Acetylacetone Boosts the Photocatalytic Activity of Metal–Organic Frameworks by Tunable Modification
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Structure of AA-Modified MOFs
2.2. Effect of AA Modification on Photocatalytic Performance of MOFs
2.3. Effect of AA Modification on the Photovoltaic Properties of MOFs
2.4. Mechanisms of How Tunable AA Modification Boosted the Photocatalytic Performance of MOFs
3. Materials and Methods
3.1. Materials
3.2. Synthesis of MIL-125-Xs
3.3. Characterization
3.3.1. Structural Characterization of MIL-125-Xs
3.3.2. Optical Properties of MIL-125-Xs
3.3.3. Electrochemical Characterization of MIL-125-Xs
3.4. Photocatalytic Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Figueroa-Quintero, L.; Villalgordo-Hernández, D.; Delgado-Marín, J.J.; Narciso, J.; Velisoju, V.K.; Castaño, P.; Gascón, J.; Ramos-Fernández, E.V. Post-Synthetic Surface Modification of Metal–Organic Frameworks and Their Potential Applications. Small Methods 2023, 7, 2201413. [Google Scholar] [CrossRef]
- Aljammal, N.; Jabbour, C.; Chaemchuen, S.; Juzsakova, T.; Verpoort, F. Flexibility in Metal–Organic Frameworks: A Basic Understanding. Catalysts 2019, 9, 512. [Google Scholar] [CrossRef]
- Pal, T.K.; De, D.; Bharadwaj, P.K. Metal–organic frameworks for the chemical fixation of CO2 into cyclic carbonates. Coord. Chem. Rev. 2020, 408, 213173. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, J.; Tan, X.; Zheng, L.; Tan, D.; Liu, L.; Chen, G.; Wan, Q.; Zhang, B.; Zhang, F.; et al. Improved photocatalytic performance of metal–organic frameworks for CO2 conversion by ligand modification. Chem. Commun. 2020, 56, 7637–7640. [Google Scholar] [CrossRef]
- Han, S.Y.; Pan, D.L.; Chen, H.; Bu, X.B.; Gao, Y.X.; Gao, H.; Tian, Y.; Li, G.S.; Wang, G.; Cao, S.L.; et al. A Methylthio-Functionalized-MOF Photocatalyst with High Performance for Visible-Light-Driven H2 Evolution. Angew. Chem. Int. Ed. 2018, 57, 9864–9869. [Google Scholar] [CrossRef]
- Lv, T.; Xiao, B.; Zhou, S.; Zhao, J.; Wu, T.; Zhang, J.; Zhang, Y.; Liu, Q. Rich oxygen vacancies, mesoporous TiO2 derived from MIL-125 for highly efficient photocatalytic hydrogen evolution. Chem. Commun. 2021, 57, 9704–9707. [Google Scholar] [CrossRef]
- Song, F.; Li, W.; Sun, Y. Metal–Organic Frameworks and Their Derivatives for Photocatalytic Water Splitting. Inorganics 2017, 5, 40. [Google Scholar] [CrossRef]
- Wang, H.; Yuan, X.; Wu, Y.; Zeng, G.; Dong, H.; Chen, X.; Leng, L.; Wu, Z.; Peng, L. In situ synthesis of In2S3@MIL-125(Ti) core–shell microparticle for the removal of tetracycline from wastewater by integrated adsorption and visible-light-driven photocatalysis. Appl. Catal. B Environ. 2016, 186, 19–29. [Google Scholar] [CrossRef]
- Liang, R.; Huang, R.; Wang, X.; Ying, S.; Yan, G.; Wu, L. Functionalized MIL-68(In) for the photocatalytic treatment of Cr(VI)-containing simulation wastewater: Electronic effects of ligand substitution. Appl. Surf. Sci. 2019, 464, 396–403. [Google Scholar] [CrossRef]
- Lv, S.-W.; Liu, J.-M.; Zhao, N.; Li, C.-Y.; Wang, Z.-H.; Wang, S. Benzothiadiazole functionalized Co-doped MIL-53-NH2 with electron deficient units for enhanced photocatalytic degradation of bisphenol A and ofloxacin under visible light. J. Hazard. Mater. 2020, 387, 122011. [Google Scholar] [CrossRef] [PubMed]
- Bedia, J.; Muelas-Ramos, V.; Peñas-Garzón, M.; Gómez-Avilés, A.; Rodríguez, J.; Belver, C. A Review on the Synthesis and Characterization of Metal Organic Frameworks for Photocatalytic Water Purification. Catalysts 2019, 9, 52. [Google Scholar] [CrossRef]
- He, X.; Wu, P.; Wang, S.; Wang, A.; Wang, C.; Ding, P. Inactivation of harmful algae using photocatalysts: Mechanisms and performance. J. Clean. Prod. 2021, 289, 125755. [Google Scholar] [CrossRef]
- Song, J.; Li, C.; Wang, X.; Zhi, S.; Wang, X.; Sun, J. Visible-light-driven heterostructured g-C3N4/Bi-TiO2 floating photocatalyst with enhanced charge carrier separation for photocatalytic inactivation of Microcystis aeruginosa. Front. Environ. Sci. Eng. 2021, 15, 1–12. [Google Scholar] [CrossRef]
- Syzgantseva, M.A.; Ireland, C.P.; Ebrahim, F.M.; Smit, B.; Syzgantseva, O.A. Metal Substitution as the Method of Modifying Electronic Structure of Metal–Organic Frameworks. J. Am. Chem. Soc. 2019, 141, 6271–6278. [Google Scholar] [CrossRef] [PubMed]
- Younis, S.A.; Kwon, E.E.; Qasim, M.; Kim, K.-H.; Kim, T.; Kukkar, D.; Dou, X.; Ali, I. Metal-organic framework as a photocatalyst: Progress in modulation strategies and environmental/energy applications. Prog. Energy Combust. Sci. 2020, 81, 100870. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, B.; Chen, L. First-Principles Study of Microporous Magnets M-MOF-74 (M = Ni, Co, Fe, Mn): The Role of Metal Centers. Inorg. Chem. 2013, 52, 9356–9362. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Zhao, D. Post-synthetic modification of metal-organic framework-based membranes for enhanced molecular separations. Coord. Chem. Rev. 2023, 491, 215259. [Google Scholar] [CrossRef]
- Qin, Y.; Hao, M.; Wang, D.; Li, Z. Post-synthetic modifications (PSM) on metal–organic frameworks (MOFs) for visible-light-initiated photocatalysis. Dalton Trans. 2021, 50, 13201–13215. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.; Natarajan, S.; Mani, P.; Pankajakshan, A. Post-Synthetic Modification of Metal–Organic Frameworks Toward Applications. Adv. Funct. Mater. 2020, 31, 2006291. [Google Scholar] [CrossRef]
- Qiu, J.; Zhang, X.; Feng, Y.; Zhang, X.; Wang, H.; Yao, J. Modified metal-organic frameworks as photocatalysts. Appl. Catal. B Environ. 2018, 231, 317–342. [Google Scholar] [CrossRef]
- Tang, C.; Li, X.; Hu, Y.; Du, X.; Wang, S.; Chen, B.; Wang, S. Porphyrin-Based Metal-Organic Framework Materials: Design, Construction, and Application in the Field of Photocatalysis. Molecules 2024, 29, 467. [Google Scholar] [CrossRef]
- Nasalevich, M.A.; Goesten, M.G.; Savenije, T.J.; Kapteijn, F.; Gascon, J. Enhancing optical absorption of metal–organic frameworks for improved visible light photocatalysis. Chem. Commun. 2013, 49, 10575–10577. [Google Scholar] [CrossRef]
- Huang, W.; Wang, X.; Zhang, W.; Zhang, S.; Tian, Y.; Chen, Z.; Fang, W.; Ma, J. Intraligand charge transfer boosts visible-light-driven generation of singlet oxygen by metal-organic frameworks. Appl. Catal. B Environ. 2020, 273, 119087. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, W.; Jin, J.; Gan, Y.; Zhang, S. Oxygen-vacancy-mediated energy transfer for singlet oxygen generation by diketone-anchored MIL-125. Appl. Catal. B Environ. 2021, 292, 120197. [Google Scholar] [CrossRef]
- Zhang, W.; Wei, K.; Huang, W.; Yang, J.; Gan, Y.; Zhang, S. A joint mechanism for singlet oxygen generation by diketone-anchored MIL-101: Exciton-mediated energy transfer and photosensitization. Appl. Catal. A Gen. 2021, 626, 118360. [Google Scholar] [CrossRef]
- Zheng, X.; Qi, S.; Cao, Y.; Shen, L.; Au, C.; Jiang, L. Morphology evolution of acetic acid-modulated MIL-53(Fe) for efficient selective oxidation of H2S. Chin. J. Catal. 2021, 42, 279–287. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, Y.; Bao, M.; Gao, Y.; Zhou, X.; Liu, L.; Hu, Y.; Zhang, Z. A post-synthetic modified NH2-MIL-125 (Ti) catalyst for boosting photochemical Cr (VI) reduction. Process Saf. Environ. Prot. 2023, 172, 778–786. [Google Scholar] [CrossRef]
- Du, A.; Fu, H.; Wang, P.; Wang, C.-C. Enhanced photo-Fenton activity and stability for sulfamethoxazole degradation by FeS2@TiO2 heterojunction derived from MIL-125. Chemosphere 2023, 322, 138221. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cao, W.; Zhu, B.; Cai, J.; Li, X.; Liu, J.; Chen, Z.; Li, M.; Zhang, L. Fabrication of NH2-MIL-125(Ti) nanodots on carbon fiber/MoS2-based weavable photocatalysts for boosting the adsorption and photocatalytic performance. J. Colloid Interface Sci. 2022, 611, 706–717. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, J.; Wang, X.; Chen, J.; Zhang, B.; Chen, L.; Zheng, D.; Cheng, M. Graphite oxide as an electronic conductor modified ZIF-8/NH2-MIL-125(Ti) hybrid material used as a photocatalyst for removal of organic dyes under visible light irradiation. Environ. Sci. Pollut. Res. 2023, 30, 68691–68700. [Google Scholar] [CrossRef]
- Chambers, M.B.; Wang, X.; Ellezam, L.; Ersen, O.; Fontecave, M.; Sanchez, C.; Rozes, L.; Mellot-Draznieks, C. Maximizing the Photocatalytic Activity of Metal–Organic Frameworks with Aminated-Functionalized Linkers: Substoichiometric Effects in MIL-125-NH2. J. Am. Chem. Soc. 2017, 139, 8222–8228. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zheng, H.; Tratnyek, P.G. Advanced redox processes for sustainable water treatment. Nat. Water 2023, 1, 666–681. [Google Scholar] [CrossRef]
- Abdul Mubarak, N.S.; Foo, K.Y.; Schneider, R.; Abdelhameed, R.M.; Sabar, S. The chemistry of MIL-125 based materials: Structure, synthesis, modification strategies and photocatalytic applications. J. Environ. Chem. Eng. 2022, 10, 106883. [Google Scholar] [CrossRef]
- Long, J.; Wang, S.; Ding, Z.; Wang, S.; Zhou, Y.; Huang, L.; Wang, X. Amine-functionalized zirconium metal–organic framework as efficient visible-light photocatalyst for aerobic organic transformations. Chem. Commun. 2012, 48, 11656–11658. [Google Scholar] [CrossRef] [PubMed]
- Qian, Z.; Zhang, R.; Xiao, Y.; Huang, H.; Sun, Y.; Chen, Y.; Ma, T.; Sun, X. Trace to the Source: Self-Tuning of MOF Photocatalysts. Adv. Energy Mater. 2023, 13, 2300086. [Google Scholar] [CrossRef]
- Zeng, Z.; Quan, X.; Yu, H.; Chen, S.; Zhang, S. Nanoscale lightning rod effect in 3D carbon nitride nanoneedle: Enhanced charge collection and separation for efficient photocatalysis. J. Catal. 2019, 375, 361–370. [Google Scholar] [CrossRef]
- Miao, S.; Zha, Z.; Li, Y.; Geng, X.; Yang, J.; Cui, S.; Yang, J. Visible-light-driven MIL-53(Fe)/BiOCl composite assisted by persulfate: Photocatalytic performance and mechanism. J. Photochem. Photobiol. A Chem. 2019, 380, 111862. [Google Scholar] [CrossRef]
- Zeng, Z.; Fan, Y.; Quan, X.; Yu, H.; Chen, S.; Zhang, S. Energy-transfer-mediated oxygen activation in carbonyl functionalized carbon nitride nanosheets for high-efficient photocatalytic water disinfection and organic pollutants degradation. Water Res. 2020, 177, 115798. [Google Scholar] [CrossRef]
- Wu, T.; Zhao, H.; Zhu, X.; Xing, Z.; Liu, Q.; Liu, T.; Gao, S.; Lu, S.; Chen, G.; Asiri, A.M.; et al. Identifying the Origin of Ti3+ Activity toward Enhanced Electrocatalytic N2 Reduction over TiO2 Nanoparticles Modulated by Mixed-Valent Copper. Adv. Mater. 2020, 32, 2000299. [Google Scholar] [CrossRef]
- Huang, H.; Wang, X.-S.; Philo, D.; Ichihara, F.; Song, H.; Li, Y.; Li, D.; Qiu, T.; Wang, S.; Ye, J. Toward visible-light-assisted photocatalytic nitrogen fixation: A titanium metal organic framework with functionalized ligands. Appl. Catal. B Environ. 2020, 267, 118686. [Google Scholar] [CrossRef]
- Kolobov, N.; Goesten, M.G.; Gascon, J. Metal–Organic Frameworks: Molecules or Semiconductors in Photocatalysis? Angew. Chem. Int. Ed. 2021, 60, 26038–26052. [Google Scholar] [CrossRef]
- Cheng, X.-M.; Gu, Y.; Zhang, X.-Y.; Dao, X.-Y.; Wang, S.-Q.; Ma, J.; Zhao, J.; Sun, W.-Y. Crystallographic facet heterojunction of MIL-125-NH2(Ti) for carbon dioxide photoreduction. Appl. Catal. B Environ. 2021, 298, 120524. [Google Scholar] [CrossRef]
MIL-125-Xs | Element Ratio (Normalization by Ti) | Attribution of Oxygen | |||||
---|---|---|---|---|---|---|---|
Ti | C | O | N | OTi-oxo/Oall | OBDC/Oall | OAA/Oall | |
MIL-125-NH2 | 1.0 | 9.4 | 6.1 | 1.4 | 0.37 | 0.63 | - |
MIL-125-AA-17% | 1.0 | 5.8 | 4.4 | 0.3 | 0.40 | 0.49 | 0.10 |
MIL-125-AA-54% | 1.0 | 8.3 | 4.4 | 0.8 | 0.39 | 0.48 | 0.13 |
MIL-125-AA-98% | 1.0 | 22.8 | 10.5 | 1.4 | 0.26 | 0.63 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, K.; Yang, J.; Wei, S.; Zheng, H.; Zhang, S. Acetylacetone Boosts the Photocatalytic Activity of Metal–Organic Frameworks by Tunable Modification. Catalysts 2024, 14, 367. https://doi.org/10.3390/catal14060367
Wei K, Yang J, Wei S, Zheng H, Zhang S. Acetylacetone Boosts the Photocatalytic Activity of Metal–Organic Frameworks by Tunable Modification. Catalysts. 2024; 14(6):367. https://doi.org/10.3390/catal14060367
Chicago/Turabian StyleWei, Kunrui, Jianghua Yang, Shuangshuang Wei, Hongcen Zheng, and Shujuan Zhang. 2024. "Acetylacetone Boosts the Photocatalytic Activity of Metal–Organic Frameworks by Tunable Modification" Catalysts 14, no. 6: 367. https://doi.org/10.3390/catal14060367
APA StyleWei, K., Yang, J., Wei, S., Zheng, H., & Zhang, S. (2024). Acetylacetone Boosts the Photocatalytic Activity of Metal–Organic Frameworks by Tunable Modification. Catalysts, 14(6), 367. https://doi.org/10.3390/catal14060367