MOF-Derived Metal Sulfides and Their Composites: Synthesis and Their Electrochemical Water Splitting
Abstract
1. Introduction
2. The Synthesis Methods of MOF-Derived Metal Sulfides and Their Composites
2.1. Solvothermal Method
2.2. Hydrothermal Method
2.3. In Situ Sulfidation Method
2.4. Chemical Vapor Deposition Method
2.5. Electrodeposition Method
2.6. Template Method
3. Electrochemical Applications of MOF-Derived Metal Sulfides and Their Composites
3.1. OER
3.2. HER
3.3. OWS
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Iqbal, M.Z.; Aziz, U.; Aftab, S.; Hegazy, H.H. Metal organic frameworks: Mastery in electroactivity for hydrogen and oxygen evolution reactions. Int. J. Hydrogen Energy 2023, 48, 17801–17826. [Google Scholar] [CrossRef]
- Sun, N.; Shah, S.S.A.; Lin, Z.; Zheng, Y.Z.; Jiao, L.; Jiang, H.L. MOF-based electrocatalysts: An overview from the perspective of structural design. Chem. Rev. 2025, 125, 2703–2792. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Sun, H.; Jiang, S.P.; Shao, Z. Modulating metal-organic frameworks for catalyzing acidic oxygen evolution for proton exchange membrane water electrolysis. Susmat 2021, 1, 460–481. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, Z.; Kong, X.; Xu, H.; Jin, W. Rational design of MOFs-derived Co-Ru species embedded N-doped carbon/carbon matrix for highly-efficient and multifunctional electrocatalysis. Appl. Surf. Sci. 2022, 606, 154818. [Google Scholar] [CrossRef]
- Jiang, H.; Du, Y.; Zhao, L.; Liu, X.; Kong, J.; Liu, P.; Zhou, T. MOF-derived ionic conductor enhancing the performance of polymer electrolyte for solid-state lithium batteries. Chem. Eng. J. 2024, 487, 150455. [Google Scholar] [CrossRef]
- Pathak, A.; Watanabe, H.; Manna, B.; Hatakeyama, K.; Ida, S. Hydrogen-bonded Metal-organic framework nanosheet as a proton conducting membrane for an H2/O2 fuel cell. Small 2024, 20, 2400222. [Google Scholar] [CrossRef]
- Li, Z.; Huang, Y.; Zhang, Z.; Wang, J.; Han, X.; Zhang, G.; Li, Y. Hollow C-LDH/Co9S8 nanocages derived from ZIF-67-C for high- performance asymmetric supercapacitors. J. Colloid Interface Sci. 2021, 604, 340–349. [Google Scholar] [CrossRef]
- Qian, Y.; Sun, Y.; Zhang, F.; Song, Y.; Luo, X.; Shen, L.; Sohn, M.; Shi, H.; Kang, D.J. Controlling the microenvironment by introducing dual metal atoms into ZIF-L to enhance hydrogen evolution activity. Appl. Surf. Sci. 2025, 684, 161791. [Google Scholar] [CrossRef]
- Ji, B.; Li, W.; Zhang, F.; Geng, P.; Li, C. MOF-derived transition metal phosphides for supercapacitors. Small 2025, 21, 2409273. [Google Scholar] [CrossRef]
- Ejsmont, A.; Darvishzad, T.; Słowik, G.; Stelmachowski, P.; Goscianska, J. Cobalt-based MOF-derived carbon electrocatalysts with tunable architecture for enhanced oxygen evolution reaction. J. Colloid Interface Sci. 2024, 653, 1326–1338. [Google Scholar] [CrossRef]
- Li, Q.; Jiao, Q.; Yan, Y.; Li, H.; Zhou, W.; Gu, T.; Shen, X.; Lu, C.; Zhao, Y.; Zhang, Y.; et al. Optimized Co-S bonds energy and confinement effect of hollow MXene@CoS2/NC for enhanced sodium storage kinetics and stability. Chem. Eng. J. 2022, 450, 137922. [Google Scholar] [CrossRef]
- Pei, Y.; Li, D.; Qiu, C.; Yan, L.; Li, Z.; Yu, Z.; Fang, W.; Lu, Y.; Zhang, B. High-entropy sulfide catalyst boosts energy-saving electrochemical sulfion upgrading to thiosulfate coupled with hydrogen production. Angew. Chem. Int. Ed. 2024, 63, e202411977. [Google Scholar] [CrossRef]
- Shi, Y.; Zhu, B.; Guo, X.; Li, W.; Ma, W.; Wu, X.; Pang, H. MOF-derived metal sulfides for electrochemical energy applications. Energy Storage Mater. 2022, 51, 840–872. [Google Scholar] [CrossRef]
- Li, S.; Gao, Y.; Li, N.; Ge, L.; Bu, X.; Feng, P. Transition metal-based bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction. Energy Environ. Sci. 2021, 14, 1897–1927. [Google Scholar] [CrossRef]
- Li, Z.; Hu, X.; Shi, Z.; Lu, J.; Wang, Z. MOF-derived iron sulfide nanocomposite with sulfur-doped carbon shell as a promising anode material for high-performance lithium-ion batteries. J. Alloys Compd. 2021, 868, 159110. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, W.; Zhang, J.; Li, Y.; Wang, Y.; Yang, L.; Yin, S. MOF-derived bimetallic NiMo-based sulfide electrocatalysts for efficient hydrogen evolution reaction in alkaline media. J. Alloys Compd. 2023, 935, 167974. [Google Scholar] [CrossRef]
- Hu, S.; Yi, M.; Siyal, S.H.; Wu, D.; Wang, H.; Zhu, Z.; Zhang, J. Metal-organic framework derived NiS2 hollow spheres as multifunctional reactors for synergistic regulation of polysulfide confinement and redox conversion. J. Mater. Chem. A 2021, 9, 15269–15281. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, H.; Wang, L.; Ouyang, C.; Liang, H.; Zhong, S. A metal-organic frameworks derived 1T-MoS2 with expanded layer spacing for enhanced electrocatalytic hydrogen evolution. Small 2023, 19, 2205736. [Google Scholar] [CrossRef]
- Zheng, J.; He, C.; Li, X.; Wang, K.; Wang, T.; Zhang, R.; Tang, B.; Rui, Y. CoS2-MnS@Carbon nanoparticles derived from metal-organic framework as a promising anode for lithium-ion batteries. J. Alloys Compd. 2021, 854, 157315. [Google Scholar] [CrossRef]
- Ma, W.; Li, W.; Zhang, H.; Wang, Y. N-doped carbon wrapped CoFe alloy nanoparticles with MoS2 nanosheets as electrocatalyst for hydrogen and oxygen evolution reactions. Int. J. Hydrogen Energy 2023, 48, 22032–22043. [Google Scholar] [CrossRef]
- Yang, M.; Ning, Q.; Fan, C.; Wu, X. Large-scale Ni-MOF derived Ni3S2 nanocrystals embedded in N-doped porous carbon nanoparticles for high-rate Na+ storage. Chin. Chem. Lett. 2021, 32, 895–899. [Google Scholar] [CrossRef]
- Shi, R.; Wang, L.; Pi, Z.; Zhao, L.; Xu, H.; Zhao, Z.; Liao, J.; Ren, H.; Tian, X.; Liu, Q.; et al. Er-MOF composite NiS nanomaterials as a highly efficient electrocatalyst for hydrogen evolution reaction. Electrochim. Acta 2024, 483, 143993. [Google Scholar] [CrossRef]
- Xu, X.; Zhong, W.; Zhang, L.; Liu, G.; Xu, W.; Du, Y. Metal organic framework derived Ni0.15Co0.85S2@MoS2 heterostructure as an efficient and stable electrocatalyst for hydrogen evolution. Sep. Purif. Technol. 2021, 254, 117629. [Google Scholar] [CrossRef]
- Sui, Q.; Li, J.; Xiang, C.; Xu, F.; Zhang, J.; Sun, L.; Zou, Y. Nickel metal-organic framework microspheres loaded with nickel-cobalt sulfides for supercapacitor electrode materials. J. Energy Storage 2022, 55, 105525. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, J.; Xie, Y.; Shao, Y.; Ling, Y.; Chen, Y.; Zhang, Y. CoS2 particles loaded on MOF-derived hollow carbon spheres with enhanced overall water splitting. Electrochim. Acta 2023, 458, 142511. [Google Scholar] [CrossRef]
- Chu, X.; Wang, Y.; Jing, L.; Jiang, W.; Wu, Y.; Lu, M.; Liu, B.; Liu, C.; Sun, Y.; Che, G. Design and construction of metal sulfide/phosphide heterostructures with optimized d-band center and boosted electrocatalytic oxygen evolution. J. Mater. Sci. Technol. 2025, 233, 38–47. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Zhang, M.; Zhong, H.; Cao, Z.; Li, L. Highly efficient hydrogen evolution of Ni3S2-MoS2@CoMoO4/NF from in situ reaction of metal-organic framework in alkaline media. J. Taiwan Inst. Chem. Eng. 2023, 151, 105133. [Google Scholar] [CrossRef]
- Yu, S.; Li, J.; Du, Y.; Wang, Y.; Zhang, Y.; Wu, Z. Sulfur-modified MOFs as efficient electrocatalysts for overall water splitting. Coord. Chem. Rev. 2024, 520, 216144. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, L.; He, Y.; Zhu, H. Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 2021, 9, 5320–5363. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.; Cao, Z.; Yin, Z.; Ma, T.; Chen, S. Current progress of metal sulfides derived from metal-organic frameworks for advanced electrocatalysis: Potential electrocatalysts with diverse applications. J. Mater. Chem. A 2022, 10, 1617–1641. [Google Scholar] [CrossRef]
- Qian, Y.; Zhang, F.; Luo, X.; Zhong, Y.; Kang, D.J.; Hu, Y. Synthesis and electrocatalytic applications of layer-structured metal chalcogenides composites. Small 2024, 20, 2310526. [Google Scholar] [CrossRef]
- Liu, X.; Verma, G.; Chen, Z.; Hu, B.; Huang, Q.; Yang, H.; Ma, S.; Wang, X. Metal-organic framework nanocrystal-derived hollow porous materials: Synthetic strategies and emerging applications. Innovation 2022, 3, 100281. [Google Scholar] [CrossRef]
- Du, X.; Ding, Y.; Zhang, X. MOF-derived Zn-Co-Ni sulfides with hollow nanosword arrays for high-efficiency overall water and urea electrolysis. Green Energy Environ. 2023, 8, 798–811. [Google Scholar] [CrossRef]
- Xue, Z.; Tao, K.; Han, L. Stringing metal-organic framework-derived hollow Co3S4 nanopolyhedra on V2O5 nanowires for high-performance supercapacitors. Appl. Surf. Sci. 2022, 600, 154076. [Google Scholar] [CrossRef]
- Yang, D.; Su, Z.; Chen, Y.; Srinivas, K.; Zhang, X.; Zhang, W.; Lin, H. Self-reconstruction of a MOF-derived chromium-doped nickel disulfide in electrocatalytic water oxidation. Chem. Eng. J. 2022, 430, 133046. [Google Scholar] [CrossRef]
- Yu, R.; Wang, C.; Liu, D.; Wu, Z.; Li, J.; Du, Y. Bimetallic sulfide particles incorporated in Fe/Co-based metal-organic framework ultrathin nanosheets toward boosted electrocatalysis of the oxygen evolution reaction. Inorg. Chem. Front. 2022, 9, 3130–3137. [Google Scholar] [CrossRef]
- Xie, L.; Guan, J.; Liu, M.; Zhang, Y.; Zhu, L.; Han, Q.; Qiu, X.; Cao, X. Synergetic hierarchical nanosheets of bimetallic sulfides: High capacity and enhanced diffusion kinetics for lithium storage. Chem. Eng. J. 2024, 499, 156167. [Google Scholar] [CrossRef]
- Wang, M.; Srinivas, K.; Liu, D.; Yu, H.; Ma, F.; Zhang, Z.; Wu, Y.; Li, X.; Wang, Y.; Chen, Y. Metal-organic framework-derived Fe/NiS heterostructure-embedded nanosheets coupled with carbon nanotubes for excellent oxygen evolution reaction. J. Alloys Compd. 2024, 972, 172709. [Google Scholar] [CrossRef]
- Ke, W.; Zhang, Y.; Imbault, A.L.; Li, Y. Metal-organic framework derived iron-nickel sulfide nanorods for oxygen evolution reaction. Int. J. Hydrogen Energy 2021, 46, 20941–20949. [Google Scholar] [CrossRef]
- Hou, X.; Jiang, T.; Xu, X.; Wang, X.; Zhou, J.; Xie, H.; Liu, Z.; Chu, L.; Huang, M. Coupling of NiFe-based metal-organic framework nanosheet arrays with embedded Fe-Ni3S2 clusters as efficient bifunctional electrocatalysts for overall water splitting. Chin. J. Struct. Chem. 2022, 41, 2207074–2207080. [Google Scholar] [CrossRef]
- Yu, S.; Liu, D.; Wang, C.; Li, J.; Yu, R.; Wang, Y.; Yin, J.; Wang, X.; Du, Y. Nanosheet-assembled transition metal sulfides nanoflowers derived from CoMo-MOF for efficient oxygen evolution reaction. J. Colloid Interface Sci. 2024, 653, 1464–1477. [Google Scholar] [CrossRef] [PubMed]
- Baek, K.; Li, T.; Lee, C.; Li, W.; Kim, K. MOF-derived CoSx as a bifunctional electrocatalyst for efficient sulfide oxidation and coupled ammonia synthesis. Green Chem. 2025, 27, 8637–8648. [Google Scholar] [CrossRef]
- Zhao, M.; Li, W.; Li, J.; Hu, W.; Li, C.M. Strong electronic interaction enhanced electrocatalysis of metal sulfide clusters embedded metal-organic framework ultrathin nanosheets toward highly efficient overall water splitting. Adv. Sci. 2020, 7, 2001965. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; An, B.; Liu, W.; Su, H.; Li, N.; Gao, Y.; Ge, L. Cation-induced interface electric field redistribution and molecular orbital coupling in Co-FeS/MoS2 for boosting electrocatalytic overall water splitting. Chem. Eng. J. 2024, 498, 155102. [Google Scholar] [CrossRef]
- Zhong, X.; Wan, H.; Lin, Y.; Chen, G.; Wu, D.; Zheng, Z.; Liu, X.; Zhang, Y. N-doped bimetallic sulfides hollow spheres derived from metal-organic frameworks toward cost-efficient and high performance oxygen evolution reaction. Appl. Surf. Sci. 2022, 591, 153173. [Google Scholar] [CrossRef]
- Xiao, F.; Yang, X.; Wang, H.; Yu, D.Y.W.; Rogach, A.L. Hierarchical CoS2/N-doped carbon@MoS2 nanosheets with enhanced sodium storage performance. ACS Appl. Mater. Interfaces 2020, 12, 54644–54652. [Google Scholar] [CrossRef]
- Qian, Y.; Zhang, F.; Zhao, S.; Bian, C.; Mao, H.; Kang, D.J.; Pang, H. Recent progress of metal-organic framework-derived composites: Synthesis and their energy conversion applications. Nano Energy 2023, 111, 108415. [Google Scholar] [CrossRef]
- Kang, C.; Ma, L.; Chen, Y.; Fu, L.; Hu, Q.; Zhou, C.; Liu, Q. Metal-organic framework derived hollow rod-like NiCoMn ternary metal sulfide for high-performance asymmetric supercapacitors. Chem. Eng. J. 2022, 427, 131003. [Google Scholar] [CrossRef]
- Li, W.; Sun, Z.; Ge, R.; Li, J.; Li, Y.; Cairney, J.M.; Zheng, R.; Li, Y.; Li, S.; Li, Q.; et al. Nanoarchitectonics of La-doped Ni3S2/MoS2 hetetostructural electrocatalysts for water electrolysis. Small Struct. 2023, 4, 2300175. [Google Scholar] [CrossRef]
- Lu, Y.; Pei, C.; Pan, Z.; Zhou, W.; Kim, J.K.; Park, H.S.; Yu, X.; Pang, H. Vertically aligned ReS2 on MOF deorived CoS2-C hybrid as core-shell catalyst for promoting overall water splitting. Int. J. Hydrogen Energy 2024, 72, 307–314. [Google Scholar] [CrossRef]
- Qin, J.; Yang, M.; Chen, T.; Dong, B.; Hou, S.; Ma, X.; Zhou, Y.; Yang, X.; Nan, J.; Chai, Y. Ternary metal sulfides MoCoNiS derived from metal organic frameworks for efficient oxygen evolution. Int. J. Hydrogen Energy 2020, 45, 2745–2753. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, Y.; Yu, J.; Hu, M.; Wu, Z.; Wei, X.; Yu, S.; Du, Y. Universal synthesis of coral-like ternary MOF-derived sulfides as efficient OER electrocatalysts. Inorg. Chem. Front. 2024, 11, 6064–6071. [Google Scholar] [CrossRef]
- Chhetri, K.; Muthurasu, A.; Dahal, B.; Kim, T.; Mukhiya, T.; Chae, S.H.; Ko, T.H.; Choi, Y.C.; Kim, H.Y. Engineering the abundant heterointerfaces of integrated bimetallic sulfide-coupled 2D MOF-derived mesoporous CoS2 nanoarray hybrids for electrocatalytic water splitting. Mater. Today Nano 2022, 17, 100146. [Google Scholar] [CrossRef]
- Lu, Y.; Zhao, Z.; Liu, X.; Yu, X.; Li, W.; Pei, C.; Park, H.S.; Kim, J.K.; Pang, H. Interface-driven catalytic enhancements in nitrogen-doped carbon immobilized CoNi2S4@ReS2/CC heterostructures for optimized hydrogen and oxygen evolution in alkaline seawater-splitting. Adv. Sci. 2025, 12, 2413245. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Ma, L.; Gan, M.; Shen, J.; Li, T.; Zhang, X.; Zhan, W.; Xie, F.; Yang, J. Sn-doped nickel sulfide (Ni3S2) derived from bimetallic MOF with ultra high capacitance. J. Alloys Compd. 2021, 859, 157798. [Google Scholar] [CrossRef]
- Rong, J.; Zhu, G.; Ryan Osterloh, W.; Fang, Y.; Ou, Z.; Qiu, F.; Kadish, K.M. In situ construction MoS2-Pt nanosheets on 3D MOF-derived S, N-doped carbon substrate for highly efficient alkaline hydrogen evolution reaction. Chem. Eng. J. 2021, 412, 127556. [Google Scholar] [CrossRef]
- Sun, H.; Wang, N.; Li, X.; An, Q.F. Fabrication of MOF derivatives composite membrane via in-situ sulfurization for dye/salt separation. J. Membr. Sci. 2022, 645, 120211. [Google Scholar] [CrossRef]
- Zeb, Z.; Huang, Y.; Chen, L.; Gao, R.; Gao, X.; Sun, M.; Cai, H.; Chen, J.; Abbas, F.; Liao, M.; et al. Polyoxometalates metal-organic frameworks-derived transition metal sulfides with rich interfaces for efficient alkaline oxygen evolution reaction. J. Colloid Interface Sci. 2025, 686, 289–303. [Google Scholar] [CrossRef]
- Li, Y.; Wang, W.; Huang, B.; Mao, Z.; Wang, R.; He, B.; Gong, Y.; Wang, H. Abundant heterointerfaces in MOF-derived hollow CoS2-MoS2 nanosheet array electrocatalysts for overall water splitting. J. Energy Chem. 2021, 57, 99–108. [Google Scholar] [CrossRef]
- Sahu, N.; Behera, J.N. MOF-Derived Co3S4 nanoparticles embedded in nitrogen-doped carbon for electrochemical oxygen production. ACS Appl. Nano Mater. 2023, 6, 7686–7693. [Google Scholar] [CrossRef]
- Mao, Y.; Zhang, S.; Ouyang, M.; Liu, P.; Zhang, J.; Zhang, G.; Chen, K.; Wang, Y.; Wu, L.; Dong, Z.; et al. MOF-74 derived FeCoS2/Fe0.95S1.05 composite nano-particles via in-situ sulfurization for highly efficient electrocatalytic nitrate reduction to ammonia. J. Alloys Compd. 2025, 1021, 179637. [Google Scholar] [CrossRef]
- Wang, J.; Yue, X.; Liu, Z.; Xie, Z.; Zhao, Q.; Abudula, A.; Guan, G. Trimetallic sulfides derived from tri-metal-organic frameworks as anode materials for advanced sodium ion batteries. J. Colloid Interface Sci. 2022, 625, 248–256. [Google Scholar] [CrossRef]
- Ao, K.; Wei, Q.; Daoud, W.A. MOF-derived sulfide-based electrocatalyst and scaffold for boosted hydrogen production. ACS Appl. Mater. Interfaces 2020, 12, 33595–33602. [Google Scholar] [CrossRef] [PubMed]
- Wan, K.; Luo, J.; Liu, W.; Zhang, T.; Arbiol, J.; Zhang, X.; Subramanian, P.; Fu, Z.; Fransaer, J. Metal-organic framework-derived cation regulation of metal sulfides for enhanced oxygen evolution activity. Chin. J. Catal. 2023, 54, 290–297. [Google Scholar] [CrossRef]
- Guo, S.; Wu, J.; Chen, H.; Huan, D.; Wang, H.; Wang, D.; Hou, D.; Li, X. ZIF-67-derived cation regulation of metal sulfides for boosting oxygen evolution activity. ACS Appl. Energy Mater. 2025, 8, 5770–5780. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Lu, X.; He, X.; Jiang, N.; Huo, Y.; Xu, C.; Lin, D. Metal-organic framework derived in-situ nitrogen-doped carbon-encapsulated CuS nanoparticles as high-rate and long-life anode for sodium ion batteries. J. Alloys Compd. 2021, 854, 157132. [Google Scholar] [CrossRef]
- Lee, Y.J.; Park, S.-K. Metal-organic framework-derived hollow CoSx nanoarray coupled with NiFe layered double hydroxides as efficient bifunctional electrocatalyst for overall water splitting. Small 2022, 18, 2200586. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, J.; Zhong, L.; Zhou, J.; Fang, A.; Wang, Q.; Zhao, Y.; Li, J.; Gong, J.; Dai, Y. ZnCoS/ZnCoLDH lamellar core-shell materials for high-performance asymmetric supercapacitors. J. Energy Storage 2025, 110, 115250. [Google Scholar] [CrossRef]
- Chen, S.; Liang, W.; Wang, X.; Zhao, Y.; Wang, S.; Li, Z.; Wang, S.; Hou, L.; Jiang, Y.; Gao, F. P-doped MOF-derived CoNi bimetallic sulfide electrocatalyst for highly-efficiency overall water splitting. J. Alloys Compd. 2023, 931, 167575. [Google Scholar] [CrossRef]
- Han, C.; Li, W.; Shu, C.; Guo, H.; Liu, H.; Dou, S.; Wang, J. Catalytic activity boosting of nickel sulfide toward oxygen evolution reaction via confined overdoping engineering. ACS Appl. Energy Mater. 2019, 2, 5363–5372. [Google Scholar] [CrossRef]
- Feng, Z.; Dai, C.; Zhang, Z.; Lei, X.; Mu, W.; Guo, R.; Liu, X.; You, J. The role of strain in oxygen evolution reaction. J. Energy Chem. 2024, 93, 322–344. [Google Scholar] [CrossRef]
- Du, J.; Li, F.; Sun, L. Metal-organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction. Chem. Soc. Rev. 2021, 50, 2663–2695. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zheng, K.; Zhang, J.; Li, X.; Xu, C. Design and construction of 2D/2D sheet-on-sheet transition metal sulfide/phosphide heterostructure for efficient oxygen evolution reaction. Appl. Surf. Sci. 2021, 565, 150510. [Google Scholar] [CrossRef]
- Qian, Q.; Li, Y.; Liu, Y.; Yu, L.; Zhang, G. Ambient fast synthesis and active sites deciphering of hierarchical foam-like trimetal-organic framework nanostructures as a platform for highly efficient oxygen evolution electrocatalysis. Adv. Mater. 2019, 31, 1901139. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, H.; Bei, S.; Bao, K.; Zhang, C.; Xiang, M.; Yu, C.; Dong, S.; Qin, H. Ultralow RuO2 doped NiS2 heterojunction as a multifunctional electrocatalyst for hydrogen evolution linking to biomass organics oxidation. Small 2024, 20, 2310286. [Google Scholar] [CrossRef]
- Hafezi Kahnamouei, M.; Shahrokhian, S. Coupling NiCoS and CoFeS frame/cagelike hybrid as an efficient electrocatalyst for oxygen evolution reaction. ACS Appl. Energy Mater. 2022, 5, 5199–5211. [Google Scholar] [CrossRef]
- Zhang, Z.; Tang, S.; Lin, X.; Liu, C.; Hu, S.; Huang, Q. N, P-doped multiphase transition metal sulfides are used for efficient electrocatalytic oxygen evolution reaction. Appl. Surf. Sci. 2022, 584, 152546. [Google Scholar] [CrossRef]
- Bao, T.; Xia, Y.; Lu, J.; Zhang, C.; Wang, J.; Yuan, L.; Zhang, Y.; Liu, C.; Yu, C. A pacman-like titanium-doped cobalt sulfide hollow superstructure for electrocatalytic oxygen evolution. Small 2022, 18, 2103106. [Google Scholar] [CrossRef]
- Farooq, K.; Murtaza, M.; Yang, Z.; Waseem, A.; Zhu, Y.; Xia, Y. MXene boosted MOF-derived cobalt sulfide/carbon nanocomposites as efficient bifunctional electrocatalysts for OER and HER. Nanoscale Adv. 2024, 6, 3169–3180. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, Q.-L.; Zou, R.; Xu, Q. Metal-Organic Frameworks for Energy Applications. Chem 2017, 2, 52–80. [Google Scholar] [CrossRef]
- Aqueel Ahmed, A.T.; Sekar, S.; Lee, S.; Im, H.; Preethi, V.; Ansari, A.S. Nitrogen-doped cobalt sulfide as an efficient electrocatalyst for hydrogen evolution reaction in alkaline and acidic media. Int. J. Hydrogen Energy 2022, 47, 40340–40348. [Google Scholar] [CrossRef]
- Esmailzadeh, S.; Shahrabi, T.; Barati Darband, G.; Yaghoubinezhad, Y. Pulse electrodeposition of nickel selenide nanostructure as a binder-free and high-efficient catalyst for both electrocatalytic hydrogen and oxygen evolution reactions in alkaline solution. Electrochim. Acta 2020, 334, 135549. [Google Scholar] [CrossRef]
- Li, H.; Du, Y.; Pan, L.; Wu, C.; Xiao, Z.; Liu, Y.; Sun, X.; Wang, L. Ni foil supported FeNiP nanosheet coupled with NiS as highly efficient electrocatalysts for hydrogen evolution reaction. Int. J. Hydrogen Energy 2020, 45, 24818–24827. [Google Scholar] [CrossRef]
- Luo, Q.; Chen, Q.; Wang, Y.; Long, Y.; Jiang, W.; Fan, G. Facile, general and environmental-friendly fabrication of O/N-codoped porous carbon as a universal matrix for efficient hydrogen evolution electrocatalysts. Chem. Eng. J. 2021, 420, 130483. [Google Scholar] [CrossRef]
- Abdelghafar, F.; Xu, X.; Jiang, S.P.; Shao, Z. Designing single-atom catalysts toward improved alkaline hydrogen evolution reaction. Mater. Rep. Energy 2022, 2, 100144. [Google Scholar] [CrossRef]
- Lu, K.; Sun, J.; Xu, H.; Jiang, C.; Jiang, W.; Dai, F.; Wang, H.; Hao, H. Electronic structure regulation of an ultra-thin MOF-derived NiSe2/NiS2@NC heterojunction for promoting the hydrogen evolution reaction. Mater. Adv. 2022, 3, 2139–2145. [Google Scholar] [CrossRef]
- Yang, D.S.; Bhattacharjya, D.; Inamdar, S.; Park, J.; Yu, J.S. Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media. J. Am. Chem. Soc. 2012, 134, 16127–16130. [Google Scholar] [CrossRef]
- Liao, J.; Xue, Z.; Sun, H.; Xue, F.; Zhao, Z.; Wang, X.; Dong, W.; Yang, D.; Nie, M. MoS2 supported on Er-MOF as efficient electrocatalysts for hydrogen evolution reaction. J. Alloys Compd. 2022, 898, 162991. [Google Scholar] [CrossRef]
- Rehman, A.; Khan, A.; Pervaiz, E. The role of nickel cobalt sulphide MOFs hybrids in electrochemical hydrogen generation: A critical review. Mater. Chem. Phys. 2024, 315, 129027. [Google Scholar] [CrossRef]
- Yao, C.; Wang, Q.; Peng, C.; Wang, R.; Liu, J.; Tsidaeva, N.; Wang, W. MOF-derived CoS2/WS2 electrocatalysts with sulfurized interface for high-efficiency hydrogen evolution reaction: Synthesis, characterization and DFT calculations. Chem. Eng. J. 2024, 479, 147924. [Google Scholar] [CrossRef]
- Di, F.; Wang, X.; Farid, S.; Ren, S. CoS2 with carbon shell for efficient hydrogen evolution reaction. Int. J. Hydrogen Energy 2023, 48, 17758–17768. [Google Scholar] [CrossRef]
- Shen, W.; Cui, J.; Chen, C.; Zhang, L.; Sun, D. Metal-organic framework derived transition metal sulfides grown on carbon nanofibers as self-supported catalysts for hydrogen evolution reaction. J. Colloid Interface Sci. 2024, 659, 364–373. [Google Scholar] [CrossRef]
- He, N.; Chen, X.; Fang, B.; Li, Y.; Lu, T.; Pan, L. Zr-MOF/NiS2 hybrids on nickel foam as advanced electrocatalysts for efficient hydrogen evolution. J. Colloid Interface Sci. 2023, 640, 820–828. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, J.; Guo, B.; Huo, H.; Niu, S.; Li, S.; Xu, P. Recent advances of transition-metal metaphosphates for efficient electrocatalytic water splitting. Carbon Energy 2023, 5, e375. [Google Scholar] [CrossRef]
- Wang, S.; Geng, Z.; Bi, S.; Wang, Y.; Gao, Z.; Jin, L.; Zhang, C. Recent advances and future prospects on Ni3S2-based electrocatalysts for efficient alkaline water electrolysis. Green Energy Environ. 2024, 9, 659–683. [Google Scholar] [CrossRef]
- Dong, H.; Fang, J.; Yan, X.; Lu, B.; Liu, Q.; Liu, X. Experimental investigation of solar hydrogen production via photo-thermal driven steam methane reforming. Appl. Energy 2024, 368, 123532. [Google Scholar] [CrossRef]
- Yuan, C.; Afanasev, P.; Askarova, A.; Popov, E.; Cheremisin, A. In situ hydrogen generation in subsurface reservoirs of fossil fuels by thermal methods: Reaction mechanisms, kinetics, and catalysis. Appl. Energy 2025, 381, 125219. [Google Scholar] [CrossRef]
- Vedrtnam, A.; Kalauni, K.; Pahwa, R. A review of water electrolysis technologies with insights into optimization and numerical simulations. Int. J. Hydrogen Energy 2025, 140, 694–727. [Google Scholar] [CrossRef]
- Zhou, G.; Wu, X.; Zhao, M.; Pang, H.; Xu, L.; Yang, J.; Tang, Y. Interfacial engineering-triggered bifunctionality of CoS2/MoS2 nanocubes/nanosheet arrays for high-efficiency overall water splitting. ChemSusChem 2021, 14, 699–708. [Google Scholar] [CrossRef]
- Ge, Y.; Chu, H.; Chen, J.; Zhuang, P.; Feng, Q.; Smith, W.R.; Dong, P.; Ye, M.; Shen, J. Ultrathin MoS2 nanosheets decorated hollow CoP heterostructures for enhanced hydrogen evolution reaction. ACS Sustain. Chem. Eng. 2019, 7, 10105–10111. [Google Scholar] [CrossRef]
- Liu, S.; Xing, Y.; Zhou, Z.; Yang, Y.; Li, Y.; Xiao, X.; Wang, C. Heterostructure iron selenide/cobalt phosphide films grown on nickel foam for oxygen evolution. J. Mater. Chem. A 2023, 11, 8330–8341. [Google Scholar] [CrossRef]
- Yin, X.; Cai, R.; Dai, X.; Nie, F.; Gan, Y.; Ye, Y.; Ren, Z.; Liu, Y.; Wu, B.; Cao, Y.; et al. Electronic modulation and surface reconstruction of cactus-like CoB2O4@FeOOH heterojunctions for synergistically triggering oxygen evolution reactions. J. Mater. Chem. A 2022, 10, 11386–11393. [Google Scholar] [CrossRef]
- Qian, Y.; Yu, J.; Zhang, Y.; Zhang, F.; Kang, Y.; Su, C.; Shi, H.; Kang, D.J.; Pang, H. Interfacial microenvironment modulation enhancing catalytic kinetics of binary metal sulfides heterostructures for advanced water splitting electrocatalysts. Small Methods 2022, 6, 2101186. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Deng, G.; Wang, X.; Zhu, M.; Bian, Q.; Guo, B. MoS2/NiFeS2 heterostructure as a highly efficient electrocatalyst for overall water splitting at high current densities. Int. J. Hydrogen Energy 2023, 48, 12354–12363. [Google Scholar] [CrossRef]
- Pei, Y.; Yang, Y.; Zhang, F.; Dong, P.; Baines, R.; Ge, Y.; Chu, H.; Ajayan, P.M.; Shen, J.; Ye, M. Controlled electrodeposition synthesis of Co-Ni-P film as a flexible and inexpensive electrode for efficient overall water splitting. ACS Appl. Mater. Interfaces 2017, 9, 31887–31896. [Google Scholar] [CrossRef]
- Zhang, F.; Song, Y.; Qiu, Y.; Sun, Y.; Luo, X.; Jin, C.; Zhu, S.; Shi, H.; Jiang, G.; Qian, Y. Regulation of interfacial microenvironment by introducing Co atoms into MoSP compounds with enhanced catalytic activity for overall water splitting. J. Alloys Compd. 2025, 1010, 177916. [Google Scholar] [CrossRef]
- Sun, Q.; Tong, Y.; Chen, P.; Chen, L.; Xi, F.; Liu, J.; Dong, X. Dual anions engineering on nickel cobalt-based catalyst for optimal hydrogen evolution electrocatalysis. J. Colloid Interface Sci. 2021, 589, 127–134. [Google Scholar] [CrossRef]
- Su, H.; Song, S.; Li, S.; Gao, Y.; Ge, L.; Song, W.; Ma, T.; Liu, J. High-valent bimetal Ni3S2/Co3S4 induced by Cu doping for bifunctional electrocatalytic water splitting. Appl. Catal. B Environ. 2021, 293, 120225. [Google Scholar] [CrossRef]
- Kim, S.; Min, K.; Kim, H.; Yoo, R.; Shim, S.E.; Lim, D.; Baeck, S.H. Bimetallic-metal organic framework-derived Ni3S2/MoS2 hollow spheres as bifunctional electrocatalyst for highly efficient and stable overall water splitting. Int. J. Hydrogen Energy 2022, 47, 8165–8176. [Google Scholar] [CrossRef]
- Nguyen, Q.H.; Im, K.; Tu, T.N.; Park, J.; Kim, J. ZIF67-derived ultrafine Co9S8 nanoparticles embedded in nitrogen-doped hollow carbon nanocages for enhanced performances of trifunctional ORR/OER/HER and overall water splitting. Carbon Lett. 2024, 34, 1915–1925. [Google Scholar] [CrossRef]
- Li, P.; Zhang, L.; Yao, Y.; Xie, T.; Du, W.; Zhao, T.; Jiang, J. ZnCoNiS nanoflowers electrodes with rich heterointerface as efficient bifunctional electrocatalyst for overall water splitting. Int. J. Hydrogen Energy 2024, 51, 1521–1533. [Google Scholar] [CrossRef]
- Srinivas, K.; Chen, Y.; Wang, X.; Wang, B.; Karpuraranjith, M.; Wang, W.; Su, Z.; Zhang, W.; Yang, D. Constructing Ni/NiS heteronanoparticle-embedded metal-organic framework-derived nanosheets for enhanced water-splitting catalysis. ACS Sustain. Chem. Eng. 2021, 9, 1920–1931. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, Y.; Chen, G.; Huang, R.; Wu, Y.; Zhou, Y.; Hu, Y.; Ostrikov, K. Hierarchical porous bimetal-sulfide bi-functional nanocatalysts for hydrogen production by overall water electrolysis. J. Colloid Interface Sci. 2020, 560, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.K.; Choi, G.J.; Choi, H.J.; Singh, J.; Lee, S.H.; Gwag, J.S. Potentialities of nanostructured SnS2 for electrocatalytic water splitting: A review. J. Alloys Compd. 2022, 921, 166018. [Google Scholar] [CrossRef]
- Arshad, F.; Ren, P.; Yang, X.; Sun, H.; Qiao, Y. Recent breakthroughs in sulfide-functionalized metal-organic frameworks for electrocatalytic carbon dioxide reduction and hydrogen evolution reactions and their life cycle assessment. Coordination. Chem. Rev. 2026, 546, 217029. [Google Scholar] [CrossRef]
- Ajmal, Z.; Tu, X.; Mendhe, A.C.; Umer, S.; Jangra, S.; Pradeep, H.; Helal, M.H.; Singh, K.; Khan, M.Z.; Rosaiah, P.; et al. Recent trend in MOF-derived hollow nanostructures for energy conversion and storage applications: Prospects and environmental consequences. Coordination. Chem. Rev. 2025, 541, 216789. [Google Scholar] [CrossRef]
- Bodhankar, P.M.; Sarawade, P.B.; Amhamed, A.I.; Al-Ansari, T.; Haque, N.; Dhawale, D.S. Progress in porous metal chalcogenides for electrocatalytic water splitting. J. Mater. Chem. A 2025, 13, 22271–22294. [Google Scholar] [CrossRef]








| Methods | Advantages | Disadvantages | Typical Examples (Ref.) |
|---|---|---|---|
| Solvothermal method | High yield, Low pressure, Uniform morphology | Harsh conditions, High cost | [18,39,40,41] |
| Hydrothermal method | Easy operation, Low temperature, Uniform size | Limited applicability, Harsh conditions | [20,48,52,53] |
| In situ sulfidation method | One-step synthesis, Unique structure, Avoids structural collapse | Complex to control, Limited applicability | [56,57,58,59] |
| Chemical vapor deposition method | Versatile, Rapid synthesis, Formed stable structure | Prone to structural collapse, High cost Low yield | [62,65,66] |
| Electrodeposition method | Rapid, Uniform deposition, Low cost | Limited precursor availability, poor scalability | [63,68] |
| Template method | Controllable morphology, Large surface area | Multi-step process, high cost | [64,69] |
| Catalysts | Overpotential at 10 mA cm−2 (mV) | Tafel Slope (mV dec−1) | Electrolytes | Ref. |
|---|---|---|---|---|
| MoS2/CoFe@NC | 337 | 84.6 | 1 M KOH | [20] |
| CoS2-600 | 232 | 77 | 1 M KOH | [25] |
| CoPS/NFF | 190 (20 mA cm−2) | 42.6 | 1 M KOH | [26] |
| NiFe-MOF-S@CNT | 237 | 42.3 | 1 M KOH | [38] |
| Fe0.75Ni0.25S2 | 247 | 47.6 | 1 M KOH | [39] |
| Fe-Ni3S2@NiFe-MOF/NF | 226 (100 mA cm−2) | 67.5 | 1 M KOH | [40] |
| Fe@CoMo2S4/Ni3S2/NF | 167 | 13.77 | 1 M KOH | [41] |
| NiFe-MS/MOF@NF | 230 (50 mA cm−2) | 32 | 1 M KOH | [43] |
| Co-FeS/MoS2@NF | 230 (100 mA cm−2) | 42.1 | 1 M KOH | [44] |
| N-Ni1Co4-S | 286.2 | 54.8 | 1 M KOH | [45] |
| CoS2-C@ReS2/CFP | 257 | 63.8 | 1 M KOH | [50] |
| MoCoNiS/NF | 151 | 44.7 | 1 M KOH | [51] |
| MoCoNiS/NF | 226 (100 mA cm−2) | 44.7 | 1 M KOH | [51] |
| FeNiZnS-1 | 249 | 41.45 | 1 M KOH | [52] |
| NC-CoNi2S4@ReS2/CC | 253 | 54.7 | 1 M KOH | [54] |
| Fe,Mo-NiS/Ni9S8/NF | 47 | 40.8 | 1 M KOH | [58] |
| CoS2-MoS2 HNAs/Ti | 266 | 104 | 1 M KOH | [59] |
| Co3S4-3h | 285 | 109 | 1 M KOH | [60] |
| N,P-Co9S8/CoS2/Co1−xS | 285 | 70 | 1 M KOH | [77] |
| Ti-CoSx HSS | 249 | 45.5 | 1 M KOH | [78] |
| CoS@C/MXene | 257 | 93 | 1 M KOH | [79] |
| Catalysts | Overpotential at 10 mA cm−2 (mV) | Tafel Slope (mV dec−1) | Electrolytes | Ref. |
|---|---|---|---|---|
| MoNiS/Mo2TiC2Tx | 153 | 92 | 1 M KOH | [16] |
| 1T-MoS2 | 98 | 52 | 0.5 M H2SO4 | [18] |
| MoS2/CoFe@NC | 172 | 122.4 | 1 M KOH | [20] |
| Er-MOF/NiS | 115 | 83.48 | 1 M KOH | [22] |
| Ni0.15Co0.85S2@MoS2 | 79 | 52 | 1 M KOH | [23] |
| Ni3S2-MoS2@CoMoO4/NF | 62.4 | 142 | 1 M KOH | [27] |
| Fe-Ni3S2@NiFe-MOF/NF | 170 (50 mA cm−2) | 96.3 | 1 M KOH | [40] |
| NiFe-MS/MOF@NF | 156 (50 mA cm−2) | 82 | 1 M KOH | [43] |
| Co-FeS/MoS2@NF | 63 | 53.9 | 1 M KOH | [44] |
| CoS2-C@ReS2/CFP | 85 | 144.0 | 1 M KOH | [50] |
| FeS2-MoS2@CoS2-MOF | 92 | 70.4 | 1 M KOH | [53] |
| NC-CoNi2S4@ReS2/CC | 87 | 83.7 | 1 M KOH | [54] |
| CuSNC@MoS2-Pt | 102.6 | 55.7 | 1 M KOH | [56] |
| CuSNC@MoS2-Pt | 165.6 (50 mA cm−2) | 55.7 | 1 M KOH | [56] |
| CuSNC@MoS2-Pt | 199.0 (100 mA cm−2) | 55.7 | 1 M KOH | [56] |
| CoS2-MoS2 HNAs/Ti | 82 | 59 | 1 M KOH | [59] |
| CoS@CoNi-LDH | 124 | 89 | 1 M KOH | [63] |
| NiSe2/NiS2@NC | 188 | 46 | 0.5 M H2SO4 | [86] |
| NiSe2/NiS2@NC | 211 | 93.2 | 1 M KOH | [86] |
| CoS2/WS2 | 79 | 52 | 0.5 M H2SO4 | [90] |
| CoS2@NHCs-800 | 98 | 85 | 0.5 M H2SO4 | [91] |
| CoS2@NHCs-800 | 118 | 157 | 1 M KOH | [91] |
| Co-NSC@CBC84 | 138 | 123 | 0.5 M H2SO4 | [92] |
| Zr-MOF/NiS2 | 110 | 17.95 | 0.5 M H2SO4 | [93] |
| Zr-MOF/NiS2 | 72 | 11.45 | 1 M KOH | [93] |
| Catalysts | Electrolytes | Cell Voltage (V) (j10) | Stability (h) | Ref. |
|---|---|---|---|---|
| Fe-Ni3S2@NiFe-MOF/NF | 1 M KOH | 1.60 | 50 (j50) | [40] |
| Fe@CoMo2S4/Ni3S2/NF | 1 M KOH | 1.513 | 120 | [41] |
| NiFe-MS/MOF@NF | 1 M KOH | 1.61 | 50 (j50) | [43] |
| Co-FeS/MoS2@NF | 1 M KOH | 1.45 | 24 | [44] |
| CoS2-C@ReS2/CFP | 1 M KOH | 1.57 | 15 | [50] |
| FeNiZnS-1 | 1 M KOH | 1.54 | 50 | [52] |
| FeS2-MoS2@CoS2-MOF | 1 M KOH | 1.51 | 30 | [53] |
| NC-CoNi2S4@ReS2/CC | 1 M KOH | 1.57 | 60 | [54] |
| CoS2-MoS2 HNAs/Ti | 1 M KOH | 1.56 | 24 | [59] |
| H-CoSx/NiFe-LDH | 1 M KOH | 1.59 | 100 | [67] |
| Cu-Ni3S2/Co3S4/NF | 1 M KOH | 1.49 | 10 | [108] |
| Ni3S2/MoS2 | 1 M KOH | 1.62 | 100 | [109] |
| Co9S8@N-HC-800 | 1 M KOH | 1.63 | 50 | [110] |
| ZnCoNiS | 1 M KOH | 1.52 | 100 | [111] |
| Ni-M@C-130 | 1 M KOH | 1.565 | 25 | [112] |
| Ni-Co-S HPNA | 1 M KOH | 1.62 | 24 | [113] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fei, Z.; Song, Y.; Wu, M.; Wu, Y.; Chen, Y.; Kang, D.J.; Bian, C.; Qian, Y. MOF-Derived Metal Sulfides and Their Composites: Synthesis and Their Electrochemical Water Splitting. Catalysts 2025, 15, 928. https://doi.org/10.3390/catal15100928
Fei Z, Song Y, Wu M, Wu Y, Chen Y, Kang DJ, Bian C, Qian Y. MOF-Derived Metal Sulfides and Their Composites: Synthesis and Their Electrochemical Water Splitting. Catalysts. 2025; 15(10):928. https://doi.org/10.3390/catal15100928
Chicago/Turabian StyleFei, Zhengxin, Yupeng Song, Mingyi Wu, Yifang Wu, Yingying Chen, Dae Joon Kang, Chaoqun Bian, and Yongteng Qian. 2025. "MOF-Derived Metal Sulfides and Their Composites: Synthesis and Their Electrochemical Water Splitting" Catalysts 15, no. 10: 928. https://doi.org/10.3390/catal15100928
APA StyleFei, Z., Song, Y., Wu, M., Wu, Y., Chen, Y., Kang, D. J., Bian, C., & Qian, Y. (2025). MOF-Derived Metal Sulfides and Their Composites: Synthesis and Their Electrochemical Water Splitting. Catalysts, 15(10), 928. https://doi.org/10.3390/catal15100928

