Nano-Sheets of CsNiVF6 Pyrochlore Electrocatalyst for Enhanced Urea Oxidation and Hydrogen Green Production Reactions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural and Surface Morphology Characterization of the CsNiVF6 Catalyst
2.2. Electrochemical Behaviour and Activity of the CsNiVF6 Pyrochlore Electrocatalyst for Urea Oxidation
2.3. Hydrogen Production Rate Using CsNiVF6 Anode during Urea Electrolysis
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Synthesis of CsNiVF6 Catalyst
3.3. Physiochemical Characterizations of CsNiVF6 Catalyst
3.4. Electrochemical Characterization Measurements
3.5. The Volumetric Determination of the Hydrogen Gas Production Rate
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, J.; Wei, C.; Huang, Z.-F.; Liu, C.; Zeng, L.; Wang, X.; Xu, Z.J. A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 2020, 49, 2196–2214. [Google Scholar] [CrossRef]
- Xia, W.; Mahmood, A.; Liang, Z.; Zou, R.; Guo, S. Earth-Abundant Nanomaterials for Oxygen Reduction. Angew. Chem. Int. Ed. 2016, 55, 2650–2676. [Google Scholar] [CrossRef]
- Wang, Z.L.; Xu, D.; Xu, J.J.; Zhang, X.B. Oxygen Electrocatalysts in Metal-Air Batteries: From Aqueous to Nonaqueous Electrolytes. Chem. Soc. Rev. 2014, 43, 7746–7786. [Google Scholar] [CrossRef]
- Song, H.; Luo, S.; Huang, H.; Deng, B.; Ye, J. Solar-Driven Hydrogen Production: Recent Advances, Challenges, and Future Perspectives. ACS Energy Lett. 2022, 7, 1043–1065. [Google Scholar] [CrossRef]
- Zhang, Y.-L.; Goh, K.; Zhao, L.; Sui, X.-L.; Gong, X.-F.; Cai, J.-J.; Zhou, Q.-Y.; Zhang, H.-D.; Li, L.; Kong, F.-R.; et al. Advanced non-noble materials in bifunctional catalysts for ORR and OER toward aqueous metal–air batteries. Nanoscale 2020, 12, 21534–21559. [Google Scholar] [CrossRef]
- Burke, M.S.; Enman, L.J.; Batchellor, A.S.; Zou, S.; Boettcher, S.W. Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)Hydroxides: Activity Trends and Design Principles. Chem. Mater. 2015, 27, 7549–7558. [Google Scholar] [CrossRef]
- Guan, D.; Wang, B.; Zhang, J.; Shi, R.; Jiao, K.; Li, L.; Wang, Y.; Xie, B.; Zhang, Q.; Yu, J.; et al. Hydrogen society: From present to future. Energy Environ. Sci. 2023, 16, 4926–4943. [Google Scholar] [CrossRef]
- Lewis, N.S.; Nocera, D.G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735. [Google Scholar] [CrossRef]
- Tahir, M.; Pan, L.; Idrees, F.; Zhang, X.; Wang, L.; Zou, J.J.; Wang, Z.L. Electrocatalytic Oxygen Evolution Reaction for Energy Conversion and Storage: A Comprehensive Review. Nano Energy 2017, 37, 136–157. [Google Scholar] [CrossRef]
- Jamesh, M.I. Recent progress on earth abundant hydrogen evolution reaction and oxygen evolution reaction bifunctional electrocatalyst for overall water splitting in alkaline media. J. Power Sources 2016, 333, 213–236. [Google Scholar] [CrossRef]
- Boggs, B.K.; King, R.L.; Botte, G.G. Urea electrolysis: Direct hydrogen production from urine. Chem. Commun. 2009, 32, 4859. [Google Scholar] [CrossRef]
- Wang, G.M.; Ling, Y.C.; Lu, X.H.; Wang, H.Y.; Qian, F.; Tong, Y.X.; Li, Y. A review on nanomaterials for environmental remediation. Energy Environ. Sci. 2012, 5, 8215. [Google Scholar] [CrossRef]
- Lan, R.; Tao, S.W.; Irvine, J.T.S. A direct urea fuel cell–power from fertilizer and waste. Energy Environ. Sci. 2010, 3, 438. [Google Scholar] [CrossRef]
- Ding, R.; Qi, L.; Jia, M.J.; Wang, H.Y. Facile synthesis of mesoporous spinel NiCo2O4 nanostructures as highly efficient electrocatalysts for urea electro-oxidation. Nanoscale 2014, 6, 1369. [Google Scholar] [CrossRef]
- Kakati, N.; Maiti, J.; Lee, K.S.; Viswanathan, B.; Yoon, Y.S. Electrochemical oxidation of urea on electrodeposited nickel nanoparticles for potential use in a direct urea fuel cell. Electrochim. Acta 2017, 240, 175. [Google Scholar] [CrossRef]
- Zhu, D.D.; Guo, C.X.; Liu, J.L.; Wang, L.; Du, Y.; Qiao, S.Z. Two-dimensional metal–organic frameworks with high oxidation states for efficient electrocatalytic urea oxidation. Chem. Commun. 2017, 53, 10906. [Google Scholar] [CrossRef]
- Singh, R.K.; Schechter, A. Electrochemical investigation of urea oxidation reaction on β Ni(OH)2 and Ni/Ni(OH)2. Electrochim. Acta 2018, 278, 405–411. [Google Scholar] [CrossRef]
- Yu, E.H.; Wang, X.; Krewer, U.; Li, L.; Scott, K. Direct oxidation alkaline fuel cells: From materials to systems. Energy Environ. Sci. 2012, 5, 5668–5680. [Google Scholar] [CrossRef]
- Yan, W.; Wang, D.; Botte, G.G. Electrochemical decomposition of urea with Ni-based catalysts. Appl. Catal. B 2012, 127, 221–226. [Google Scholar] [CrossRef]
- Kojima, S.; Bohner, A.; von Wiren, N. Molecular mechanisms of urea transport in plants. J. Membr. Biol. 2006, 212, 83–91. [Google Scholar] [CrossRef]
- Vedharathinam, V.; Botte, G.G. Understanding the electro-catalytic oxidation mechanism of urea on nickel electrodes in alkaline medium. Electrochim. Acta 2012, 81, 292–300. [Google Scholar] [CrossRef]
- Vedharathinam, V.; Botte, G.G. Direct evidence of the mechanism for the electro-oxidation of urea on Ni(OH)2 catalyst in alkaline medium. Electrochim. Acta 2013, 108, 660–665. [Google Scholar] [CrossRef]
- Lu, S.; Zheng, X.; Fang, L.; Yin, F.; Liu, H. Rational engineering design of nickel hydroxides for urea oxidation reaction: A mini review. Electrochem. Commun. 2023, 157, 107599. [Google Scholar] [CrossRef]
- Yu, J.; Li, Z.; Wang, C.; Xu, X.; Liu, T.; Chen, D.; Shao, Z.; Ni, M. Engineering advanced noble-metal-free electrocatalysts for energy-saving hydrogen production from alkaline water via urea electrolysis. J. Colloid Interface Sci. 2024, 661, 629–661. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Yan, W.; Botte, G.G. Exfoliated nickel hydroxide nanosheets for urea electrolysis. Electrochem. Commun. 2011, 13, 1135. [Google Scholar] [CrossRef]
- Ji, R.Y.; Chan, D.S.; Jow, J.J.; Wu, M.S. Formation of open-ended nickel hydroxide nanotubes on three-dimensional nickel framework for enhanced urea electrolysis. Electrochem. Commun. 2013, 29, 21. [Google Scholar] [CrossRef]
- Liang, Y.H.; Liu, Q.; Asiri, A.M.; Sun, X.P. Enhanced electrooxidation of urea using NiMoO4·xH2O nanosheet arrays on Ni foam as anode. Electrochim. Acta 2015, 153, 456. [Google Scholar] [CrossRef]
- Zhu, X.J.; Dou, X.Y.; Dai, J.; An, X.D.; Guo, Y.Q.; Zhang, L.D.; Tao, S.; Zhao, J.Y.; Chu, W.S.; Zeng, X.C.; et al. Metallic Nickel Hydroxide Nanosheets Give Superior Electrocatalytic Oxidation of Urea for Fuel Cells. Chem. Int. Ed. 2016, 55, 12465. [Google Scholar] [CrossRef] [PubMed]
- Saguì, N.A.; Ström, P.; Edvinsson, T.; Pehlivan, İ.B. Nickel Site Modification by High-Valence Doping: Effect of Tantalum Impurities on the Alkaline Water Electro-Oxidation by NiO Probed by Operando Raman Spectroscopy. ACS Catal. 2022, 12, 6506–6516. [Google Scholar] [CrossRef]
- Yan, W.; Wang, D.; Diaz, L.A.; Botte, G.G. Nickel nanowires as effective catalysts for urea electro-oxidation. Electrochim. Acta 2014, 134, 266–271. [Google Scholar] [CrossRef]
- Wang, D.; Yan, W.; Vijapur, S.H.; Botte, G.G. Enhanced electrocatalytic oxidation of urea based on nickel hydroxide nanoribbons. J. Power Sources 2012, 217, 498–502. [Google Scholar] [CrossRef]
- Ghanem, M.A.; Al-Mayouf, A.M.; Singh, J.P.; Arunachalam, P. Concurrent deposition and exfoliation of nickel hydroxide nanoflakes using liquid crystal template and their activity for urea electrooxidation in alkaline medium. Electrocatalysis 2017, 8, 16–26. [Google Scholar] [CrossRef]
- Shen, Z.; Qu, M.; Shi, J.; Oropeza, F.E.; de la Peña O’Shea, V.A.; Gorni, G.; Tian, C.M.; Hofmann, J.P.; Cheng, J.; Li, J.; et al. Correlating the electronic structure of perovskite La1-xSrxCoO3 with activity for the oxygen evolution reaction: The critical role of Co 3d hole state. J. Energy Chem. 2022, 65, 637–645. [Google Scholar] [CrossRef]
- Ghanem, M.A.; Amer, M.S.; Arunachalam, P.; Al-Mayouf, A.M.; Weller, M.T. Role of rhodium doping into lanthanum cobalt oxide (LaCoO3) perovskite and the induced bifunctional activity of oxygen evolution and reduction reactions in alkaline medium. Arab. J. Chem. 2022, 15, 104256. [Google Scholar] [CrossRef]
- Suntivich, J.; May, K.J.; Gasteiger, H.A.; Goodenough, J.B.; Shao-Horn, Y. A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles. Science 2011, 334, 1383–1385. [Google Scholar] [CrossRef]
- Xu, X.; Pan, Y.; Zhong, Y.; Ran, R.; Shao, Z. Ruddlesden–Popper perovskites in electrocatalysis. Mater. Horiz. 2020, 7, 2519. [Google Scholar] [CrossRef]
- Malkhandi, S.; Trinh, P.; Manohar, A.K.; Manivannan, A.; Balasubramanian, M.; Prakash, G.K.S.; Narayanan, S.R. Design Insights for Tuning the Electrocatalytic Activity of Perovskite Oxides for the Oxygen Evolution Reaction. J. Phys. Chem. C 2015, 119, 8004–8013. [Google Scholar] [CrossRef]
- Tanaka, H.; Misono, M. Advances in Designing Perovskite Catalysts. Curr. Opin. Solid State Mater. Sci. 2001, 5, 381–387. [Google Scholar] [CrossRef]
- Harris, J. Low-Cost Oxygen Electrode Material, The Flow of Non-Newtonian Fluids under a Varying Pressure Gradient. Nature 1970, 226, 848–849. [Google Scholar] [CrossRef]
- Ghanem, M.A.; Amer, M.S.; Al-Mayouf, A.M.; Arunachalam, P.; Weller, M.T. Halide-Doping Effect of Strontium Cobalt Oxide Electrocatalyst and the Induced Activity for Oxygen Evolution in an Alkaline Solution. Catalysts 2021, 11, 1408. [Google Scholar] [CrossRef]
- Gao, W.; Wang, C.; Ma, F.; Wen, D. Highly active electrocatalysts of CeO2 modified NiMoO4 nanosheet arrays towards water and urea oxidation reactions. Electrochim. Acta 2019, 320, 134608. [Google Scholar] [CrossRef]
- Yu, Z.-Y.; Lang, C.-C.; Gao, M.-R.; Chen, Y.; Fu, Q.-Q.; Duan, Y.; Yu, S.-H. Ni−Mo−O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion via urea electrolysis. Energy Environ. Sci. 2018, 11, 1890–1897. [Google Scholar] [CrossRef]
- Galal, A.; Atta, N.F.; Hefnawy, M.A. Voltammetry study of electrocatalytic activity of lanthanum nickel perovskite nanoclusters-based composite catalyst for effective oxidation of urea in alkaline medium. Synth. Met. 2020, 266, 116372. [Google Scholar] [CrossRef]
- Yang, D.; Yang, L.; Zhong, L.; Yu, X.; Feng, L. Urea electrooxidation efficiently catalyzed by nickel-molybdenum oxide nanorods. Electrochim. Acta 2019, 295, 524–531. [Google Scholar] [CrossRef]
- Mefford, J.T.; Hardin, W.G.; Alexander, C.T.; Johnston, K.P.; Stevenson, K.J. Nanostructured LaNiO3 Perovskite Electrocatalyst for Enhanced Urea Oxidation. ACS Catal. 2016, 6, 5044–5051. [Google Scholar] [CrossRef]
- Hagenmuller, P. Inorganic Solid Fluorides Chemistry and Physics; Academic Press: New York, NY, USA, 1985. [Google Scholar]
- Kim, S.W.; Kim, S.-H.; Halasyamani, P.S.; Green, M.A.; Bhatti, K.P.; Leighton, C.; Dase, H.; Fennie, C.J. RbFe2+Fe3+F6: Synthesis, structure, and characterization of a new charge ordered magnetically frustrated pyrochlore-related mixed-metal fluoride. Chem. Sci. 2012, 3, 741–751. [Google Scholar] [CrossRef]
- Weller, M.T.; Hughes, R.W.; Rooke, J.; Kneea, C.S.; Reading, J. The pyrochlore family: A potential panacea for the frustrated perovskite chemist. Dalton Trans. 2004, 2004, 3032–3041. [Google Scholar] [CrossRef]
- Lemoine, K.; Lhoste, J.; Hémon-Ribaud, A.; Heidary, N.; Maisonneuve, V.; Guiet, A.; Kornienko, N. Investigation of mixed-metal (oxy) fluorides as a new class of water oxidation electrocatalysts. Chem. Sci. 2019, 10, 9209–9218. [Google Scholar] [CrossRef]
- Li, M.; Liu, H.; Feng, L. Fluoridation-induced high-performance catalysts for the oxygen evolution reaction: A mini review. Electrochem. Commun. 2021, 122, 10690. [Google Scholar] [CrossRef]
- Zhang, H.; Guan, D.; Gu, Y.; Xu, H.; Wang, C.; Shao, Z.; Guo, Y. Tuning synergy between nickel and iron in Ruddlesden–Popper perovskites through controllable crystal dimensionalities towards enhanced oxygen-evolving activity and stability. Carbon Energy 2024, e465. [Google Scholar] [CrossRef]
- Tang, J.; Xu, X.; Tang, T.; Zhong, Y.; Shao, Z. Perovskite-Based Electrocatalysts for Cost-Effective Ultrahigh-Current-Density Water Splitting in Anion Exchange Membrane Electrolyzer Cell. Small Methods 2022, 6, 2201099. [Google Scholar] [CrossRef] [PubMed]
- Aladeemy, S.A.; Al-Mayouf, A.M.; Amer, M.S.; Alotaibia, N.H.; Weller, M.T.; Ghanem, M.A. Structure and electrochemical activity of nickel aluminium fluoride nanosheets during urea electro-oxidation in an alkaline solution. RSC Adv. 2021, 11, 3190–3201. [Google Scholar] [CrossRef] [PubMed]
- Masachchi, L.W.; Keerthisinghe, N.; Morrison, G.; Berseneva, A.A.; Smith, M.D.; zur Loye, H.-C. Crystal Growth and Magnetism of Transition Metal Pyrochlore Fluorides. Inorg. Chem. 2023, 62, 13793–13801. [Google Scholar] [CrossRef] [PubMed]
- Cheek, G.T.; O’Grady, W.E. Redox behavior of the nickel oxide electrode system: Quartz crystal microbalance studies. J. Electroanal. Chem. 1997, 421, 173–177. [Google Scholar] [CrossRef]
- Wang, D.; Liu, S.; Gan, Q.; Tian, J.; Isimjan, T.T.; Yang, X. Two-dimensional nickel hydroxide nanosheets with high content of nickel(III) species towards superior urea electro-oxidation. Electroanal. Chem. 2018, 829, 81. [Google Scholar] [CrossRef]
- Gan, Q.; Cheng, X.; Chen, J.; Wang, D.; Wang, B.; Tain, J.; Isimjan, T.; Yang, X. Temperature effect on crystallinity and chemical states of nickel hydroxide as alternative superior catalyst for urea electrooxidation. Electrochim. Acta 2019, 301, 47. [Google Scholar] [CrossRef]
- Wu, M.S.; Lin, G.W.; Yang, R.S. Hydrothermal growth of vertically aligned ordered mesoporous nickel oxide nanosheets on three-dimensional nickel framework for electrocatalytic oxidation of urea in alkaline medium. J. Power Sources 2014, 272, 711. [Google Scholar] [CrossRef]
Element | wt. % | Atomic% | Mole Ratio | wt. % | Atomic% | Mole Ratio |
---|---|---|---|---|---|---|
Condition | As-Prepared | After Use in Electrolysis | ||||
Cs | 36.26 | 10.65 | 1.0 | 1.48 | 0.30 | 0.01 |
Ni | 16.46 | 10.93 | 1.0 | 34.72 | 15.84 | 0.60 |
V | 14.5 | 11.08 | 1.0 | 14.51 | 7.63 | 0.28 |
F | 32.78 | 67.34 | 6.0 | 23.79 | 33.54 | 1.25 |
O | -- | -- | -- | 25.50 | 42.69 | 1.60 |
Potential/V vs. RHE | Rs/ohm | Cdl/mF | Rct, ohm |
---|---|---|---|
1.45 | 1.75 | 17.4 | 5.50 |
1.55 | 1.80 | 21.6 | 3.74 |
1.65 | 1.85 | 28.3 | 3.25 |
Anodic Materials | Mass Activity, mA mg−1 (Specific Activity, mA/cm2) vs. RHE | Reference |
---|---|---|
Ni3+-rich Ni(OH)2/C–NH2/GCE | (91.72) a at 1.65 V c | [56] |
Nickel hydroxide nanoflakes | ~1295 a at 1.55 V c, 1.0 M NaOH | [32] |
KNiAlF6 nanosheets | ~395 a at 1.65 V c | [53] |
β-Ni(OH)2-CNTs (80 °C)/hydrothermal reaction | (98.5) a at 1.65 V c | [57] |
S-doped β-Ni(OH)2 nanosheet | (~37) a at 1.60 V c | [28] |
Ni foam-supported OM-NiO nanosheets | 450 b at 1.65 V c | [58] |
CsNiVF6 nanosheet | ~1500 a at 1.8 V c | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghanem, M.A.; Al-Mayouf, A.M.; Alfudhayli, K.A.; Abdelkader, M.O. Nano-Sheets of CsNiVF6 Pyrochlore Electrocatalyst for Enhanced Urea Oxidation and Hydrogen Green Production Reactions. Catalysts 2024, 14, 325. https://doi.org/10.3390/catal14050325
Ghanem MA, Al-Mayouf AM, Alfudhayli KA, Abdelkader MO. Nano-Sheets of CsNiVF6 Pyrochlore Electrocatalyst for Enhanced Urea Oxidation and Hydrogen Green Production Reactions. Catalysts. 2024; 14(5):325. https://doi.org/10.3390/catal14050325
Chicago/Turabian StyleGhanem, Mohamed A., Abdullah M. Al-Mayouf, Khalaf A. Alfudhayli, and Mohamed O. Abdelkader. 2024. "Nano-Sheets of CsNiVF6 Pyrochlore Electrocatalyst for Enhanced Urea Oxidation and Hydrogen Green Production Reactions" Catalysts 14, no. 5: 325. https://doi.org/10.3390/catal14050325