Investigation into the Fuel Characteristics of Biodiesel Synthesized through the Transesterification of Palm Oil Using a TiO2/CH3ONa Nanocatalyst
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effects of TiO2/CH3ONa Catalyst and Molar Ratio on Methyl Ester Formation
2.2. Effects of TiO2/CH3ONa Catalyst and Molar Ratio on the Kinematic Viscosity
2.3. Effects of TiO2/CH3ONa Catalyst and Molar Ratio on the Acid Value and Moisture Content
2.4. Effects of TiO2/CH3ONa Catalyst and Molar Ratio on the Distillation Temperature and Cetane Index
2.5. Effects of TiO2/CH3ONa Catalyst and Molar Ratio on the Heating Value
3. Experimental Details
3.1. Materials Used for the Catalyst Preparation
3.2. Synthesized Catalyst Method for Biodiesel Production
3.3. Transesterification of Palm Oil Using Solid Alkaline Catalysts
3.4. Analysis of Fuel Properties of Palm-Oil Biodiesel
4. Conclusions
- (1)
- The highest content of fatty acid methyl esters, 95.9 wt.%, was achieved under the reaction conditions of a reaction temperature of 60 °C, a reaction time of 1 h, a methanol/palm oil molar ratio of 6, and a catalyst amount of 3 wt.% of the weight of the feedstock palm oil.
- (2)
- The biodiesel under the above optimum transesterification conditions obtained a minimum kinematic viscosity of 4.17 mm2/s, a minimum water content of 0.031 wt.%, the lowest acid value of 0.32 mg KOH/g oil, the highest heating value of 40.02 MJ/kg, and the highest cetane index of 50.05. In contrast, the lowest cetane index of 49.31 for the biodiesel occurred when using 1 wt.% of the strong alkaline catalyst and the same methanol/palm oil molar ratio of 6.
- (3)
- There was no significant difference in the distillation temperature distribution of the biodiesel obtained from the transesterification reaction with 1 to 3 wt.% of the strong alkaline TiO2/CH3ONa catalyst added and a methanol/palm oil molar ratio of 6. However, the highest distillation temperature reached 355 °C when the reaction was carried out with a 3 wt.% catalyst addition and a methanol/palm oil molar ratio of 6.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, C.Y. The influences of promising feedstock variability on advanced biofuel production: A review. J. Mar. Sci. Technol. 2022, 29, 714–730. [Google Scholar] [CrossRef]
- Narayana Sarma, R.; Vinu, R. Current status and future prospects of biolubricants: Properties and applications. Lubricants 2022, 10, 70. [Google Scholar] [CrossRef]
- Zambare, V.; Patankar, R.; Bhusare, B.; Christopher, L. Recent Advances in Feedstock and Lipase Research and Development towards Commercialization of Enzymatic Biodiesel. Processes 2021, 9, 1743. [Google Scholar] [CrossRef]
- Mandari, V.; Devarai, S.K. Biodiesel production using homogeneous, heterogeneous, and enzyme catalysts via transesterification and esterification reactions: A critical review. BioEnergy Res. 2022, 15, 935–961. [Google Scholar] [CrossRef]
- Maleki, B.; Talesh, S.A.; Mansouri, M. Comparison of catalysts types performance in the generation of sustainable biodiesel via transesterification of various oil sources: A review study. Mater. Today Sustain. 2022, 18, 100157. [Google Scholar] [CrossRef]
- Wang, B.; Wang, B.; Shukla, S.K.; Wang, R. Enabling catalysts for biodiesel production via transesterification. Catalysts 2023, 13, 740. [Google Scholar] [CrossRef]
- Basumatary, S.F.; Brahma, S.; Hoque, M.; Das, B.K.; Selvaraj, M.; Brahma, S.; Basumatary, S. Advances in CaO-based catalysts for sustainable biodiesel synthesis. Green Energy Resour. 2023, 1, 100032. [Google Scholar] [CrossRef]
- Arachchige, U.S.P.R.; Miyuranga, K.V.; Thilakarathne, D.; Jayasinghe, R.A.; Weerasekara, N.A. Biodiesel-alkaline transesterification process for methyl ester production. Nat. Environ. Pollut. Technol. 2021, 20, 1973–1980. [Google Scholar] [CrossRef]
- Elgharbawy, A.S.; Sadik, W.; Sadek, O.M.; Kasaby, M.A. A review on biodiesel feedstocks and production technologies. J. Chil. Chem. Soc. 2021, 66, 5098–5109. [Google Scholar] [CrossRef]
- Lin, C.Y.; Tseng, Y.M. Effects of LED irradiation and sea water culture on the lipid characteristics of Nannochloropsis oculata. J. Renew. Sustain. Energy 2018, 10, 023102. [Google Scholar] [CrossRef]
- Lin, C.Y.; Lin, K.H. Comparison of the engine performance of soybean oil biodiesel emulsions prepared by phase inversion temperature and mechanical homogenization methods. Processes 2023, 11, 907. [Google Scholar] [CrossRef]
- Najjar, A.; Hassan, E.A.; Zabermawi, N.; Saber, S.H.; Bajrai, L.H.; Almuhayawi, M.S.; Harakeh, S. Optimizing the catalytic activities of methanol and thermotolerant Kocuria flava lipases for biodiesel production from cooking oil wastes. Sci. Rep. 2021, 11, 13659. [Google Scholar] [CrossRef] [PubMed]
- Belousov, A.S.; Esipovich, A.L.; Kanakov, E.A.; Otopkova, K.V. Recent advances in sustainable production and catalytic transformations of fatty acid methyl esters. Sustain. Energy Fuels 2021, 5, 4512–4545. [Google Scholar] [CrossRef]
- Yusoff, M.N.A.M.; Imran, S.; Kalam, M.A.; Zulkifli, N.W.; Masjuki, H.H. Future needs of the biodiesel industry. In Sustainable Biodiesel; Academic Press: Cambridge, MA, USA, 2023; pp. 373–383. [Google Scholar]
- Lapisa, R.; Yuvenda, D.; Putra, R.P. Experimental study on fuel consumption and smoke opacity of defective coffee-bean-based biodiesel fuel engines. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2023; Volume 2582, p. 012007. [Google Scholar]
- Chuah, L.F.; Klemeš, J.J.; Bokhari, A.; Asif, S. A review of biodiesel production from renewable resources: Chemical reactions. Chem. Eng. Trans. 2021, 88, 943–948. [Google Scholar]
- Remonatto, D.; Miotti, R.H., Jr.; Monti, R.; Bassan, J.C.; de Paula, A.V. Applications of immobilized lipases in enzymatic reactors: A review. Process Biochem. 2022, 114, 1–20. [Google Scholar] [CrossRef]
- Eddy, D.R.; Permana, M.D.; Sakti, L.K.; Sheha, G.A.N.; Hidayat, S.; Rahayu, I. Heterophase polymorph of TiO2 (Anatase, Rutile, Brookite, TiO2 (B)) for efficient photocatalyst: Fabrication and activity. Nanomaterials 2023, 13, 704. [Google Scholar] [CrossRef]
- Venkatesh, Y.K.; Ravikumar, M.P.; Ramu, S.; Ravikumar, C.H.; Mohan, S.; Geetha Balakrishna, R. Developments in Titanium-Based Alkali and Alkaline Earth Metal Oxide Catalysts for Sustainable Biodiesel Production: A Review. Chem. Rec. 2023, 23, e202300277. [Google Scholar] [CrossRef]
- Din, I.U.; Nasir, Q.; Garba, M.D.; Alharthi, A.I.; Alotaibi, M.A.; Usman, M. A review of preparation methods for heterogeneous catalysts. Mini-Rev. Org. Chem. 2022, 19, 92–110. [Google Scholar]
- Stephen, L. Titanium dioxide versatile solid crystalline: An overview. Assorted Dimens. Reconfig. Mater. 2020, 1, 92056. [Google Scholar] [CrossRef]
- Peiris, S.; de Silva, H.B.; Ranasinghe, K.N.; Bandara, S.V.; Perera, I.R. Recent development and future prospects of TiO2 photocatalysis. J. Chin. Chem. Soc. 2021, 68, 738–769. [Google Scholar] [CrossRef]
- Udayakumar, M. Kinetics and thermodynamic analysis of transesterification of waste cooking sunflower oil using bentonite-supported sodium methoxide catalyst. Biomass Convers. Biorefin. 2023, 13, 9701–9714. [Google Scholar] [CrossRef]
- Argaw Shiferaw, K.; Mathews, J.M.; Yu, E.; Choi, E.Y.; Tarte, N.H. Sodium methoxide/zeolite-supported catalyst for transesterification of soybean waste cooking oil for biodiesel production. Inorganics 2023, 11, 163. [Google Scholar] [CrossRef]
- Soodesh, C.Y.; Seriyala, A.K.; Chattopadhyay, P.; Rozhkova, N.; Michalkiewicz, B.; Chatterjee, S.; Roy, B. Carbonaceous catalysts (biochar and activated carbon) from agricultural residues and their application in produc tion of biodiesel: A review. Chem. Eng. Res. Des. 2024, 203, 759–788. [Google Scholar] [CrossRef]
- Najaf-Abadi, M.K.; Ghobadian, B.; Dehghani-Soufi, M. A review on application of deep eutectic solvents as green catalysts and co-solvents in biodiesel production and purification processes. Biomass Convers. Biorefin. 2024, 14, 3117–3134. [Google Scholar] [CrossRef]
- Martínez, A.; Mijangos, G.E.; Romero-Ibarra, I.C.; Hernández-Altamirano, R.; Mena-Cervantes, V.Y. In-situ transesterification of Jatropha curcas L. seeds using homogeneous and heterogeneous basic catalysts. Fuel 2019, 235, 277–287. [Google Scholar] [CrossRef]
- Patel, A.; Vachhani, H.; Patel, Y. Thermal and fluid property analysis of biodiesel produced from waste cooking oil using sodium methoxide and calcium oxide. In Recent Advances in Fluid Dynamics: Select Proceedings of ICAFFTS 2021; Springer Nature: Singapore, 2022; pp. 83–92. [Google Scholar] [CrossRef]
- Lawer-Yolar, G.; Dawson-Andoh, B.; Atta-Obeng, E. Synthesis of biodiesel from tall oil fatty acids by homogeneous and heterogeneous catalysis. Sustain. Chem. 2021, 2, 206–221. [Google Scholar] [CrossRef]
- AlMohamadi, H.; Awad, S.A.; Sharma, A.K.; Fayzullaev, N.; Távara-Aponte, A.; Chiguala-Contreras, L.; Esmaeili, H. Photo catalytic Activity of Metal-and Non-Metal-Anchored ZnO and TiO2 Nanocatalysts for Advanced Photocatalysis: Comparative Study. Catalysts 2024, 14, 420. [Google Scholar] [CrossRef]
- Sheng, Y.; Tian, F.; Wang, X.; Jiang, N.; Zhang, X.; Chen, X.; Liang, C.; Wang, A. Carbon-encapsulated Ni catalysts derived from citrate complexes for highly efficient hydrogenation of furfural to tetrahydrofurfuryl alcohol. Energy 2024, 292, 130360. [Google Scholar] [CrossRef]
- Lin, C.Y.; Lin, K.H.; Yang, H. Effects of surfactant characteristics on fuel properties of emulsions of alternative engine fuel through the phase inversion method. Processes 2023, 11, 1864. [Google Scholar]
- Chen, K.S.; Lin, Y.C.; Hsu, K.H.; Wang, H.K. Improving biodiesel yields from waste cooking oil by using sodium methoxide and a microwave heating system. Energy 2012, 38, 151–156. [Google Scholar] [CrossRef]
- Gupta, V.; Singh, K.P. The impact of heterogeneous catalyst on biodiesel production; a review. Mater. Today Proc. 2023, 78, 364–371. [Google Scholar] [CrossRef]
- Kokkinos, N.C.; Emmanouilidou, E.; Paschou, V.; Mitkidou, S. Applicatiof membrane reactors in homogeneous catalytic processes. In Homogeneous Catalysis Concepts and Basics; Elsevier: Amsterdam, The Netherlands, 2024; pp. 279–298. [Google Scholar]
- Lin, C.Y.; Ma, L. Influences of water content in feedstock oil on burning characteristics of fatty acid methyl esters. Processes 2020, 8, 1130. [Google Scholar] [CrossRef]
- Veza, I.; Roslan, M.F.; Said, M.F.M.; Latiff, Z.A.; Abas, M.A. Physico-chemical properties of Acetone-Butanol-Ethanol (ABE)-diesel blends: Blending strategies and mathematical correlations. Fuel 2021, 286, 119467. [Google Scholar] [CrossRef]
- Effiom, S.O. Effect of process parameters on biodiesel yield produced from palm kernel shell oil (PKSO) using eggshell as catalyst. Int. J. Front. Eng. Technol. Res. 2023, 4, 001–017. [Google Scholar] [CrossRef]
- Azer, B.B.; Gulsaran, A.; Pennings, J.R.; Saritas, R.; Kocer, S.; Bennett, J.L.; Yavuz, M. A Review: TiO2 based photoele trocatalytic chemical oxygen demand sensors and their usage in industrial applications. J. Electroanal. Chem. 2022, 918, 116466. [Google Scholar] [CrossRef]
- Roy, M.; Mohanty, K. Valorization of de-oiled microalgal biomass as a carbon-based heterogeneous catalyst for a sustainable biodiesel production. Bioresour. Technol. 2021, 337, 125424. [Google Scholar] [CrossRef]
- Atgur, V.; Manavendra, G.; Banapurmath, N.R.; Rao, B.N.; Rajhi, A.A.; Khan, T.M.Y.; Venkatesh, R. Essence of thermal analysis to assess biodiesel combustion performance. Energies 2022, 15, 6622. [Google Scholar] [CrossRef]
- Guan, T.; Liu, B.; Wang, R.; Huang, Y.; Luo, J.; Li, Y. The enhanced fatty acids flavor release for low-fat cheeses by carrier immobilized lipases on O/W Pickering emulsions. Food Hydrocoll. 2021, 116, 106651. [Google Scholar] [CrossRef]
- Wang, Y.; Hao, C.; Ge, Y.; Hao, L.; Tan, J.; Wang, X.; Li, J. Fuel consumption and emission performance from light-duty conventional/hybrid-electric vehicles over different cycles and real driving tests. Fuel 2020, 278, 118340. [Google Scholar] [CrossRef]
- Sun, Z.; Huang, X.; Zhang, G. TiO2-based catalysts for photothermal catalysis: Mechanisms, materials and applications. J. Clean Prod. 2022, 381, 135156. [Google Scholar] [CrossRef]
- Lin, C.Y.; Ma, L. Fluid characteristics of biodiesel produced from palm oil with various initial water contents. Processes 2021, 9, 309. [Google Scholar] [CrossRef]
- Chuah, L.F.; Klemeš, J.J.; Bokhari, A.; Asif, S.; Cheng, Y.W.; Chong, C.C.; Show, P.L. A review of intensification technologies for biodiesel production. Biofuels Biorefin. 2022, 2, 87–116. [Google Scholar] [CrossRef]
- Sharma, V.; Hossain, A.K.; Griffiths, G.; Duraisamy, G.; Thomas, J.J. Investigation on yield, fuel properties, ageing and low temperature flow of fish oil esters. Energy Convers. Manag. X 2022, 14, 100217. [Google Scholar] [CrossRef]
- Kumar, S.; Shamsuddin, M.R.; Farabi, M.A.; Saiman, M.I.; Zainal, Z.; Taufiq-Yap, Y.H. Production of methyl esters from waste cooking oil and chicken fat oil via simultaneous esterification and transesterification using acid catalyst. Energy Convers. Manag. 2020, 226, 113366. [Google Scholar] [CrossRef]
- Guo, Y.; Delbari, S.A.; Namini, A.S.; Van Le, Q.; Park, J.Y.; Kim, D.; Li, C. Recent developments in solid acid catalysts for biodiesel production. Mol. Catal. 2023, 547, 113362. [Google Scholar] [CrossRef]
- Lin, C.Y.; Lin, Y.W. Engine Performance of High-Acid Oil-Biodiesel through Supercritical Transesterification. ACS Omega 2024, 9, 3445–3453. [Google Scholar] [CrossRef]
- Yaşar, F. Comparison of fuel properties of biodiesel fuels produced from different oils to determine the most suitable feedstock type. Fuel 2020, 264, 116817. [Google Scholar] [CrossRef]
- El-Araby, R.; Amin, A.; El Morsi, A.K.; El-Ibiari, N.N.; El-Diwani, G.I. Study on the characteristics of palm oil–biodiesel–diesel fuel blend. Egypt. J. Pet. 2018, 27, 187–194. [Google Scholar] [CrossRef]
- He, X.; Xu, K.; Xu, Y.; Zhang, Z.; Wei, W. Effects of nozzle diameter on the characteristic time scales of diesel spray two-stage ignition under cold-start conditions. Fuel 2023, 335, 126700. [Google Scholar] [CrossRef]
- Deepanraj, B.; Senthilkumar, N.; Mala, D.; Sathiamourthy, A. Cashew nut shell liquid as alternate fuel for CI engine—Optimization approach for performance improvement. Biomass Convers. Biorefin. 2022, 12, 1715–1728. [Google Scholar] [CrossRef]
- Hasan, N.; Ratnam, M.V. Biodiesel production from waste animal fat by transesterification using H2SO4 and KOH catalysts: A study of physiochemical properties. Int. J. Chem. Eng. 2022, 2022, 6932320. [Google Scholar] [CrossRef]
- Lin, C.Y.; Ma, L. Comparison of water-removal efficiency of molecular sieves vibrating by rotary shaking and electromagnetic stirring from feedstock oil for biofuel production. Fermentation 2021, 7, 132. [Google Scholar] [CrossRef]
- Anantapinitwatna, A.; Ngaosuwan, K.; Kiatkittipong, W.; Wongsawaeng, D.; Anantpinijwatna, A.; Quitain, A.T.; Assabumrungrat, S. Water influence on the kinetics of transesterification using CaO catalyst to produce biodiesel. Fuel 2021, 296, 120653. [Google Scholar] [CrossRef]
- Yeong, S.P.; San Chan, Y.; Law, M.C.; Ling, J.K.U. Improving cold flow properties of palm fatty acid distillate biodiesel through vacuum distillation. J. Bioresour. Bioprod. 2022, 7, 43–51. [Google Scholar] [CrossRef]
- Khethiwe, E.; Clever, K.; Jerekias, G. Effects of fatty acids composition on fuel properties of Jatropha curcas biodiesel. Smart Grid Renew. Energy 2020, 11, 165–180. [Google Scholar] [CrossRef]
- Ahmad, R.K.; Sulaiman, S.A.; Yusup, S.; Dol, S.S.; Inayat, M.; Umar, H.A. Exploring the potential of coconut shell biomass for charcoal production. Ain Shams Eng. J. 2022, 13, 101499. [Google Scholar] [CrossRef]
- Kuss, V.V.; Kuss, A.V.; da Rosa, R.G.; Aranda, D.A.G.; Cruz, Y.R. Potential of biodiesel production from palm oil at Brazilian Amazon. Renew. Sustain. Energy Rev. 2015, 50, 1013–1020. [Google Scholar] [CrossRef]
- Zahan, K.A.; Kano, M. Biodiesel production from palm oil, its by-products, and mill effluent: A review. Energies 2018, 11, 2132. [Google Scholar] [CrossRef]
- Arora, I.; Chawla, H.; Chandra, A.; Sagadevan, S.; Garg, S. Advances in the strategies for enhancing the photocatalytic activity of TiO2: Conversion from UV-light active to visible-light active photocatalyst. Inorg. Chem. Commun. 2022, 143, 109700. [Google Scholar] [CrossRef]
- Kim, M.; Salley, S.O.; Ng, K.Y.S. Transesterification of glycerides using a heterogeneous resin catalyst combined with a homogeneous catalyst. Energy Fuels 2008, 22, 3594–3599. [Google Scholar] [CrossRef]
- Formosa Oilseed Processing Ltd. Test Report of Palm Oil. 2021; Taichung City, Taiwan. [Google Scholar]
- Kassem, Y.; Çamur, H.; Alassi, E. Biodiesel production from four residential waste frying oils: Proposing blends for improving the physicochemical properties of methyl biodiesel. Energies 2020, 13, 4111. [Google Scholar] [CrossRef]
- Pathmasiri, T.K.K.S.; Perera, G.I.P. Potential of using polyethylene as viscosity enhancer of palm oil to use as a lubricating oil. Adv. Mech. Eng. 2020, 12, 1687814020970745. [Google Scholar] [CrossRef]
- EN 12973:2000; Technical Committee of European Standard, Value Management, Value Analysis, Function Analysis. CEN-CENELEC Management Centre: Brussel, Belgium, 2000.
- Lin, C.Y. Effects of the degree of unsaturation of fatty acid esters on engine performance and emission characteristics. Processes 2022, 10, 2161. [Google Scholar] [CrossRef]
- Lin, C.Y.; Wu, X.E. Determination of cetane number from fatty acid compositions and structures of biodiesel. Processes 2022, 10, 1502. [Google Scholar] [CrossRef]
- ASTM D445; ASTM International. Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity). ASTM International: West Conshohocken, PA, USA, 2024. [Google Scholar]
- Vicentini-Polette, C.M.; Ramos, P.R.; Gonçalves, C.B.; De Oliveira, A.L. Determination of free fatty acids in crude vegetable oil samples obtained by high-pressure processes. Food Chem. X 2021, 12, 100166. [Google Scholar] [CrossRef]
- ASTM S1298-99e2; ASTM International. Standard Test Method for Density, Relative Density (Specific Gravity), or API Gravity of Crude Petroleum and Liquid Petroleum Products by Hydrometer Method. ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar]
- Cheng, C.; Cordtz, R.F.; Førby, N.L.; Schramm, J. Experimental and simulation investigation of n-heptane/ammonia dual fuel on a light-duty compression ignition engine. Int. J. Hydrogen Energy 2024, 57, 1339–1353. [Google Scholar] [CrossRef]
- ASTM D664-18e2; ASTM International. Standard Test Method for Acid Number of Petroleum Products by Potentiometric Titration. ASTM International: West Conshohocken, PA, USA, 2024. [Google Scholar]
Fatty Acid Methyl Ester Composition | Catalyst Addition (wt.%) | |
---|---|---|
1 | 3 | |
C14~C22 | 94.0 | 95.95 |
C14:0 | 0.70 | 4.20 |
C16:0 | 31.04 | 31.45 |
C18:0 | 3.85 | 3.96 |
C18:1 | 37.24 | 37.68 |
C18:2 | 17.58 | 18.02 |
C18:3 | 1.87 | 0.20 |
C20:0 | 0.38 | 0.04 |
C20:1 | 0.19 | 0.35 |
C22:0 | 0.14 | 0.03 |
C24:0 | 0.09 | 0.02 |
Saturated fatty acids | 36.2 | 39.7 |
Unsaturated fatty acids | 57.06 | 56.25 |
Item | Property |
---|---|
Water content (%) | 0.029 |
Acid value (mg KOH/g) | 2.23 |
Peroxide value (meq/kg) | 0.53 |
Lovibond Tintometer 1 | R1.5 Y15 |
Melting point (°C) | 23.01 |
Specific gravity (sg) | 0.907 |
Cold filter plugging point (CFPP, °C) | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-Y.; Tseng, S.-L. Investigation into the Fuel Characteristics of Biodiesel Synthesized through the Transesterification of Palm Oil Using a TiO2/CH3ONa Nanocatalyst. Catalysts 2024, 14, 623. https://doi.org/10.3390/catal14090623
Lin C-Y, Tseng S-L. Investigation into the Fuel Characteristics of Biodiesel Synthesized through the Transesterification of Palm Oil Using a TiO2/CH3ONa Nanocatalyst. Catalysts. 2024; 14(9):623. https://doi.org/10.3390/catal14090623
Chicago/Turabian StyleLin, Cherng-Yuan, and Shun-Lien Tseng. 2024. "Investigation into the Fuel Characteristics of Biodiesel Synthesized through the Transesterification of Palm Oil Using a TiO2/CH3ONa Nanocatalyst" Catalysts 14, no. 9: 623. https://doi.org/10.3390/catal14090623
APA StyleLin, C.-Y., & Tseng, S.-L. (2024). Investigation into the Fuel Characteristics of Biodiesel Synthesized through the Transesterification of Palm Oil Using a TiO2/CH3ONa Nanocatalyst. Catalysts, 14(9), 623. https://doi.org/10.3390/catal14090623