Boosting the Hydrogen Evolution Performance of Ultrafine Ruthenium Electrocatalysts by a Hierarchical Phosphide Array Promoter
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Synthesis of the Ni(OH)2 Nanosheets, Ni2P Promoter and Ru/Ni2P Electrode
4.3. Structural Characterizations
4.4. Electrochemical Measurements
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jia, B.; Zhang, B.; Cai, Z.; Yang, X.; Li, L.; Guo, L. Construction of Amorphous/Crystalline Heterointerfaces for Enhanced Electrochemical Processes. eScience 2023, 3, 100112. [Google Scholar] [CrossRef]
- Yi, L.; Chen, X.; Wen, Y.; Chen, H.; Zhang, S.; Yang, H.; Li, W.; Zhou, L.; Xu, B.; Xu, W.; et al. Solidophobic Surface for Electrochemical Extraction of High-Valued Mg(OH)2 Coupled with H2 Production from Seawater. Nano Lett. 2024, 24, 5920–5928. [Google Scholar] [CrossRef]
- Tu, S.; Zhang, B.; Zhang, Y.; Chen, Z.; Wang, X.; Zhan, R.; Ou, Y.; Wang, W.; Liu, X.; Duan, X.; et al. Fast-charging Capability of Graphite-based Lithium-ion Batteries Enabled by Li3P-based Crystalline Solid–electrolyte Interphase. Nat. Energy 2023, 8, 1365–1374. [Google Scholar] [CrossRef]
- Tan, Y.; Liu, W.; Wang, W.; Liu, X.; Du, J.; Sun, Y. Embedment of Red Phosphorus in Anthracite Matrix for Stable Battery Anode. Rare Met. 2022, 41, 2819–2825. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, C.; Zhang, Y.; Wang, L.; Fan, X.; Zou, L.; Cai, Z.; Jiang, J.; Zhou, S.; Zhang, B.; et al. Controllable Thermochemical Generation of Active Defects in the Horizontal/Vertical MoS2 for Enhanced Hydrogen Evolution. Adv. Funct. Mater. 2023, 33, 2304302. [Google Scholar] [CrossRef]
- Xie, R.; Luo, W.; Zou, L.; Fan, X.; Li, C.; Lv, T.; Jiang, J.; Chen, Z.; Zhou, Y. Low-Temperature Synthesis of Colloidal Few-Layer WTe2 Nanostructures for Electrochemical Hydrogen Evolution. Discover Nano 2023, 18, 44. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Chu, W.; Liu, S.; Zhou, Y.; Zou, L.; Fu, J.; Liu, M.; Fu, X.; Ouyang, F.; Zhou, Y. Engineering the Nanostructures of Solution Proceed In2SexS3−x Films with Enhanced Near-Infrared Absorption for Photoelectrochemical Water Splitting. J. Phys. D Appl. Phys. 2022, 55, 434004. [Google Scholar] [CrossRef]
- Meng, Z.; Qiu, Z.; Shi, Y.; Wang, S.; Zhang, G.; Pi, Y.; Pang, H. Micro/nano Metal-Organic Frameworks Meet Energy Chemistry: A Review of Materials Synthesis and Applications. eScience 2023, 3, 100092. [Google Scholar] [CrossRef]
- Xiong, P.; Tan, J.; Lee, H.; Ha, N.; Lee, S.J.; Yang, W.; Park, H.S. Two-Dimensional Carbon-Based Heterostructures as Bifunctional Electrocatalysts for Water Splitting and Metal-Air Batteries. Nano Mater. Sci. 2022, in press. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, Q.; Li, X.; Xie, Q.; Xu, K.; Zhang, S.; Zhang, H.; Gong, M.; Lei, W. Laser-Thermal Reduction Synthesis of High-Entropy Alloys towards High-Performance pH Universal Hydrogen Evolution Reaction. Nano Mater. Sci. 2024, in press. [Google Scholar] [CrossRef]
- Li, G.; Duan, X.; Liu, X.; Zhan, R.; Wang, X.; Du, J.; Chen, Z.; Li, Y.; Cai, Z.; Shen, Y.; et al. Locking Active Li Metal through Localized Redistribution of Fluoride Enabling Stable Li-metal Batteries. Adv. Mater. 2023, 35, 2207310. [Google Scholar] [CrossRef]
- Wang, J.; Jamesh, M.-I.; Gao, Q.; Han, B.; Sun, R.; Hsu, H.-Y.; Zhou, C.; Cai, Z. Semimetallic Hydroxide Materials for Eectrochemical Water Oxidation. Sci. China Mater. 2024, 67, 1551–1558. [Google Scholar] [CrossRef]
- Chen, Y.-F.; Li, J.-H.; Liu, T.-T.; You, S.-H.; Liu, P.; Li, F.-J.; Gao, M.-Q.; Chen, S.-G.; Zhang, F.-F. Constructing Robust NiFe LDHs-NiFe Alloy Gradient Hybrid Bifunctional Catalyst for Overall Water Splitting: One-Step Electrodeposition and Surface Reconstruction. Rare Met. 2023, 42, 2272–2283. [Google Scholar] [CrossRef]
- An, L.; Zhu, J.; Yang, J.; Wang, D. Tailoring the d-Dand Center of Iridium-Doped Cobalt Selenide for Dual-Boosted Hydrogen and Oxygen Evolution Reactions. Nano Mater. Sci. 2024, in press. [Google Scholar] [CrossRef]
- Hansen, J.N.; Prats, H.; Toudahl, K.K.; Mørch Secher, N.; Chan, K.; Kibsgaard, J.; Chorkendorff, I. Is There Anything Better than Pt for HER? ACS Energy Lett. 2021, 6, 1175–1180. [Google Scholar] [CrossRef]
- Chen, L.; Kang, L.; Geng, S.; Cheng, L.; Cai, D.; Song, S.; Jia, H.; Wang, Y. Rational Design of Ultrafine Pt Nanoparticles with Strong Metal-Support Interaction for Efficient Hydrogen Evolution. Adv. Funct. Mater. 2024, 2403467. [Google Scholar] [CrossRef]
- Tian, Y.; Luo, Y.; Wu, T.; Quan, X.; Li, W.; Wei, G.; Bayati, M.; Wu, Q.; Fu, Y.; Wen, M. Coupling Interaction between Precisely Located Pt Single-Atoms/Clusters and NiCo-Layered Double Oxide to Boost Hydrogen Evolution Reaction. Adv. Funct. Mater. 2024, 2405919. [Google Scholar] [CrossRef]
- Yu, S.W.; Kwon, S.; Chen, Y.; Xie, Z.; Lu, X.; He, K.; Hwang, S.; Chen, J.G.; Goddard, W.A.; Zhang, S. Construction of a Pt-CeOx Interface for the Electrocatalytic Hydrogen Evolution Reaction. Adv. Funct. Mater. 2024, 2402966. [Google Scholar] [CrossRef]
- Cheng, X.; Mao, C.; Tian, J.; Xia, M.; Yang, L.; Wang, X.; Wu, Q.; Hu, Z. Correlation between Heteroatom Coordination and Hydrogen Evolution for Single-site Pt on Carbon-based Nanocages. Angew. Chem. Int. Ed. 2024, 63, e202401304. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, Y.; Xu, T.; Zheng, J.; Xiao, K.; Sun, B.; Ge, M.; Yuan, X.; Zhou, C.; Cai, Z. Nanoporous Nickel Cathode with an Electrostatic Chlorine-Resistant Surface for Industrial Seawater Electrolysis Hydrogen Production. Inorg. Chem. 2024, 63, 5773–5778. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, J.N.; Harzandi, A.M.; Ha, M.; Sultan, S.; Myung, C.W.; Park, H.J.; Kim, D.Y.; Thangavel, P.; Singh, A.N.; Sharma, P.; et al. High-Performance Hydrogen Evolution by Ru Single Atoms and Nitrided-Ru Nanoparticles Implanted on N-Doped Graphitic Sheet. Adv. Energy Mater. 2019, 9, 1900931. [Google Scholar] [CrossRef]
- Meng, G.; Tian, H.; Peng, L.; Ma, Z.; Chen, Y.; Chen, C.; Chang, Z.; Cui, X.; Shi, J. Ru to W Electron Donation for Boosted HER from Acidic to Alkaline on Ru/WNO Sponges. Nano Energy 2021, 80, 105531. [Google Scholar] [CrossRef]
- Li, D.; Cai, R.; Zheng, D.; Ren, J.; Dong, C.L.; Huang, Y.C.; Haigh, S.J.; Liu, X.; Gong, F.; Liu, Y.; et al. A Sustainable Route to Ruthenium Phosphide (RuP)/Ru Heterostructures with Electron-Shuttling of Interfacial Ru for Efficient Hydrogen Evolution. Adv. Sci. 2024, 11, 2309869. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, Y.; Li, J.; Chen, Q.; Du, Y.; Rao, P.; Li, R.; Jia, C.; Kang, Z.; Deng, P.; et al. Engineering Ruthenium-Based Electrocatalysts for Effective Hydrogen Evolution Reaction. Nano-Micro Lett. 2021, 13, 160. [Google Scholar] [CrossRef]
- Wang, X.; Yang, X.; Pei, G.; Yang, J.; Liu, J.; Zhao, F.; Jin, F.; Jiang, W.; Ben, H.; Zhang, L. Strong Metal-Support Interaction Boosts the Electrocatalytic Hydrogen Evolution Capability of Ru Nanoparticles Supported on Titanium Nitride. Carbon Energy 2023, 6, e391. [Google Scholar] [CrossRef]
- Qin, X.; Zhang, L.; Xu, G.-L.; Zhu, S.; Wang, Q.; Gu, M.; Zhang, X.; Sun, C.; Balbuena, P.B.; Amine, K.; et al. The Role of Ru in Improving the Activity of Pd toward Hydrogen Evolution and Oxidation Reactions in Alkaline Solutions. ACS Catal. 2019, 9, 9614–9621. [Google Scholar] [CrossRef]
- Khan, S.; Arshad, J.; Arshad, I.; Aftab, S.; Shah, S.S.; Lee, S.-l.; Janjua, N.K.; Yusuf, K.; Li, H. Promotional Impact of RuO2 on CuO/Al2O3 Bifunctional Catalyst towards Electro-Oxidation of Hydrazine and Water. Int. J. Hydrogen Energy 2024, 169, 076512. [Google Scholar] [CrossRef]
- Khan, S.; Shah, S.S.; Ahmad, A.; Bayrakçeken Yurtcan, A.; Katubi, K.M.; Janjua, N.K. γ-Alumina Supported Copper Oxide Nanostructures Promoted with Ruthenium Oxide (RuO2-CuO/Al2O3) and Palladium Oxide (PdO-CuO/Al2O3): Efficient Electrodes for Heterogeneous Catalysis of Ammonia Electrooxidation. J. Electrochem. Soc. 2022, 169, 076512. [Google Scholar] [CrossRef]
- Yao, R.; Sun, K.; Zhang, K.; Wu, Y.; Du, Y.; Zhao, Q.; Liu, G.; Chen, C.; Sun, Y.; Li, J. Stable Hydrogen Evolution Reaction at High Current Densities via Designing the Ni Single Atoms and Ru Nanoparticles Linked by Carbon Bridges. Nat. Commun. 2024, 15, 2218. [Google Scholar] [CrossRef]
- Zhu, Y.; Fan, K.; Hsu, C.S.; Chen, G.; Chen, C.; Liu, T.; Lin, Z.; She, S.; Li, L.; Zhou, H.; et al. Supported Ruthenium Single-Atom and Clustered Catalysts Outperform Benchmark Pt for Alkaline Hydrogen Evolution. Adv. Mater. 2023, 35, 2301133. [Google Scholar] [CrossRef]
- Yang, H.; Wang, X.; Xia, S.; Zhang, S.; Zhang, R.; Li, X.; Yu, X.F.; Zhang, X.; Bai, L. Black Phosphorus Modulated Ru Electrocatalyst for Highly Efficient and Durable Seawater Splitting. Adv. Energy Mater. 2023, 13, 2302727. [Google Scholar] [CrossRef]
- Chen, W.; Yu, M.; Liu, S.; Zhang, C.; Jiang, S.; Duan, G. Recent Progress of Ru Single-Atom Catalyst: Synthesis, Modification, and Energetic Applications. Adv. Funct. Mater. 2024, 34, 2313307. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Xu, T.; Zheng, J.; Sun, B.; Xia, W.; Ge, M.; Yuan, X.; Cai, Z. Recycled Cathodes in Rechargeable Aqueous Batteries as Ready-Made Electrodes for Oxygen Evolution Catalysis. Inorg. Chem. 2024, 63, 13181–13185. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Xu, Y.; Chen, Z.; Yang, G.; Zhu, C.; Fan, X.; Weng, X.; Wang, J.; Wang, L.; Cui, Y. Ru Single Atoms Tailoring the Acidity of Metallic Tungsten Dioxide for a Boosted Alkaline Hydrogen Evolution Reaction. ACS Catal. 2024, 14, 8238–8251. [Google Scholar] [CrossRef]
- Duan, X.; Li, T.; Jiang, X.; Liu, X.; Xin, L.; Yang, H.; Kuang, Y.; Sun, X. Catalytic Applications of Single-Atom Metal-Anchored Hydroxides: Recent Advances and Perspective. Mater. Rep. Energy 2022, 2, 100146. [Google Scholar] [CrossRef]
- Deng, R.; Guo, M.; Wang, C.; Zhang, Q. Recent Advances in Cobalt Phosphide-Based Materials for Electrocatalytic Water Aplitting: From Catalytic Mechanism and Synthesis Method to Optimization Design. Nano Mater. Sci. 2024, 6, 139–173. [Google Scholar] [CrossRef]
- Lao, M.; Zhao, G.; Li, P.; Ma, T.; Jiang, Y.; Pan, H.; Dou, S.X.; Sun, W. Manipulating the Coordination Chemistry of Ru-N(O)-C Moieties for Fast Alkaline Hydrogen Evolution Kinetics. Adv. Funct. Mater. 2021, 31, 2100698. [Google Scholar] [CrossRef]
- Wu, S.; Chen, D.; Li, S.; Zeng, Y.; Wang, T.; Zhang, J.; Yu, J.; Mu, S.; Tang, H. Ru Cluster Incorporated NiMoO(P)4 Nanosheet Arrays as High-Efficient Bifunctional Catalyst for Wind/Solar-To-Hydrogen Generation Systems. Adv. Sci. 2023, 10, 2304179. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, H.; Ji, S.; Pollet, B.G.; Wang, X.; Wang, R. Engineered Porous Ni2P-Nanoparticle/Ni2P-Nanosheet Arrays via the Kirkendall Effect and Ostwald Ripening towards Efficient Overall Water Splitting. Nano Res. 2020, 13, 2098–2105. [Google Scholar] [CrossRef]
- He, Q.; Tian, D.; Jiang, H.; Cao, D.; Wei, S.; Liu, D.; Song, P.; Lin, Y.; Song, L. Achieving Efficient Alkaline Hydrogen Evolution Reaction over a Ni5P4 Catalyst Incorporating Single-Atomic Ru Sites. Adv. Mater. 2020, 32, 1906972. [Google Scholar] [CrossRef]
- Zou, D.; Yi, Y.; Song, Y.; Guan, D.; Xu, M.; Ran, R.; Wang, W.; Zhou, W.; Shao, Z. The BaCe0.16Y0.04Fe0.8O3−δ Nanocomposite: A New High-Performance Cobalt-Free Triple-Conducting Cathode for Protonic Ceramic Fuel Cells Operating at Reduced Temperatures. J. Mater. Chem. A 2022, 10, 5381–5390. [Google Scholar] [CrossRef]
- Hoster, H.E. Anodic Hydrogen Oxidation at Bare and Pt-Modified Ru(0001) in Flowing Electrolyte-Theory versus Experiment. MRS Proc. 2012, 1388, 10. [Google Scholar] [CrossRef]
- Zhang, H.; Guan, D.; Gu, Y.; Xu, H.; Wang, C.; Shao, Z.; Guo, Y. Tuning Synergy Between Nickel and Iron in Ruddlesden-Popper Perovskites through Controllable Crystal Dimensionalities towards Enhanced Oxygen-Evolving Activity and Stability. Carbon Energy 2024, 6, e465. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X.-T.; Le, J.-B.; Li, S.-M.; Wang, X.; Zhang, Y.-J.; Radjenovic, P.; Zhao, Y.; Wang, Y.-H.; Lin, X.-M.; et al. Revealing the Role of Interfacial Water and Key Intermediates at Ruthenium Surfaces in the Alkaline Hydrogen Evolution Reaction. Nat. Commun. 2023, 14, 5289. [Google Scholar] [CrossRef]
- Wang, J.; Chen, J.; Zhang, J.; Gao, Q.; Han, B.; Sun, R.; Zhou, C.; Cai, Z. Glassy State Hydroxide Materials for Oxygen Evolution Electrocatalysis. Small 2024, 20, 2312168. [Google Scholar] [CrossRef]
- Cai, S.-H.; Chen, X.-N.; Huang, M.-J.; Han, J.-Y.; Zhou, Y.-W.; Li, J.-S. Interfacial Engineering of Nickel/Iron/Ruthenium Phosphides for Efficient Overall Water Splitting Powered by Solar Energy. J. Mater. Chem. A 2022, 10, 772–778. [Google Scholar] [CrossRef]
- Kumar Manna, B.; Samanta, R.; Kumar Trivedi, R.; Chakraborty, B.; Barman, S. Hydrogen Spillover Inspired Bifunctional Platinum/Rhodium Oxide-Nitrogen-Doped Carbon Composite for Enhanced Hydrogen Evolution and Oxidation Reactions in Base. J. Colloid Interface Sci. 2024, 670, 258–271. [Google Scholar] [CrossRef]
- Wu, K.; Sun, K.; Liu, S.; Cheong, W.-C.; Chen, Z.; Zhang, C.; Pan, Y.; Cheng, Y.; Zhuang, Z.; Wei, X.; et al. Atomically Dispersed Ni-Ru-P Interface Sites for High-Efficiency pH-Universal Electrocatalysis of Hydrogen Evolution. Nano Energy 2021, 80, 105467. [Google Scholar] [CrossRef]
- Ajmal, Z.; Arif, M.; Kumar, A.; Haq, M.U.; Du, Y.; Zhang, Y.; Abboud, M.; Qian, J.; Chen, Z.; Ni, B.-J.; et al. Uniformaly Distributed Ru Nanoparticles Over N, P co-Doped Porous Carbon as A Highly Active Trifunctional Electrocatalyst. Int. J. Hydrogen Energy 2024, 73, 768–774. [Google Scholar] [CrossRef]
- Zhong, W.; Xiao, B.; Lin, Z.; Wang, Z.; Huang, L.; Shen, S.; Zhang, Q.; Gu, L. RhSe2: A Superior 3D Electrocatalyst with Multiple Active Facets for Hydrogen Evolution Reaction in Both Acid and Alkaline Solutions. Adv. Mater. 2021, 33, e2007894. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, F.; Yu, J.; Xiong, G.; Zhao, L.; Sang, Y.; Zuo, S.; Zhang, J.; Liu, H.; Zhou, W. Charge Redistribution Caused by S,P Synergistically Active Ru Endows an Ultrahigh Hydrogen Evolution Activity of S-Doped RuP Embedded in N,P,S-Doped Carbon. Adv. Sci. 2020, 7, 2001526. [Google Scholar] [CrossRef]
- Rajan, H.; Anantharaj, S.; Kim, J.-K.; Ko, M.J.; Yi, S.C. Strategically Designed Trimetallic Catalyst with Minimal Ru Addresses both Water Dissociation and Hydride Poisoning Barriers in Alkaline HER. J. Mater. Chem. A 2023, 11, 16084–16092. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Z.; Li, J.; Xiong, J.; Zhou, S.; Liang, J.; Cai, W.; Wang, C.; Yang, Z.; Cheng, H. Engineering of Ru/Ru2P Interfaces Superior to Pt Active Sites for Catalysis of the Alkaline Hydrogen Evolution Reaction. J. Mater. Chem. A 2019, 7, 5621–5625. [Google Scholar] [CrossRef]
- Li, G.; Zheng, K.; Li, W.; He, Y.; Xu, C. Ultralow Ru-Induced Bimetal Electrocatalysts with a Ru-Enriched and Mixed-Valence Surface Anchored on a Hollow Carbon Matrix for Oxygen Reduction and Water Splitting. ACS Appl. Mater. Interfaces 2020, 12, 51437–51447. [Google Scholar] [CrossRef]
- Bai, X.; Pang, Q.-Q.; Du, X.; Yi, S.-S.; Zhang, S.; Qian, J.; Yue, X.-Z.; Liu, Z.-Y. Integrating RuNi Alloy in S-doped Defective Carbon for Efficient Hydrogen Evolution in both Acidic and Alkaline Media. Chem. Eng. J. 2021, 417, 129319. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Cao, Y.; Wei, M.; Xiang, P.; Ma, X.; Yuan, X.; Xiang, Y.; Cai, Z. Boosting the Hydrogen Evolution Performance of Ultrafine Ruthenium Electrocatalysts by a Hierarchical Phosphide Array Promoter. Catalysts 2024, 14, 491. https://doi.org/10.3390/catal14080491
Wang J, Cao Y, Wei M, Xiang P, Ma X, Yuan X, Xiang Y, Cai Z. Boosting the Hydrogen Evolution Performance of Ultrafine Ruthenium Electrocatalysts by a Hierarchical Phosphide Array Promoter. Catalysts. 2024; 14(8):491. https://doi.org/10.3390/catal14080491
Chicago/Turabian StyleWang, Jing, Yuzhe Cao, Mingyang Wei, Pengbo Xiang, Xiaoqing Ma, Xiaolei Yuan, Yong Xiang, and Zhao Cai. 2024. "Boosting the Hydrogen Evolution Performance of Ultrafine Ruthenium Electrocatalysts by a Hierarchical Phosphide Array Promoter" Catalysts 14, no. 8: 491. https://doi.org/10.3390/catal14080491
APA StyleWang, J., Cao, Y., Wei, M., Xiang, P., Ma, X., Yuan, X., Xiang, Y., & Cai, Z. (2024). Boosting the Hydrogen Evolution Performance of Ultrafine Ruthenium Electrocatalysts by a Hierarchical Phosphide Array Promoter. Catalysts, 14(8), 491. https://doi.org/10.3390/catal14080491