Degradation of Tetracycline (TC) by ZrO2-3DG/PMS System: Revealing the Role of Defects in the Conditions of Light Irradiation and Sulfate Accumulation
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemical Reagents
3.2. Preparation of ZrO2-3DG
3.3. Preparation of D-ZrO2-3DG
3.4. Characterization
3.5. The Degradation Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Z.; Li, M.; Zhang, Z.; Li, P.; Zang, Y.; Liu, X. Antibiotics in aquatic environments of China: A review and meta-analysis. Ecotoxicol. Environ. Saf. 2020, 199, 110668. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Yin, H.; Varis, O. Impacts of industrial transition on water use intensity and energy-related carbon intensity in China: A spatio-temporal analysis during 2003–2012. Appl. Energy 2016, 183, 1112–1122. [Google Scholar] [CrossRef]
- Uddin, T.M.; Chakraborty, A.J.; Khusro, A.; Zidan, B.M.R.M.; Mitra, S.; Bin Emran, T.; Dhama, K.; Ripon, M.K.H.; Gajdacs, M.; Sahibzada, M.U.K.; et al. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. J. Infect. Public Health 2021, 14, 1750–1766. [Google Scholar] [CrossRef]
- Li, S.; Wu, Y.; Zheng, H.; Li, H.; Zheng, Y.; Nan, J.; Ma, J.; Nagarajan, D.; Chang, J.-S. Antibiotics degradation by advanced oxidation process (AOPs): Recent advances in ecotoxicity and antibiotic-resistance genes induction of degradation products. Chemosphere 2023, 311, 136977. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem. Eng. J. 2018, 334, 1502–1517. [Google Scholar] [CrossRef]
- Zheng, X.; Niu, X.; Zhang, D.; Lv, M.; Ye, X.; Ma, J.; Lin, Z.; Fu, M. Metal-based catalysts for persulfate and peroxymonosulfate activation in heterogeneous ways: A review. Chem. Eng. J. 2022, 429, 132323. [Google Scholar] [CrossRef]
- Peng, Y.; Tang, H.; Yao, B.; Gao, X.; Yang, X.; Zhou, Y. Activation of peroxymonosulfate (PMS) by spinel ferrite and their composites in degradation of organic pollutants: A Review. Chem. Eng. J. 2021, 414, 128800. [Google Scholar] [CrossRef]
- Zhao, W.; Shen, Q.; Nan, T.; Zhou, M.; Xia, Y.; Hu, G.; Zheng, Q.; Wu, Y.; Bian, T.; Wei, T.; et al. Cobalt-based catalysts for heterogeneous peroxymonosulfate (PMS) activation in degradation of organic contaminants: Recent advances and perspectives. J. Alloys Compd. 2023, 958, 170370. [Google Scholar] [CrossRef]
- Ghanbari, F.; Moradi, M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review. Chem. Eng. J. 2017, 310, 41–62. [Google Scholar] [CrossRef]
- Huang, Y.-X.; Chen, K.-Y.; Wang, S.-X.; Zhao, S.-Y.; Yu, L.-Q.; Huang, B.-C.; Jin, R.-C. Synergizing electron transfer with singlet oxygen to expedite refractory contaminant mineralization in peroxymonosulfate based heterogeneous oxidation system. Appl. Catal. B-Environ. 2024, 341, 123324. [Google Scholar] [CrossRef]
- Xiao, Z.-J.; Feng, X.-C.; Shi, H.-T.; Zhou, B.-Q.; Wang, W.-Q.; Ren, N.-Q. Why the cooperation of radical and non-radical pathways in PMS system leads to a higher efficiency than a single pathway in tetracycline degradation. J. Hazard. Mater. 2022, 424, 127247. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Wei, X.; Lu, W.; Wang, H.; Liu, J.; Zhang, R.; Wang, H.; Wang, J. Multi-dimensional induction and analysis of singlet oxygen oxidation in persulfate-based catalytic oxidation systems. Sep. Purif. Technol. 2024, 332, 125811. [Google Scholar] [CrossRef]
- Qi, C.; Liu, X.; Lin, C.; Zhang, H.; Li, X.; Ma, J. Activation of peroxymonosulfate by microwave irradiation for degradation of organic contaminants. Chem. Eng. J. 2017, 315, 201–209. [Google Scholar] [CrossRef]
- Loffredo, C.M.; Dennehy, M.; Alvarez, M. Fe-Mn/ZrO2 catalysts: Sulfate-based-advanced oxidation process for the degradation of olive oil industry model pollutants. Catal. Commun. 2023, 174, 106578. [Google Scholar] [CrossRef]
- Patel, A.; Arkatkar, A.; Singh, S.; Rabbani, A.; Medina, J.D.S.; Ong, E.S.; Habashy, M.M.; Jadhav, D.A.; Rene, E.R.; Mungray, A.A.; et al. Physico-chemical and biological treatment strategies for converting municipal wastewater and its residue to resources. Chemosphere 2021, 282, 130881. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Reactive species in advanced oxidation processes: Formation, identification and reaction mechanism. Chem. Eng. J. 2020, 401, 126158. [Google Scholar] [CrossRef]
- Hao, Z.; Huang, Y.; Wang, Y.; Meng, X.; Wang, X.; Liu, X. Enhanced degradation and mineralization of estriol over ZrO2/OMS-2 nanocomposite: Kinetics, pathway and mechanism. Chemosphere 2022, 308, 136521. [Google Scholar] [CrossRef] [PubMed]
- Jia, M.; Fan, Y.; Sun, Z.; Hu, X. ZrO2 supported perovskite activation of peroxymonosulfate for sulfamethoxazole removal from aqueous solution. Chemosphere 2022, 298. [Google Scholar] [CrossRef]
- Ashraf, G.A.; Rasool, R.T.; Ul Rasool, R.; Saleem, M.F.; Ali, J.; Ghernaout, D.; Hassan, M.; Aljuwayid, A.M.; Habila, M.A.; Guo, H. Photocatalytic stimulation of peroxymonosulfate by novel MoO3@ZrO2 with Z-scheme heterojunction for diclofenac sodium degradation. J. Water Process Eng. 2023, 51, 103435. [Google Scholar] [CrossRef]
- Dey, T.; Naughton, D. Cleaning and anti-reflective (AR) hydrophobic coating of glass surface: A review from materials science perspective. J. Sol-Gel Sci. Technol. 2016, 77, 1–27. [Google Scholar] [CrossRef]
- Bai, Q.; Liu, X.; Sun, H.; Li, Y.; Chen, J.; Yuan, X.; Zhang, P. Nonequilibrium Plasma Cleaning of Organic Contaminants on the Surface of Diffraction Gratings. Ieee Trans. Plasma Sci. 2023, 51, 3008–3017. [Google Scholar] [CrossRef]
- Wang, M.; Kang, J.; Li, S.; Zhang, J.; Tang, Y.; Liu, S.; Liu, J.; Tang, P. Electro-assisted heterogeneous activation of peroxymonosulfate by g-C3N4 under visible light irradiation for tetracycline degradation and its mechanism. Chem. Eng. J. 2022, 436, 135278. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, L.; Lei, J.; Liu, Y.; Zhang, J. Photo-Fenton degradation of phenol by CdS/rGO/Fe2+ at natural pH with in situ-generated H2O2. Appl. Catal. B-Environ. 2019, 241, 367–374. [Google Scholar] [CrossRef]
- Krishnakumar, A.; Srinivasan, P.; Kulandaisamy, A.J.; Babu, K.J.; Rayappan, J.B.B. A facile microwave synthesis of rGO, ZrO2 and rGO-ZrO2 nanocomposite and their room temperature gas sensing properties. J. Mater. Sci.-Mater. Electron. 2019, 30, 17094–17105. [Google Scholar] [CrossRef]
- Mylarappa, M.; Chandruvasan, S.; Harisha, K.S.; Krishnamurthy, G. Graphene Loaded ZrO2 Nanocomposite for Antioxidant, Dye Removal, Electrochemical and Green Sensor Studies. Chemistryselect 2024, 9, e202401218. [Google Scholar] [CrossRef]
- Ali, T.T.; Narasimharao, K.; Basahel, S.N.; Mokhtar, M.; Alsharaeh, E.H.; Mahmoud, H.A. Template Assisted Microwave Synthesis of rGO-ZrO2 Composites: Efficient Photocatalysts Under Visible Light. J. Nanosci. Nanotechnol. 2019, 19, 5177–5188. [Google Scholar] [CrossRef]
- Kallawar, G.A.; Barai, D.P.; Bhanvase, B.A. Bismuth titanate based photocatalysts for degradation of persistent organic compounds in wastewater: A comprehensive review on synthesis methods, performance as photocatalyst and challenges. J. Clean. Prod. 2021, 318, 128563. [Google Scholar] [CrossRef]
- Lackner, P.; Zou, Z.; Mayr, S.; Diebold, U.; Schmid, M. Using photoelectron spectroscopy to observe oxygen spillover to zirconia. Phys. Chem. Chem. Phys. 2019, 21, 17613–17620. [Google Scholar] [CrossRef] [PubMed]
- Teeparthi, S.R.; Awin, E.W.; Kumar, R. Dominating role of crystal structure over defect chemistry in black and white zirconia on visible light photocatalytic activity. Sci. Rep. 2018, 8, 5541. [Google Scholar] [CrossRef]
- Reddy, C.V.; Babu, B.; Reddy, I.N.; Shim, J. Synthesis and characterization of pure tetragonal ZrO2 nanoparticles with enhanced photocatalytic activity. Ceram. Int. 2018, 44, 6940–6948. [Google Scholar] [CrossRef]
- Thakur, S.; Mutreja, V.; Kaur, R. Synergistic integration of ZrO2-enriched reduced graphene oxide-based nanostructures for advanced photodegradation of tetracycline hydrochloride. Environ. Sci. Pollut. Res. Int. 2024, 31, 31562–31576. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, J.; Wang, X.; Ye, Z.; Chen, F. Degradation of Tetracycline (TC) by ZrO2-3DG/PMS System: Revealing the Role of Defects in the Conditions of Light Irradiation and Sulfate Accumulation. Catalysts 2024, 14, 846. https://doi.org/10.3390/catal14120846
Duan J, Wang X, Ye Z, Chen F. Degradation of Tetracycline (TC) by ZrO2-3DG/PMS System: Revealing the Role of Defects in the Conditions of Light Irradiation and Sulfate Accumulation. Catalysts. 2024; 14(12):846. https://doi.org/10.3390/catal14120846
Chicago/Turabian StyleDuan, Jixiang, Xin Wang, Zhihong Ye, and Fuming Chen. 2024. "Degradation of Tetracycline (TC) by ZrO2-3DG/PMS System: Revealing the Role of Defects in the Conditions of Light Irradiation and Sulfate Accumulation" Catalysts 14, no. 12: 846. https://doi.org/10.3390/catal14120846
APA StyleDuan, J., Wang, X., Ye, Z., & Chen, F. (2024). Degradation of Tetracycline (TC) by ZrO2-3DG/PMS System: Revealing the Role of Defects in the Conditions of Light Irradiation and Sulfate Accumulation. Catalysts, 14(12), 846. https://doi.org/10.3390/catal14120846