Recent Advances in Vanadium-Based Electrocatalysts for Hydrogen and Oxygen Evolution Reactions: A Review
Abstract
:1. Introduction
2. Fundamentals of the HER and OER
2.1. Mechanism of the HER
2.1.1. Reaction Mechanism of the HER under Acidic Conditions
2.1.2. Reaction Mechanism of the HER under Alkaline Conditions
2.2. Mechanism of the OER
2.2.1. Reaction Mechanism of the OER under Acidic Conditions
2.2.2. Reaction Mechanism of the OER under Alkaline Conditions
3. Vanadium-Based Electrocatalysts for the HER and OER
3.1. Vanadium-Based Oxides
3.1.1. HER Performance
3.1.2. OER Performance
3.2. Vanadium-Based Hydroxides
3.2.1. HER Performance
3.2.2. OER Performance
3.3. Vanadate
3.3.1. HER Performance
3.3.2. OER Performance
3.4. Vanadium-Based Dichalcogenides
3.4.1. Vanadium-Based Sulfides
HER Performance
OER Performance
3.4.2. Vanadium-Based Selenides
HER Performance
OER Performance
3.5. Vanadium-Based Nitrides
3.5.1. HER Performance
3.5.2. OER Performance
3.6. Vanadium-Based Carbides
3.6.1. HER Performance
3.6.2. OER Performance
3.7. Vanadium-Based Phosphides
3.7.1. HER Performance
3.7.2. OER Performance
4. Summary and Outlook
- It is recommended that new V-based water-splitting electrocatalysts, such as V-based phosphides and carbides, are further developed, along with exploring their potential applications in seawater electrolysis. Moreover, the testing conditions for V-based water-splitting electrocatalysts in the literature are often carried out at room temperature and in 1 M KOH solutions. However, higher temperatures (60–80 °C) and more concentrated alkaline environments (30 wt% KOH or 6 M KOH) are more relevant to the actual production process. Therefore, application-related conditions should be considered to comprehensively assess their suitability in the actual production process when conducting performance tests on V-based water-splitting electrocatalysts.
- Recent literature reports suggest that non-oxide/hydroxide V-based water-splitting electrocatalysts may act merely as precatalysts in the OER process, rather than being the true active species involved in the reaction. Therefore, it is necessary to employ a suite of in situ characterization techniques (such as in situ Raman, in situ FTIR, and in situ XPS) along with synchrotron radiation to further ascertain the actual active species of non-oxide/hydroxide V-based electrocatalysts during the OER process and to explore the role of elemental V therein.
- Developing bifunctional V-based nitrides and sulfides as electrocatalysts for overall water splitting presents significant challenges. We have found that vanadium-based sulfides and nitrides, particularly vanadium nitrides, exhibit excellent HER performance. However, due to the sluggish reaction kinetics of the OER, their OER performance is less satisfactory. Therefore, it is necessary to further optimize the adsorption of oxygen-containing intermediates for V-based nitrides and sulfides via doping engineering, surface modification, and other strategies, aiming to boost their OER performance for efficient overall water splitting.
- The stability of V-based electrocatalysts for the HER and OER reported so far is relatively good for small current densities. However, it is essential to recognize that the element V is soluble in aqueous electrolytes. Thus, it is essential to explore the stability of V-based electrocatalysts at high current densities. This issue can be considered from two perspectives: One is to inhibit the dissolution of V during the electrocatalysis process through carbon material encapsulation and valence engineering. Secondly, V-based water-splitting electrocatalysts with a superhydrophilic–superhydrophobic structure can be designed to prevent bubble blockage at the active sites, thereby enhancing stability.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, W.; Li, X.; Li, X.; Shao, J.; Yang, H.; Chai, X.; Hu, Q.; He, C. Crafting amorphous VO2–crystalline NiS2 heterostructures as bifunctional electrocatalysts for efficient water splitting: The different cocatalytic function of VO2. Chem. Eng. J. 2023, 470, 144146. [Google Scholar] [CrossRef]
- Wang, S.; Sun, L.; Iqbal, S. Green financing role on renewable energy dependence and energy transition in E7 economies. Renew. Energy 2022, 200, 1561–1572. [Google Scholar] [CrossRef]
- Ameer, W.; Ali, M.S.e.; Farooq, F.; Ayub, B.; Waqas, M. Renewable energy electricity, environmental taxes, and sustainable development: Empirical evidence from E7 economies. Environ. Sci. Pollut. Res. 2023. [Google Scholar] [CrossRef]
- Song, W.; Li, M.; Wang, C.; Lu, X. Electronic modulation and interface engineering of electrospun nanomaterials-based electrocatalysts toward water splitting. Carbon Energy 2021, 3, 101–128. [Google Scholar] [CrossRef]
- Pan, S.; Ma, Z.; Yang, W.; Dongyang, B.; Yang, H.; Lai, S.; Dong, F.; Yang, X.; Lin, Z. Magnesium incorporation activates perovskite cobaltites toward efficient and stable electrocatalytic oxygen evolution. Mater. Rep. Energy 2023, 3, 100212. [Google Scholar] [CrossRef]
- Sun, H.; Xu, X.; Kim, H.; Shao, Z.; Jung, W. Advanced electrocatalysts with unusual active sites for electrochemical water splitting. InfoMat 2024, 6, e12494. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, Q.; Yu, D. The future of hydrogen energy: Bio-hydrogen production technology. Int. J. Hydrogen Energy 2022, 47, 33677–33698. [Google Scholar] [CrossRef]
- Terlouw, T.; Bauer, C.; McKenna, R.; Mazzotti, M. Large-scale hydrogen production via water electrolysis: A techno-economic and environmental assessment. Energy Environ. Sci. 2022, 15, 3583–3602. [Google Scholar] [CrossRef]
- Panchenko, V.A.; Daus, Y.V.; Kovalev, A.A.; Yudaev, I.V.; Litti, Y.V. Prospects for the production of green hydrogen: Review of countries with high potential. Int. J. Hydrogen Energy 2023, 48, 4551–4571. [Google Scholar] [CrossRef]
- Li, H.; Xiao, Y.; Tian, X.; Xing, X.; Cao, M.; Wang, Y. A crystalline/amorphous FeCo alloy/FeCoNi-Pi bifunctional electrocatalyst for efficient overall water splitting. Inorg. Chem. Front. 2024. [Google Scholar] [CrossRef]
- Sonadia; Iqbal, Z.; Miran, W.; Ul-Hamid, A.; Ayub, K.S.; Azad, F. Enhanced Electrocatalytic Performance of Erbium-Incorporated Nickel-Based Metal–Organic Frameworks for Water Splitting. Energy Fuels 2024, 38, 5397–5406. [Google Scholar] [CrossRef]
- Yue, D.; Feng, T.; Zhu, Z.; Lu, S.; Yang, B. Ir Single Atom-Doped Ni2P Anchored by Carbonized Polymer Dots for Robust Overall Water Splitting. ACS Catal. 2024, 14, 3006–3017. [Google Scholar] [CrossRef]
- Mohili, R.; Hemanth, N.R.; Jin, H.; Lee, K.; Chaudhari, N. Emerging high entropy metal sulphides and phosphides for electrochemical water splitting. J. Mater. Chem. A 2023, 11, 10463–10472. [Google Scholar] [CrossRef]
- Wang, J.; Yang, H.; Li, F.; Li, L.; Wu, J.; Liu, S.; Cheng, T.; Xu, Y.; Shao, Q.; Huang, X. Single-site Pt-doped RuO2 hollow nanospheres with interstitial C for high-performance acidic overall water splitting. Sci. Adv. 2022, 8, eabl9271. [Google Scholar] [CrossRef]
- Nicole, S.L.D.; Li, Y.; Xie, W.; Wang, G.; Lee, J.-M. Heterointerface and Tensile Strain Effects Synergistically Enhances Overall Water-Splitting in Ru/RuO2 Aerogels. Small 2023, 19, 2206844. [Google Scholar] [CrossRef]
- Wang, N.; Ning, S.; Yu, X.; Chen, D.; Li, Z.; Xu, J.; Meng, H.; Zhao, D.; Li, L.; Liu, Q.; et al. Graphene composites with Ru-RuO2 heterostructures: Highly efficient Mott–Schottky-type electrocatalysts for pH-universal water splitting and flexible zinc–air batteries. Appl. Catal. B 2022, 302, 120838. [Google Scholar] [CrossRef]
- Yao, Q.; Huang, B.; Zhang, N.; Sun, M.; Shao, Q.; Huang, X. Channel-Rich RuCu Nanosheets for pH-Universal Overall Water Splitting Electrocatalysis. Angew. Chem. Int. Ed. 2019, 58, 13983–13988. [Google Scholar] [CrossRef]
- Batool, M.; Hameed, A.; Nadeem, M.A. Recent developments on iron and nickel-based transition metal nitrides for overall water splitting: A critical review. Coord. Chem. Rev. 2023, 480, 215029. [Google Scholar] [CrossRef]
- Sabir, A.S.; Pervaiz, E.; Khosa, R.; Sohail, U. An inclusive review and perspective on Cu-based materials for electrochemical water splitting. RSC Adv. 2023, 13, 4963–4993. [Google Scholar] [CrossRef]
- Li, J.; Tang, C.; Zhang, H.; Zou, Z.; Li, C.M. Mesoporous molybdenum carbide for greatly enhanced hydrogen evolution at high current density and its mechanism studies. Mater. Rep. Energy 2023, 3, 100215. [Google Scholar] [CrossRef]
- Abdelghafar, F.; Xu, X.; Jiang, S.P.; Shao, Z. Perovskite for Electrocatalytic Oxygen Evolution at Elevated Temperatures. ChemSusChem 2024, e202301534. [Google Scholar] [CrossRef]
- Han, Y.H.; Lee, S.H.; Kim, K.T.; Choi, I.H.; Moon, S. Properties of Electrical Conductivity of Amorphous Tungsten-Doped Vanadium Oxide for Uncooled Microbolometers. Solid State Phenom. 2007, 124–126, 343–346. [Google Scholar] [CrossRef]
- Carrero, C.A.; Schloegl, R.; Wachs, I.E.; Schomaecker, R. Critical Literature Review of the Kinetics for the Oxidative Dehydrogenation of Propane over Well-Defined Supported Vanadium Oxide Catalysts. ACS Catal. 2014, 4, 3357–3380. [Google Scholar] [CrossRef]
- Kim, Y.; Park, Y.; Kim, M.; Lee, J.; Kim, K.J.; Choi, J.W. Corrosion as the origin of limited lifetime of vanadium oxide-based aqueous zinc ion batteries. Nat. Commun. 2022, 13, 2371. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, X.; Thang, A.Q.; Li, F.-L.; Chen, D.; Geng, H.; Rui, X.; Yan, Q. Vanadium-based metal-organic frameworks and their derivatives for electrochemical energy conversion and storage. SmartMat 2022, 3, 384–416. [Google Scholar] [CrossRef]
- Wu, C.; Zhong, M.; Tan, Y. Highly efficient and stable vanadium-based electrocatalysts: Stoichiometric iron vanadium sulfides for water-oxidation at large current densities. Chem. Eng. J. 2023, 477, 146981. [Google Scholar] [CrossRef]
- Ehsan, M.A.; Khan, A.; Al-Ahmed, A.; Hakeem, A.S.; Afzaal, M.; Pandey, S.; Mahar, N. Aerosol-assisted chemical vapour deposited vanadium oxide thin films on nickel foam with auspicious electrochemical water oxidation properties. Int. J. Hydrogen Energy 2024, 52, 718–727. [Google Scholar] [CrossRef]
- Ma, Y.; Li, M.-X.; Luan, R.-N.; Li, C.-R.; Liu, X.; Zhao, H.-Y.; Wang, Y.-H.; Chai, Y.-M.; Dong, B. Scalloped nickel/iron vanadium oxide-coated vanadium dioxides based on chemical etching-induced reconstruction strategy for efficient oxygen evolution. Int. J. Hydrogen Energy 2022, 47, 33352–33360. [Google Scholar] [CrossRef]
- Gonçalves, J.M.; Martins, P.R.; Araki, K.; Angnes, L. Recent progress in water splitting and hybrid supercapacitors based on nickel-vanadium layered double hydroxides. J. Energy Chem. 2021, 57, 496–515. [Google Scholar] [CrossRef]
- Yang, M.; Shang, C.; Li, F.; Liu, C.; Wang, Z.; Gu, S.; Liu, D.; Cao, L.; Zhang, J.; Lu, Z.; et al. Synergistic electronic and morphological modulation on ternary Co1−xVxP nanoneedle arrays for hydrogen evolution reaction with large current density. Sci. China Mater. 2021, 64, 880–891. [Google Scholar] [CrossRef]
- Li, Z.; Li, B.; Yu, M.; Yu, C.; Shen, P. Amorphous metallic ultrathin nanostructures: A latent ultra-high-density atomic-level catalyst for electrochemical energy conversion. Int. J. Hydrogen Energy 2022, 47, 26956–26977. [Google Scholar] [CrossRef]
- Wu, Z.-P.; Lu, X.F.; Zang, S.-Q.; Lou, X.W. Non-Noble-Metal-Based Electrocatalysts toward the Oxygen Evolution Reaction. Adv. Funct. Mater. 2020, 30, 1910274. [Google Scholar] [CrossRef]
- Xu, H.; Yuan, J.; He, G.; Chen, H. Current and future trends for spinel-type electrocatalysts in electrocatalytic oxygen evolution reaction. Coord. Chem. Rev. 2023, 475, 214869. [Google Scholar] [CrossRef]
- Kashif, M.; Thangarasu, S.; Murugan, N.; Magdum, S.S.; Kim, Y.A.; Kurkuri, M.; Oh, T.-H. Interatomic interaction of 2D crumpled V2O5 nanosheets layered with Ni-MOF as a bifunctional electrocatalyst for overall water splitting and supercapacitor applications. J. Energy Storage 2024, 81, 110348. [Google Scholar] [CrossRef]
- Ha, Q.-N.; Yeh, C.-H.; Gultom, N.S.; Kuo, D.-H. Industrial-scale efficient alkaline water electrolysis achieved with sputtered NiFeV-oxide thin film electrodes for green hydrogen production. J. Mater. Chem. A 2024, 12, 460–474. [Google Scholar] [CrossRef]
- Zhou, P.; Lv, X.; Gao, Y.; Cui, Z.; Liu, Y.; Wang, Z.; Wang, P.; Zheng, Z.; Dai, Y.; Huang, B. Enhanced electrocatalytic HER performance of non-noble metal nickel by introduction of divanadium trioxide. Electrochim. Acta 2019, 320, 134535. [Google Scholar] [CrossRef]
- Liu, G.; Lv, H.; Quan, Q.; Li, X.; Lu, H.; Li, W.; Cui, X.; Jiang, L. Self-powered electrolysis systems for sustainable hydrogen generation from natural seawater via a Ni/V2O3 Schottky electrode. Chem. Eng. J. 2022, 450, 138079. [Google Scholar] [CrossRef]
- Fan, X.-Z.; Pang, Q.-Q.; Fan, F.; Yao, H.-C.; Li, Z.-J. Ultra-fine Ru nanoparticles decorated V2O3 as a pH-universal electrocatalyst for efficient hydrogen evolution reaction. Int. J. Hydrogen Energy 2023, 48, 20577–20587. [Google Scholar] [CrossRef]
- Li, D.; Wang, J.; Wang, S.; Chu, B.; Li, R.; Li, B.; Dong, L.; Fan, M.; Chen, Z. An interface engineering induced hierarchical NiCo/V2O3/C Schottky heterojunction catalyst for large-current-density hydrogen evolution reaction. J. Mater. Chem. A 2023, 11, 23397–23404. [Google Scholar] [CrossRef]
- Lee, S.; Ivanov, I.N.; Keum, J.K.; Lee, H.N. Epitaxial stabilization and phase instability of VO2 polymorphs. Sci. Rep. 2016, 6, 19621. [Google Scholar] [CrossRef]
- Shao, Z.; Cao, X.; Luo, H.; Jin, P. Recent progress in the phase-transition mechanism and modulation of vanadium dioxide materials. NPG Asia Mater. 2018, 10, 581–605. [Google Scholar] [CrossRef]
- Kim, K.-H.; Kim, K.-H.; Choi, W.; Kim, Y.-M.; Hong, S.-H.; Choi, Y.-H. Mapping the electrocatalytic water splitting activity of VO2 across its insulator-to-metal phase transition. Nanoscale 2022, 14, 8281–8290. [Google Scholar] [CrossRef]
- Haldar, K.K.; Ahmed, I.; Biswas, R.; Mete, S.; Patil, R.A.; Ma, Y.-R. Efficient MoS2/V2O5 Electrocatalyst for Enhanced Oxygen and Hydrogen Evolution Reactions. Electrocatalysis 2023, 14, 624–635. [Google Scholar] [CrossRef]
- Zhong, X.; Zhang, L.; Tang, J.; Chai, J.; Xu, J.; Cao, L.; Yang, M.; Yang, M.; Kong, W.; Wang, S.; et al. Efficient coupling of a hierarchical V2O5@Ni3S2 hybrid nanoarray for pseudocapacitors and hydrogen production. J. Mater. Chem. A 2017, 5, 17954–17962. [Google Scholar] [CrossRef]
- Wu, J.; Qin, X.; Xia, Y.; Zhang, Y.; Zhang, B.; Du, Y.; Wang, H.-L.; Li, S.; Xu, P. Surface oxidation protection strategy of CoS2 by V2O5 for electrocatalytic hydrogen evolution reaction. Nanoscale Horiz. 2023, 8, 338–345. [Google Scholar] [CrossRef]
- Tang, J.; Ruan, Q.; Yu, H.; Huang, C. Activating Co(OH)2 Active Sites by Coupled with V2O5 to Boost Highly Efficient Oxygen Evolution Reaction. Adv. Sustain. Syst. 2023, 7, 2200473. [Google Scholar] [CrossRef]
- Pu, Y.; Liu, Y.; Tang, X.; Huang, Q.; Huang, L. Fast and in situ releasing of active species confined in two-dimensional layers for superior overall electrochemical water splitting. Appl. Catal. B 2024, 341, 123319. [Google Scholar] [CrossRef]
- He, D.; Cao, L.; Huang, J.; Kajiyoshi, K.; Wu, J.; Wang, C.; Liu, Q.; Yang, D.; Feng, L. In-situ optimizing the valence configuration of vanadium sites in NiV-LDH nanosheet arrays for enhanced hydrogen evolution reaction. J. Energy Chem. 2020, 47, 263–271. [Google Scholar] [CrossRef]
- Li, W.; Feng, B.; Yi, L.; Li, J.; Hu, W. Highly Efficient Alkaline Water Splitting with Ru-Doped Co−V Layered Double Hydroxide Nanosheets as a Bifunctional Electrocatalyst. ChemSusChem 2021, 14, 730–737. [Google Scholar] [CrossRef]
- De, A.; Madhu, R.; Bera, K.; Dhandapani, H.N.; Nagappan, S.; Singha Roy, S.; Kundu, S. Deciphering the amplification of dual catalytic active sites of Se-doped NiV LDH in water electrolysis: A hidden gem exposure of anion doping at the core-lattice LDH framework. J. Mater. Chem. A 2023, 11, 25055–25071. [Google Scholar] [CrossRef]
- Zhu, Y.-X.; Liu, M.; Hou, G.-Y.; Tang, Y.-P.; Wu, L.-K. The release of metal ions induced surface reconstruction of layered double hydroxide electrocatalysts. Sustain. Energy Fuels 2021, 5, 3436–3444. [Google Scholar] [CrossRef]
- Xu, L.; Yuan, B.; Min, L.; Xu, W.; Zhang, W. Preparation of NiCo-LDH@NiCoV-LDH interconnected nanosheets as high-performance electrocatalysts for overall water splitting. Int. J. Hydrogen Energy 2022, 47, 15583–15592. [Google Scholar] [CrossRef]
- Srividhya, G.; Sangavi, T.; Viswanathan, C.; Ponpandian, N. Cobalt–Iron Co-substituted NiV Layered Double Hydroxide as a High-Performance Electrocatalyst for Oxygen Evolution Reaction in a Neutral Saline Medium. ACS Appl. Energy Mater. 2024, 7, 154–164. [Google Scholar] [CrossRef]
- Maji, M.; Dihingia, N.; Dutta, S.; Parvin, S.; Pati, S.K.; Bhattacharyya, S. Charge transfer modulated heterointerfaces for hydrogen production at all pH values. J. Mater. Chem. A 2022, 10, 24927–24937. [Google Scholar] [CrossRef]
- Liu, Q.; Huang, J.; Zhao, Y.; Cao, L.; Li, K.; Zhang, N.; Yang, D.; Feng, L.; Feng, L. Tuning the coupling interface of ultrathin Ni3S2@NiV-LDH heterogeneous nanosheet electrocatalysts for improved overall water splitting. Nanoscale 2019, 11, 8855–8863. [Google Scholar] [CrossRef]
- Najafi, L.; Oropesa-Nuñez, R.; Bellani, S.; Martín-García, B.; Pasquale, L.; Serri, M.; Drago, F.; Luxa, J.; Sofer, Z.; Sedmidubský, D.; et al. Topochemical Transformation of Two-Dimensional VSe2 into Metallic Nonlayered VO2 for Water Splitting Reactions in Acidic and Alkaline Media. ACS Nano 2022, 16, 351–367. [Google Scholar] [CrossRef]
- Jiang, J.; Sun, F.; Zhou, S.; Hu, W.; Zhang, H.; Dong, J.; Jiang, Z.; Zhao, J.; Li, J.; Yan, W.; et al. Atomic-level insight into super-efficient electrocatalytic oxygen evolution on iron and vanadium co-doped nickel (oxy)hydroxide. Nat. Commun. 2018, 9, 2885. [Google Scholar] [CrossRef]
- Karmakar, A.; Karthick, K.; Sankar, S.S.; Kumaravel, S.; Madhu, R.; Bera, K.; Dhandapani, H.N.; Nagappan, S.; Murugan, P.; Kundu, S. Stabilization of ruthenium nanoparticles over NiV-LDH surface for enhanced electrochemical water splitting: An oxygen vacancy approach. J. Mater. Chem. A 2022, 10, 3618–3632. [Google Scholar] [CrossRef]
- Lv, J.; Liu, P.; Li, R.; Wang, L.; Zhang, K.; Zhou, P.; Huang, X.; Wang, G. Constructing accelerated charge transfer channels along V-Co-Fe via introduction of V into CoFe-layered double hydroxides for overall water splitting. Appl. Catal. B 2021, 298, 120587. [Google Scholar] [CrossRef]
- Guan, J.; Li, X.; Zhu, Y.; Dai, Y.; Zhang, R.; Guo, B.; Zhang, M. Ni5P4-embedded FeV LDH porous nanosheets for enhancing oxygen evolution and urea oxidation reactions. New J. Chem. 2023, 47, 16964–16971. [Google Scholar] [CrossRef]
- Wan, X.; Song, Y.; Zhou, H.; Shao, M. Layered Double Hydroxides for Oxygen Evolution Reaction towards Efficient Hydrogen Generation. Energy Mater. Adv. 2022, 2022, 9842610. [Google Scholar] [CrossRef]
- Laipan, M.; Yu, J.; Zhu, R.; Zhu, J.; Smith, A.T.; He, H.; O’Hare, D.; Sun, L. Functionalized layered double hydroxides for innovative applications. Mater. Horiz. 2020, 7, 715–745. [Google Scholar] [CrossRef]
- Gonçalves, J.M.; Ireno da Silva, M.; Angnes, L.; Araki, K. Vanadium-containing electro and photocatalysts for the oxygen evolution reaction: A review. J. Mater. Chem. A 2020, 8, 2171–2206. [Google Scholar] [CrossRef]
- Ansari, M.S.; Kim, H. Enhanced electrocatalytic oxygen evolution reaction kinetics using dual-phase engineering of self-supported hierarchical NiCoV(OH)x nanowire arrays. Fuel 2021, 304, 121309. [Google Scholar] [CrossRef]
- Zeng, K.; Tian, M.; Chen, X.; Zhang, J.; Rummeli, M.H.; Strasser, P.; Sun, J.; Yang, R. Strong electronic coupling between single Ru atoms and cobalt-vanadium layered double hydroxide harness efficient water splitting. Chem. Eng. J. 2023, 452, 139151. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, Z.; Shao, W.; Gao, Y.; Wang, W.; Ma, T.; Ma, L.; Li, S.; Cheng, C.; Zhao, C. Interfacial Atom-Substitution Engineered Transition-Metal Hydroxide Nanofibers with High-Valence Fe for Efficient Electrochemical Water Oxidation. Angew. Chem. Int. Ed. 2022, 61, e202115331. [Google Scholar] [CrossRef]
- Nejati, K.; Akbari, A.R.; Davari, S.; Asadpour-Zeynali, K.; Rezvani, Z. Zn–Fe-layered double hydroxide intercalated with vanadate and molybdate anions for electrocatalytic water oxidation. New J. Chem. 2018, 42, 2889–2895. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, H.; Xiang, M.; Yu, C.; Hui, J.; Dong, S. Coral reef structured cobalt-doped vanadate oxometalate nanoparticle for a high-performance electrocatalyst in water splitting. Int. J. Hydrogen Energy 2022, 47, 31566–31574. [Google Scholar] [CrossRef]
- Yang, Z.; Fan, W.; Zhang, P.; Zhuang, H.; Xiang, M.; Hui, J. Ni2V2O7 dandelion microsphere for a high-performance electrocatalyst in water splitting. Int. J. Hydrogen Energy 2021, 46, 39658–39664. [Google Scholar] [CrossRef]
- Guo, W.; Yang, T.; Zhang, H.; Zhou, H.; Wei, W.; Liang, W.; Zhou, Y.; Yu, T.; Zhao, H. Charge-counterbalance modulated amorphous nickel oxide for efficient alkaline hydrogen and oxygen evolution. Chem. Eng. J. 2023, 470, 144241. [Google Scholar] [CrossRef]
- Pan, M.; Qian, G.; Yu, T.; Chen, J.; Luo, L.; Zou, Y.; Yin, S. Ni modified Co2VO4 heterojunction with poor/rich-electron structure for overall urea-rich wastewater oxidation. Chem. Eng. J. 2022, 435, 134986. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, Y.; Guo, D.; Li, J.; Chu, D.; Na, S.; Yu, M.; Li, D.; Sui, G.; Chai, D.-F. Anchoring metal-organic framework-derived hollow CoV2O6 nanocubes onto lattice tensile strained V2CTx MXene for superior overall water splitting. J. Alloys Compd. 2023, 963, 171133. [Google Scholar] [CrossRef]
- Pan, M.; Chen, W.; Qian, G.; Yu, T.; Wang, Z.; Luo, L.; Yin, S. Carbon-encapsulated Co3V decorated Co2VO4 nanosheets for enhanced urea oxidation and hydrogen evolution reaction. Electrochim. Acta 2022, 407, 139882. [Google Scholar] [CrossRef]
- Luo, Z.; Peng, Q.; Huang, Z.; Wang, L.; Yang, Y.; Dong, J.; Isimjan, T.T.; Yang, X. Fine-tune d-band center of cobalt vanadium oxide nanosheets by N-doping as a robust overall water splitting electrocatalyst. J. Colloid Interface Sci. 2023, 629, 111–120. [Google Scholar] [CrossRef]
- Gyanprakash, D.M.; Sharma, G.P.; Gupta, P.K. Isovalent anion-induced electrochemical activity of doped Co3V2O8 for oxygen evolution reaction application. Dalton Trans. 2022, 51, 15312–15321. [Google Scholar] [CrossRef]
- Li, A.; Tang, X.; Cao, R.; Song, D.; Wang, F.; Yan, H.; Chen, H.; Wei, Z. Directed Surface Reconstruction of Fe Modified Co2VO4 Spinel Oxides for Water Oxidation Catalysts Experiencing Self-Terminating Surface Deterioration. Adv. Mater. 2024, 2401818. [Google Scholar] [CrossRef]
- Ma, H.; Sun, C.; Wang, Z.; Jiang, Q. Tuning the electronic structure of NiCoVOx nanosheets through S doping for enhanced oxygen evolution. Nanoscale 2021, 13, 17022–17027. [Google Scholar] [CrossRef]
- Xu, Q.; Qin, W.; Chu, J.-F. Novel Co3(1–x)Fe3xV2O8 Nanoparticles as Highly Active and Noble-Metal-Free Electrocatalysts for Oxygen Evolution Reaction. Energy Fuels 2020, 34, 15019–15025. [Google Scholar] [CrossRef]
- Mondal, A.; Ganguli, S.; Inta, H.R.; Mahalingam, V. Influence of Vanadate Structure on Electrochemical Surface Reconstruction and OER Performance of CoV2O6 and Co3V2O8. ACS Appl. Energy Mater. 2021, 4, 5381–5387. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, X.; Shen, J.; Ji, X.; Liu, J. Bifunctional keel flower-like Ni-Co-V multicomponent oxide catalyst with enhanced electron transport for accelerating overall water splitting. J. Colloid Interface Sci. 2022, 628, 467–476. [Google Scholar] [CrossRef]
- Aftab, S.; Iqbal, M.Z.; Rim, Y.S. Recent Advances in Rolling 2D TMDs Nanosheets into 1D TMDs Nanotubes/Nanoscrolls. Small 2023, 19, 2205418. [Google Scholar] [CrossRef]
- Tang, X.; Hao, Q.; Hou, X.; Lan, L.; Li, M.; Yao, L.; Zhao, X.; Ni, Z.; Fan, X.; Qiu, T. Exploring and Engineering 2D Transition Metal Dichalcogenides toward Ultimate SERS Performance. Adv. Mater. 2024, 36, 2312348. [Google Scholar] [CrossRef]
- Sanap, P.P.; Gupta, S.P.; Kahandal, S.S.; Gunjakar, J.L.; Lokhande, C.D.; Sankapal, B.R.; Said, Z.; Bulakhe, R.N.; Man Kim, J.; Bhalerao, A.B. Exploring vanadium-chalcogenides toward solar cell application: A review. J. Ind. Eng. Chem. 2024, 129, 124–142. [Google Scholar] [CrossRef]
- Yuan, J.; Wu, J.; Hardy, W.J.; Loya, P.; Lou, M.; Yang, Y.; Najmaei, S.; Jiang, M.; Qin, F.; Keyshar, K.; et al. Facile Synthesis of Single Crystal Vanadium Disulfide Nanosheets by Chemical Vapor Deposition for Efficient Hydrogen Evolution Reaction. Adv. Mater. 2015, 27, 5605–5609. [Google Scholar] [CrossRef]
- Feng, J.; Sun, X.; Wu, C.; Peng, L.; Lin, C.; Hu, S.; Yang, J.; Xie, Y. Metallic Few-Layered VS2 Ultrathin Nanosheets: High Two-Dimensional Conductivity for In-Plane Supercapacitors. J. Am. Chem. Soc. 2011, 133, 17832–17838. [Google Scholar] [CrossRef]
- Karthick, K.; Bijoy, T.K.; Sivakumaran, A.; Mansoor Basha, A.B.; Murugan, P.; Kundu, S. Enhancing Hydrogen Evolution Reaction Activities of 2H-Phase VS2 Layers with Palladium Nanoparticles. Inorg. Chem. 2020, 59, 10197–10207. [Google Scholar] [CrossRef]
- Hussain, S.; Vikraman, D.; Sarfraz, M.; Faizan, M.; Patil, S.A.; Batoo, K.M.; Nam, K.-W.; Kim, H.-S.; Jung, J. Design of XS2 (X = W or Mo)-Decorated VS2 Hybrid Nano-Architectures with Abundant Active Edge Sites for High-Rate Asymmetric Supercapacitors and Hydrogen Evolution Reactions. Small 2023, 19, 2205881. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, X.; Huang, Y.; Zhang, C.; Li, F.; Shu, H. The Role of Intrinsic Defects in Electrocatalytic Activity of Monolayer VS2 Basal Planes for the Hydrogen Evolution Reaction. J. Phys. Chem. C 2017, 121, 1530–1536. [Google Scholar] [CrossRef]
- Wang, L.; Gao, W.; Chen, X.; Liu, Y.; Qureshi, A.H.; Liu, Y.; Chen, M.; Zhang, X.; Guo, Y.; Wang, J. Charge-Modulated VS2 Monolayer for Effective Hydrogen Evolution Reaction. J. Phys. Chem. C 2021, 125, 12004–12011. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, C.; Wang, Z.; Zhu, J.; Wen, Z.; Zhao, X.; Zhang, X.; Xu, J.; Lu, Z. Synergistic Interlayer and Defect Engineering in VS2 Nanosheets toward Efficient Electrocatalytic Hydrogen Evolution Reaction. Small 2018, 14, 1703098. [Google Scholar] [CrossRef]
- Xu, J.; Zhu, Y.; Yu, B.; Fang, C.; Zhang, J. Metallic 1T-VS2 nanosheets featuring V2+ self-doping and mesopores towards an efficient hydrogen evolution reaction. Inorg. Chem. Front. 2019, 6, 3510–3517. [Google Scholar] [CrossRef]
- Singh, V.K.; Nakate, U.T.; Bhuyan, P.; Chen, J.; Tran, D.T.; Park, S. Mo/Co doped 1T-VS2 nanostructures as a superior bifunctional electrocatalyst for overall water splitting in alkaline media. J. Mater. Chem. A 2022, 10, 9067–9079. [Google Scholar] [CrossRef]
- He, W.; Zheng, X.; Peng, J.; Dong, H.; Wang, J.; Zhao, W. Mo-dopant-strengthened basal-plane activity in VS2 for accelerating hydrogen evolution reaction. Chem. Eng. J. 2020, 396, 125227. [Google Scholar] [CrossRef]
- Mohan, P.; Yang, J.; Jena, A.; Suk Shin, H. VS2/rGO hybrid nanosheets prepared by annealing of VS4/rGO. J. Solid State Chem. 2015, 224, 82–87. [Google Scholar] [CrossRef]
- Patil, S.A.; Rabani, I.; Hussain, S.; Seo, Y.-S.; Jung, J.; Shrestha, N.K.; Im, H.; Kim, H. A Facile Design of Solution-Phase Based VS2 Multifunctional Electrode for Green Energy Harvesting and Storage. Nanomaterials 2022, 12, 339. [Google Scholar] [CrossRef]
- Du, C.; Liang, D.; Shang, M.; Zhang, J.; Mao, J.; Liu, P.; Song, W. In Situ Engineering MoS2 NDs/VS2 Lamellar Heterostructure for Enhanced Electrocatalytic Hydrogen Evolution. ACS Sustain. Chem. Eng. 2018, 6, 15471–15479. [Google Scholar] [CrossRef]
- Hou, Z.; Cui, C.; Yang, Y.; Zhang, T. Electrochemical Oxidation Encapsulated Ru Clusters Enable Robust Durability for Efficient Oxygen Evolution. Small 2023, 19, 2207170. [Google Scholar] [CrossRef]
- Zhong, X.; Tang, J.; Wang, J.; Shao, M.; Chai, J.; Wang, S.; Yang, M.; Yang, Y.; Wang, N.; Wang, S.; et al. 3D heterostructured pure and N-Doped Ni3S2/VS2 nanosheets for high efficient overall water splitting. Electrochim. Acta 2018, 269, 55–61. [Google Scholar] [CrossRef]
- Kwak, I.H.; Kim, J.Y.; Zewdie, G.M.; Yang, J.; Lee, K.-S.; Yoo, S.J.; Kwon, I.S.; Park, J.; Kang, H.S. Electrocatalytic Activation in ReSe2-VSe2 Alloy Nanosheets to Boost Water-Splitting Hydrogen Evolution Reaction. Adv. Mater. 2024, 36, 2310769. [Google Scholar] [CrossRef]
- Pan, U.N.; Kandel, M.R.; Tomar, A.K.; Kim, N.H.; Lee, J.H. Synchronous Surface-Interface and Crystal-Phase Engineered Multifaceted Hybrid Nanostructure of Fe-(1T)-VSe2 Nanosheet and Fe-CoSe2 Nanorods Doped with P for Rapid HER and OER, Kinetics. Small 2024, 20, 2305519. [Google Scholar] [CrossRef]
- Samal, R.; Shinde, P.V.; Rout, C.S. 2D Vanadium diselenide supported on reduced graphene oxide for water electrolysis: A comprehensive study in alkaline media. Emergent Mater. 2021, 4, 1047–1053. [Google Scholar] [CrossRef]
- Tomar, S.; Sen, P.; Chakraborty, S. Single atom functionalization in vanadium dichalcogenide monolayers: Towards enhanced electrocatalytic activity. Sustain. Energy Fuels 2022, 6, 5337–5344. [Google Scholar] [CrossRef]
- Qin, Z.; Wang, Z.; Zhao, J. Computational screening of single-atom catalysts supported by VS2 monolayers for electrocatalytic oxygen reduction/evolution reactions. Nanoscale 2022, 14, 6902–6911. [Google Scholar] [CrossRef]
- Dhakal, P.P.; Pan, U.N.; Paudel, D.R.; Kandel, M.R.; Kim, N.H.; Lee, J.H. Cobalt–manganese sulfide hybridized Fe-doped 1T-Vanadium disulfide 3D-Hierarchical core-shell nanorods for extreme low potential overall water-splitting. Mater. Today Nano 2022, 20, 100272. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, P.; Hong, M.; Jiang, S.; Zhao, G.; Shi, J.; Xie, Q.; Zhang, Y. Recent progress in the controlled synthesis of 2D metallic transition metal dichalcogenides. Nanotechnology 2019, 30, 182002. [Google Scholar] [CrossRef]
- Tsai, C.; Chan, K.; Nørskov, J.K.; Abild-Pedersen, F. Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides. Surf. Sci. 2015, 640, 133–140. [Google Scholar] [CrossRef]
- Li, D.; Wang, X.; Kan, C.-m.; He, D.; Li, Z.; Hao, Q.; Zhao, H.; Wu, C.; Jin, C.; Cui, X. Structural Phase Transition of Multilayer VSe2. ACS Appl. Mater. Interfaces 2020, 12, 25143–25149. [Google Scholar] [CrossRef]
- Zhao, W.; Dong, B.; Guo, Z.; Su, G.; Gao, R.; Wang, W.; Cao, L. Colloidal synthesis of VSe2 single-layer nanosheets as novel electrocatalysts for the hydrogen evolution reaction. Chem. Commun. 2016, 52, 9228–9231. [Google Scholar] [CrossRef]
- Fu, J.; Ali, R.; Mu, C.; Liu, Y.; Mahmood, N.; Lau, W.-M.; Jian, X. Large-scale preparation of 2D VSe2 through a defect-engineering approach for efficient hydrogen evolution reaction. Chem. Eng. J. 2021, 411, 128494. [Google Scholar] [CrossRef]
- Wang, R.; Guo, Z.; Tan, X.; Zhang, J.; Yang, L.; Wang, W.; Cao, L.; Dong, B. Atmosphere plasma treatment and Co heteroatoms doping on basal plane of colloidal 2D VSe2 nanosheets for enhanced hydrogen evolution. Int. J. Hydrogen Energy 2021, 46, 32425–32434. [Google Scholar] [CrossRef]
- Kuniyil, N.; Koottumvathukkal Anil Raj, S.R.; Rout, C.S. Selective Growth of Molybdenum Sulfo-Selenides on a Defect-Rich Carbon Nanotube Skeleton for Efficient Energy Storage and Hydrogen Generation Applications. Energy Fuels 2022, 36, 13346–13355. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.; Huang, H.; Chen, W.; Cui, Y.; Li, Y.; Mao, W.; Zhu, X.; Li, X.a. Spatial Relation Controllable Di-Defects Synergy Boosts Electrocatalytic Hydrogen Evolution Reaction over VSe2 Nanoflakes in All pH Electrolytes. Small 2022, 18, 2204557. [Google Scholar] [CrossRef]
- Wang, C.; Jin, M.; Liu, D.; Liang, F.; Luo, C.; Li, P.; Cai, C.; Bi, H.; Wu, X.; Di, Z. VSe2 quantum dots with high-density active edges for flexible efficient hydrogen evolution reaction. J. Phys. D Appl. Phys. 2021, 54, 214006. [Google Scholar] [CrossRef]
- Hu, L.-Y.; Yu, L.-F.; Yang, H.; Xu, X.; Wang, F.; Xu, X.-H. Room-temperature ferromagnetism enhancement in Fe-doped VSe2 nanosheets synthesized by a chemical method. Rare Met. 2021, 40, 2501–2507. [Google Scholar] [CrossRef]
- Xiong, Z.; Hu, C.; Luo, X.; Zhou, W.; Jiang, Z.; Yang, Y.; Yu, T.; Lei, W.; Yuan, C. Field-Free Improvement of Oxygen Evolution Reaction in Magnetic Two-Dimensional Heterostructures. Nano Lett. 2021, 21, 10486–10493. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, S.; Yang, H.; Xi, S.; Gracia, J.; Xu, Z.J. Spin-Related Electron Transfer and Orbital Interactions in Oxygen Electrocatalysis. Adv. Mater. 2020, 32, 2003297. [Google Scholar] [CrossRef]
- Chen, M.; Zhou, W.; Ye, K.; Yuan, C.; Zhu, M.; Yu, H.; Yang, H.; Huang, H.; Wu, Y.; Zhang, J.; et al. External Fields Assisted Highly Efficient Oxygen Evolution Reaction of Confined 1T-VSe2 Ferromagnetic Nanoparticles. Small 2023, 19, 2300122. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, W.; Zhang, J.; Lv, M.; Li, S.; Song, H.; Cui, Z.; Du, L.; Liao, S. Recent advances in nanostructured transition metal nitrides for fuel cells. J. Mater. Chem. A 2020, 8, 20803–20818. [Google Scholar] [CrossRef]
- Chen, P.; Ye, J.; Wang, H.; Ouyang, L.; Zhu, M. Recent progress of transition metal carbides/nitrides for electrocatalytic water splitting. J. Alloys Compd. 2021, 883, 160833. [Google Scholar] [CrossRef]
- Fu, C.; Feng, L.; Yin, H.; Li, Y.; Li, G.; Feng, Y.; Cao, L.; Huang, J.; Liu, Y. Synergistic Coupling of Hierarchical Heterostructured Ni3P/Ni/VN Microflower Electrocatalyst for Enhanced Hydrogen Evolution Reaction. ChemCatChem 2023, 15, e202201399. [Google Scholar] [CrossRef]
- He, X.; Tian, Y.; Deng, D.; Chen, F.; Wu, J.; Qian, J.; Li, H.; Xu, L. Engineering Antiperovskite Ni4N/VN Heterostructure with Improved Intrinsic Interfacial Charge Transfer as a Bifunctional Catalyst for Rechargeable Zinc–Air Batteries. ACS Sustain. Chem. Eng. 2021, 9, 17007–17015. [Google Scholar] [CrossRef]
- Meng, K.; Wen, S.; Liu, L.; Jia, Z.; Wang, Y.; Shao, Z.; Qi, T. Vertically Grown MoS2 Nanoplates on VN with an Enlarged Surface Area as an Efficient and Stable Electrocatalyst for HER. ACS Appl. Energy Mater. 2019, 2, 2854–2861. [Google Scholar] [CrossRef]
- Zhou, P.; Xing, D.; Liu, Y.; Wang, Z.; Wang, P.; Zheng, Z.; Qin, X.; Zhang, X.; Dai, Y.; Huang, B. Accelerated electrocatalytic hydrogen evolution on non-noble metal containing trinickel nitride by introduction of vanadium nitride. J. Mater. Chem. A 2019, 7, 5513–5521. [Google Scholar] [CrossRef]
- Yu, X.; Cheng, F.; Xie, K. Porous single-crystalline vanadium nitride octahedra with a unique electrocatalytic performance. New J. Chem. 2022, 46, 1392–1398. [Google Scholar] [CrossRef]
- Feng, J.; Tang, R.; Liu, G.; Meng, T. Regulating d-orbital electronic character and HER free energy of VN electrocatalyst by anchoring single atom. Chem. Eng. J. 2023, 452, 139131. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, K.; Li, X.; Hui, C.; Huang, J.; Deng, Z.; Yang, D.; Cao, L.; Feng, L. Ni and VN Nanoparticles Supported on N-Doped Carbon Layer Containing Ni Single Atoms as Electrocatalyst for the Hydrogen Evolution Reaction. ACS Appl. Nano Mater. 2024, 7, 4059–4067. [Google Scholar] [CrossRef]
- Pi, C.; Zhao, Z.; Zhang, X.; Gao, B.; Zheng, Y.; Chu, P.K.; Yang, L.; Huo, K. In situ construction of γ-MoC/VN heterostructured electrocatalysts with strong electron coupling for highly efficient hydrogen evolution reaction. Chem. Eng. J. 2021, 416, 129130. [Google Scholar] [CrossRef]
- Li, Q.; Yang, P.; Liu, Y.; Xiao, W.; Xiao, Z.; Xu, G.; Wang, L.; Liu, F.; Wu, Z. In-situ construction of pomegranate-like nickel-vanadium nitride for hydrogen production through urea-assisted water-splitting. J. Alloys Compd. 2023, 968, 171861. [Google Scholar] [CrossRef]
- Meng, K.; Zheng, Z.; Cao, J.; Liu, L.; Jia, Z.; Wang, Y.; Qi, T. Vanadium nitride based CoFe prussian blue analogues for enhanced electrocatalytic oxygen evolution. Int. J. Hydrogen Energy 2020, 45, 31410–31417. [Google Scholar] [CrossRef]
- Li, X.; Huang, J.; Feng, L.; He, D.; Liu, Z.; Li, G.; Zhang, N.; Feng, Y.; Cao, L. Molybdenum and cobalt co-doped VC nanoparticles encapsulated in nanocarbon as efficient electrocatalysts for the hydrogen evolution reaction. Inorg. Chem. Front. 2022, 9, 870–878. [Google Scholar] [CrossRef]
- Zheng, Y.; Mou, Y.; Wang, Y.; Wan, J.; Yao, G.; Feng, C.; Sun, Y.; Dai, L.; Zhang, H.; Wang, Y. Aluminum-incorporation activates vanadium carbide with electron-rich carbon sites for efficient pH-universal hydrogen evolution reaction. J. Colloid Interface Sci. 2024, 656, 367–375. [Google Scholar] [CrossRef]
- Peng, X.; Huang, C.; Zhang, B.; Liu, Y. Vanadium carbide nanodots anchored on N doped carbon nanosheets fabricated by spatially confined synthesis as a high-efficient electrocatalyst for hydrogen evolution reaction. J. Power Sources 2021, 490, 229551. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, M.; Wen, Z.; Ci, S. V8C7 decorating CoP nanosheets-assembled microspheres as trifunctional catalysts toward energy-saving electrolytic hydrogen production. Chem. Eng. J. 2020, 399, 125728. [Google Scholar] [CrossRef]
- Suo, N.; Han, X.; Chen, C.; He, X.; Dou, Z.; Lin, Z.; Cui, L.; Xiang, J. Engineering vanadium phosphide by iron doping as bifunctional electrocatalyst for overall water splitting. Electrochim. Acta 2020, 333, 135531. [Google Scholar] [CrossRef]
- Han, H.; Yi, F.; Choi, S.; Kim, J.; Kwon, J.; Park, K.; Song, T. Self-supported vanadium-incorporated cobalt phosphide as a highly efficient bifunctional electrocatalyst for water splitting. J. Alloys Compd. 2020, 846, 156350. [Google Scholar] [CrossRef]
- Zhu, R.; Chen, F.; Wang, J.; Song, Y.; Cheng, J.; Mao, M.; Ma, H.; Lu, J.; Cheng, Y. Multi-channel V-doped CoP hollow nanofibers as high-performance hydrogen evolution reaction electrocatalysts. Nanoscale 2020, 12, 9144–9151. [Google Scholar] [CrossRef]
- Zhu, Z.; Xu, K.; Guo, W.; Zhang, H.; Xiao, X.; He, M.; Yu, T.; Zhao, H.; Zhang, D.; Yang, T. Vanadium-phosphorus incorporation induced interfacial modification on cobalt catalyst and its super electrocatalysis for water splitting in alkaline media. Appl. Catal. B 2022, 304, 120985. [Google Scholar] [CrossRef]
- Yang, H.; Hu, Y.; Huang, D.; Xiong, T.; Li, M.; Balogun, M.S.; Tong, Y. Efficient hydrogen and oxygen evolution electrocatalysis by cobalt and phosphorus dual-doped vanadium nitride nanowires. Mater. Today Chem. 2019, 11, 1–7. [Google Scholar] [CrossRef]
- Peng, L.; Shen, J.; Zhang, L.; Wang, Y.; Xiang, R.; Li, J.; Li, L.; Wei, Z. Graphitized carbon-coated vanadium carbide nanoboscages modified by nickel with enhanced electrocatalytic activity for hydrogen evolution in both acid and alkaline solutions. J. Mater. Chem. A 2017, 5, 23028–23034. [Google Scholar] [CrossRef]
- Ma, W.; Wan, J.; Fu, W.; Wu, Y.; Wang, Y.; Zhang, H.; Wang, Y. Heterostructures induced between platinum nanoparticles and vanadium carbide boosting hydrogen evolution reaction. Appl. Catal. A 2022, 633, 118512. [Google Scholar] [CrossRef]
- Cao, L.; Zhang, N.; Feng, L.; Huang, J.; Feng, Y.; Li, W.; Yang, D.; Liu, Q. Well-dispersed ultrasmall VC nanoparticles embedded in N-doped carbon nanotubes as highly efficient electrocatalysts for hydrogen evolution reaction. Nanoscale 2018, 10, 14272–14279. [Google Scholar] [CrossRef]
- Wan, J.; Wang, C.; Tang, Q.; Gu, X.; He, M. First-principles study of vanadium carbides as electrocatalysts for hydrogen and oxygen evolution reactions. RSC Adv. 2019, 9, 37467–37473. [Google Scholar] [CrossRef]
- Kawashima, K.; Cao, C.L.; Li, H.; Márquez-Montes, R.A.; Wygant, B.R.; Son, Y.J.; Guerrera, J.V.; Henkelman, G.; Mullins, C.B. Evaluation of a V8C7 Anode for Oxygen Evolution in Alkaline Media: Unusual Morphological Behavior. ACS Sustain. Chem. Eng. 2020, 8, 14101–14108. [Google Scholar] [CrossRef]
- Pu, Z.; Liu, T.; Amiinu, I.S.; Cheng, R.; Wang, P.; Zhang, C.; Ji, P.; Hu, W.; Liu, J.; Mu, S. Transition-Metal Phosphides: Activity Origin, Energy-Related Electrocatalysis Applications, and Synthetic Strategies. Adv. Funct. Mater. 2020, 30, 2004009. [Google Scholar] [CrossRef]
- Anne Acedera, R.; Theresse Dumlao, A.; Donn Matienzo, D.J.; Divinagracia, M.; Anne Paraggua, J.; Abel Chuang, P.-Y.; Ocon, J. Templated synthesis of transition metal phosphide electrocatalysts for oxygen and hydrogen evolution reactions. J. Energy Chem. 2024, 89, 646–669. [Google Scholar] [CrossRef]
- Theerthagiri, J.; Murthy, A.P.; Lee, S.J.; Karuppasamy, K.; Arumugam, S.R.; Yu, Y.; Hanafiah, M.M.; Kim, H.-S.; Mittal, V.; Choi, M.Y. Recent progress on synthetic strategies and applications of transition metal phosphides in energy storage and conversion. Ceram. Int. 2021, 47, 4404–4425. [Google Scholar] [CrossRef]
- Zhang, W.; Han, N.; Luo, J.; Han, X.; Feng, S.; Guo, W.; Xie, S.; Zhou, Z.; Subramanian, P.; Wan, K.; et al. Critical Role of Phosphorus in Hollow Structures Cobalt-Based Phosphides as Bifunctional Catalysts for Water Splitting. Small 2022, 18, 2103561. [Google Scholar] [CrossRef]
- Mo, Y.; Ni, Y.; Li, X.; Pan, R.; Tang, Y.; Deng, Y.; Xiao, B.; Tan, Y.; Fang, Y. An efficient pH-universal non-noble hydrogen-evolving electrocatalyst from transition metal phosphides-based heterostructures. Int. J. Hydrogen Energy 2023, 48, 31101–31109. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Q.; Du, X.; Zhang, X.; Hu, T. Controlled synthesis of CoVP as robust electrocatalysts for water, seawater and urea oxidation. Int. J. Hydrogen Energy 2023, 48, 34370–34381. [Google Scholar] [CrossRef]
Catalysts | Overpotential for HER (mV@ 10 mA cm−2) | Overpotential for OER (mV@ 10 mA cm−2) | Stability | Electrolyte | Substrate | Preparation Method | Ref. |
---|---|---|---|---|---|---|---|
NiCo/V2O3/C | 23 | —— | 50 h @ 10 mA cm−2 | 1 M KOH | NF | Gas–solid reaction | [39] |
VO2–NiS2 | 96 | 220 | 10 h @ 10 mA cm−2 | 1 M KOH | CC | Hydrothermal | [1] |
Co(OH)2/V2O5 | —— | 320 | 15 h @ 10 mA cm−2 | 1 M KOH | GCE | Hydrothermal | [46] |
IrCo@V2O5 | 92 | 280 | 24 h @ 10 mA cm−2 | 1 M KOH | GCE | Microwave hydrothermal | [47] |
in-NiV-LDH | 114 | —— | 100 h @ 10 mA cm−2 | 1 M KOH | NF | Hydrothermal | [48] |
Ru-CoV-LDH | 32 | 230 | 45 h @ 20 mA cm−2 | 1 M KOH | NF | Hydrothermal | [49] |
Se-NiV-LDH | 85 | 198 | 10 h @ 50 mA cm−2 | 1 M KOH | NF | Hydrothermal | [50] |
A-NiFeV-LDH | —— | 250 | 100 h @ 10 mA cm−2 | 1 M KOH | NF | Hydrothermal | [51] |
NiCo-LDH @NiCoV-LDH | 80 | 260 | 40 h @ 10 mA cm−2 | 1 M KOH | NF | Hydrothermal electrodeposition | [52] |
CoFe-NiV | —— | 150 | 12 h @ 10 mA cm−2 | 1 M PBS | SS | Hydrothermal | [53] |
NiV-LDH-CoP | 93 | —— | 200 h @ 1 A cm−2 | 0.5 M H2SO4 | CC | Hydrothermal annealing electrodeposition | [54] |
Ni3S2@NiV | 126 | 190 | 100 h @ 10 mA cm−2 | 1 M KOH | NF | Hydrothermal | [55] |
Catalysts | Overpotential for HER (mV@ 10 mA cm−2) | Overpotential for OER (mV@ 10 mA cm−2) | Stability | Electrolyte | Substrate | Preparation Method | Ref. |
---|---|---|---|---|---|---|---|
Ni-Co2VO4 | 50 | —— | 140 h @ 50 mA cm−2 | 1 M KOH | NF | Gas–solid reaction | [71] |
TS-V2CTx/CoV2O6 | 32.2 | 235 | 24 h @ 10 mA cm−2 | 1 M KOH | NF | Chemical etching annealing | [72] |
Co3V@C/Co2VO4. | 51 | —— | 100 h @ 100 mA cm−2 | 1 M KOH | NF | Gas–solid reaction | [73] |
N-Co2V2O7 | 87 | 244 | 170 h @ 100 mA cm−2 | 1 M KOH | NF | Gas–solid reaction | [74] |
S-Co3V2O8 | —— | 227 | 12 h @ 50 mA cm−2 | 1 M KOH | NF | Hydrothermal | [75] |
Fe-Co2VO4 | —— | 205 | 100 h @ 20 mA cm−2 | 1 M KOH | NF | Gas–solid reaction | [76] |
S-NiCoVOx | —— | 248 | 30 h @ 50 mA cm−2 | 1 M KOH | NF | Hydrothermal | [77] |
Co1.5Fe1.5V2O8 | —— | 290 | 10 h @ 10 mA cm−2 | 1 M KOH | CFP | Hydrothermal | [78] |
Catalysts | Overpotential for HER (mV@ 10 mA cm−2) | Overpotential for OER (mV@ 10 mA cm−2) | Stability | Electrolyte | Substrate | Preparation Method | Ref. |
---|---|---|---|---|---|---|---|
Mo/Co-VS2 | 63 | 248 | 36 h @ 10 mA cm−2 | 1 M KOH | CC | Hydrothermal | [92] |
Mo-VS2 | 243 | —— | 25 h @ 10 mA cm−2 | 1 M KOH | GCE | Hydrothermal | [93] |
MoS2/VS2 | 291 | —— | 16 h @ 15 mA cm−2 | 0.5 M H2SO4 | GCE | Hydrothermal | [96] |
Ru-VS2 | —— | 245 (50 mA cm−2) | 20 h @ 10 mA cm−2 | 0.1 M KOH | CC | Hydrothermal | [97] |
Ni3S2/VS2 | —— | 227 | 20 h @ 10 mA cm−2 | 1 M KOH | NF | Hydrothermal | [98] |
ReSe2-VSe2 | 71 | —— | 120 h @ 20 mA cm−2 | 0.5 M H2SO4 | GCE | Annealing | [99] |
P,Fe-(VCo)Se2 | 51 | 250 (50 mA cm−2) | 50 h @ 50 mA cm−2 | 1 M KOH | NF | Hydrothermal | [100] |
VSe2/rGO | 110 | 280 | 2.7 h @ 5 mA cm−2 | 1 M KOH | NF | Hydrothermal | [101] |
Catalysts | Overpotential for HER (mV@ 10 mA cm−2) | Overpotential for OER (mV@ 10 mA cm−2) | Stability | Electrolyte | Substrate | Preparation Method | Ref. |
---|---|---|---|---|---|---|---|
Co-VN | 59 | —— | 60 h @ 10 mA cm−2 | 1 M KOH | GCE | Gas–solid reaction | [125] |
γ-MoC/VN | 86.6 | —— | 25 h @ 60 mA cm−2 | 0.5 M H2SO4 | GCE | Annealing | [127] |
Ni/VN | 12 | 330 | 100 h @ 100 mA cm−2 | 1 M KOH | NF | Gas–solid reaction | [128] |
CoFe–PBAs/VN | —— | 290 | 30 h @ 10 mA cm−2 | 1 M KOH | GCE | Co-precipitation | [129] |
Mo, Co-VC@C | 137 | —— | 110 h @ 10 mA cm−2 | 1 M KOH | GCE | Annealing | [130] |
Al-VC@C | 97 | —— | 60 h @ 20 mA cm−2 | 1 M KOH | NF | Gas–solid reaction | [131] |
VC/NC | 76 | —— | 45 h @ 20 mA cm−2 | 0.5 M H2SO4 | GCE | Magnesiother- mic reduction | [132] |
V8C7/CoP | 119 | 290 | 10 h @ 10 mA cm−2 | 1 M KOH | CC | Gas–solid reaction | [133] |
FexVy-PC | 66 | 201 | 24 h @ 10 mA cm−2 | 1 M KOH | NF | Gas–solid reaction | [134] |
CoVP | 77 | 290 | —— | 1 M KOH | CC | Gas–solid reaction | [135] |
MC-V-CoP | 112 | —— | 20 h @ 10 mA cm−2 | 1 M PBS | GCE | Electrospinning Annealing | [136] |
Co-VOx-P | 230 | —— | 24 h @ 30 mA cm−2 | 1 M KOH | NF | Gas–solid reaction | [137] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Wu, J.; Li, M.; Wang, Y. Recent Advances in Vanadium-Based Electrocatalysts for Hydrogen and Oxygen Evolution Reactions: A Review. Catalysts 2024, 14, 368. https://doi.org/10.3390/catal14060368
Li H, Wu J, Li M, Wang Y. Recent Advances in Vanadium-Based Electrocatalysts for Hydrogen and Oxygen Evolution Reactions: A Review. Catalysts. 2024; 14(6):368. https://doi.org/10.3390/catal14060368
Chicago/Turabian StyleLi, Haoyu, Juan Wu, Mengyao Li, and Yude Wang. 2024. "Recent Advances in Vanadium-Based Electrocatalysts for Hydrogen and Oxygen Evolution Reactions: A Review" Catalysts 14, no. 6: 368. https://doi.org/10.3390/catal14060368
APA StyleLi, H., Wu, J., Li, M., & Wang, Y. (2024). Recent Advances in Vanadium-Based Electrocatalysts for Hydrogen and Oxygen Evolution Reactions: A Review. Catalysts, 14(6), 368. https://doi.org/10.3390/catal14060368