleFan, Mengjie, Kai Shen, Raymond J. Gorte, and John M. Vohs. 2024. "Modification of High-Surface-Area Carbons Using Self-Limited Atomic Layer Deposition" Catalysts 14, no. 11: 786. https://doi.org/10.3390/catal14110786
APA StyleFan, M., Shen, K., Gorte, R. J., & Vohs, J. M. (2024). Modification of High-Surface-Area Carbons Using Self-Limited Atomic Layer Deposition. Catalysts, 14(11), 786. https://doi.org/10.3390/catal14110786