Iron/Rhodium Bimetallic Lewis Acid/Transition Metal Relay Catalysis for Alkynylation/Cyclotrimerization Sequential Reactions Toward Isoindolinone Derivatives from N,O-Cyclic Acetals
Abstract
:1. Introduction
2. Results
Cyclotrimerization of Dialkyne 2: Optimization Study
3. Mechanistic Study
4. Conclusions
5. Experimental Section
5.1. Synthesis and Characterization of Compounds 4n/4n′
5.1.1. 2-((1-Methyl-7-oxo-7,11b-dihydro-5H-isoindolo[1,2-a]isoindol-3-yl)methyl)isoindoline-1,3-dione (4n)
5.1.2. 2-((1-Methyl-7-oxo-7,11b-dihydro-5H-isoindolo[1,2-a]isoindol-2-yl)methyl)isoindoline-1,3-dione (4n′)
5.2. Synthesis and Characterization of Compounds 4o/4o′
5.2.1. 11-Methyl-9-(thiophen-3-yl)-7,11b-dihydro-5H-isoindolo[1,2-a]isoindol-5-one (4o)
5.2.2. 11-Methyl-10-(thiophen-3-yl)-7,11b-dihydro-5H-isoindolo[1,2-a]isoindol-5-one (4o′)
5.3. Synthesis and Characterization of Compound 6a
3-(Dimethylamino)-1-methyl-5,11b-dihydro-7H-pyrido[3′,4′:3,4]pyrrolo[2,1-a]isoindol-7-one (6a)
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malakar, C.C.; Dell’Amico, L.; Zhang, W. Dual catalysis in organic synthesis: Current challenges and new trends. Eur. J. Org. Chem. 2023, 26, e202201114. [Google Scholar] [CrossRef]
- Fu, C.; He, L.; Chang, X.; Cheng, X.; Wang, Z.-F.; Zhang, Z.; Larionov, V.A.; Dong, X.-Q.; Wang, C.-J. Copper/Ruthenium Relay Catalysis for Stereodivergent Access to δ-Hydroxy α-Amino Acids and Small Peptides. Angew. Chem. Int. Ed. 2024, 63, e202315325. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, I.; Kawakami, T.; Hirano, E.; Yokota, H.; Kitajima, H. Novel phthalimidine synthesis. Mannich condensation of o-phthalaldehyde with primary amines using 1, 2, 3-1H-benzotriazole and 2-mercaptoethanol as dual synthetic auxiliaries. Synlett 1996, 04, 353–355. [Google Scholar] [CrossRef]
- Hardcastle, I.R.; Liu, J.; Valeur, E.; Watson, A.; Ahmed, S.U.; Blackburn, T.J.; Bennaceur, K.; Clegg, W.; Drummond, C.; Endicott, J.A.; et al. Isoindolinone inhibitors of the murine double minute 2 (MDM2)-p53 protein− protein interaction: Structure− activity studies leading to improved potency. Med. Chem. 2011, 54, 1233–1243. [Google Scholar] [CrossRef] [PubMed]
- Csende, F.; Porkoláb, A. A review on antibacterial activity of some isoindole derivatives. Pharma Chem. 2018, 10, 43–50. [Google Scholar]
- Mertens, A.; Zilch, J.H.; Konig, B.; Schafer, W.; Poll, T.; Kampe, W.; Seidel, S.; Leser, U.; Leinert, H.J. Selective non-nucleoside HIV-1 reverse transcriptase inhibitors. New 2, 3-dihydrothiazolo [2, 3-a] isoindol-5 (9bH)-ones and related compounds with anti-HIV-1 activity. Med. Chem. 1993, 36, 2526–2535. [Google Scholar] [CrossRef] [PubMed]
- Papeo, G.; Orsini, P.; Avanzi, N.R.; Borghi, D.; Casale, E.; Ciomei, M.; Cirla, A.; Desperati, V.; Donati, D.; Felder, E.R.; et al. Discovery of stereospecific PARP-1 inhibitor isoindolinone NMS-P515. ACS Med. Chem. Lett. 2019, 10, 534–538. [Google Scholar] [CrossRef]
- Lee, S.; Shinji, C.; Ogura, K.; Shimizu, M.; Maeda, S.; Sato, M.; Yoshida, M.; Hashimoto, Y.; Miyachi, H. Design, synthesis, and evaluation of isoindolinone-hydroxamic acid derivatives as histone deacetylase (HDAC) inhibitors. Bioorg. Med. Chem. Lett. 2007, 17, 4895–4900. [Google Scholar] [CrossRef]
- Pascale, R.; Carocci, A.; Catalano, A.; Lentini, G.; Spagnoletta, A.; Maddalena Cavalluzzi, M.; De Santis, F.; De Palma, A.; Scalera, V.; Franchini, C. New N-(phenoxydecyl) phthalimide derivatives displaying potent inhibition activity towards α-glucosidase. Bioorg. Med. Chem. 2010, 18, 5903–5914. [Google Scholar] [CrossRef]
- Lee, I.-K.; Kim, S.-E.; Yeom, J.-H.; Ki, D.W.; Lee, M.-S.; Song, J.-G.; Kim, Y.-S.; Seok, S.-J.; Yun, B.-S. Daldinan A, a novel isoindolinone antioxidant from the ascomycete Daldinia concentrica. J. Antibiot. 2012, 65, 95–97. [Google Scholar] [CrossRef] [PubMed]
- Buttinoni, A.; Ferrari, M.; Colombo, M.; Ceserani, R.J. Biological activity of indoprofen and its optical isomers. Pharm. Pharmacol. 1983, 35, 603–604. [Google Scholar] [CrossRef] [PubMed]
- Tejesvi, M.V.; Pirttilä, A.M. Endophytes of Forest Trees: Biology and Applications; Forestry Sciences; Pirttilä, A.M., Frank, A.C., Eds.; Springer: Berlin, Germany, 2011; Volume 80, p. 302. [Google Scholar]
- Chen, Z.-L.; Zhu, D.-Y. The Alkaloids: Chemistry and Pharmacology; Brossi, A., Ed.; Academic Press: New York, NY, USA, 1987; Volume 31, pp. 29–62. [Google Scholar]
- Macsari, I.; Besidski, Y.; Csjernyik, G.; Nilsson, L.I.; Sandberg, L.; Yngve, U.; Åhlin, K.; Bueters, T.; Eriksson, A.B.; Lund, P.-E.; et al. 3-Oxoisoindoline-1-carboxamides: Potent, State-Dependent Blockers of Voltage-Gated Sodium Channel NaV1.7 with Efficacy in Rat Pain Models. Med. Chem. 2012, 55, 6866–6880. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Z.-P.; Kung, M.-P.; Mu, M.; Kung, H.F.J. Isoindol-1-one Analogues of 4-(2'-methoxyphenyl)-1-[2'-[N-(2''-pyridyl)-p-iodobenzamido]ethyl]piperazine (p-MPPI) as 5-HT1A Receptor Ligands. Med. Chem. 1998, 41, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Ferland, J.-M.; Demerson, C.A.; Humber, L.G. Synthesis of derivatives of isoindole and of pyrazino[2,1-a]isoindole. Can. J. Chem. 1985, 63, 361–365. [Google Scholar] [CrossRef]
- Kim, K.H.; Noh, H.J.; Choi, S.U.; Lee, K.R.J. Isohericenone, a new cytotoxic isoindolinone alkaloid from Hericium erinaceum. Antibiot. 2012, 65, 575–577. [Google Scholar] [CrossRef] [PubMed]
- Laboratori Baldacci, S.P.A. Japanese Patent 5,946,268, 1984. Chem. Abstr. 1984, 101, 54922. [Google Scholar]
- Achinami, K.; Ashizawa, N.; Kobayasui, F. Japanese Patent 03,133,955, 1991. Chem. Abstr. 1991, 115, 255977j. [Google Scholar]
- Lunn, M.R.; Root, D.E.; Martino, A.M.; Flaherty, S.P.; Kelley, B.P.; Coovert, D.D.; Burghes, A.H.; thi Man, N.; Morris, G.E.; Zhou, J.; et al. Indoprofen upregulates the survival motor neuron protein through a cyclooxygenase-independent mechanism. Chem. Biol. 2004, 11, 1489–1493. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Chen, M.-W.; Ding, Q.; Peng, Y. Catalytic asymmetric synthesis of isoindolinones. Chem. Asian, J. 2019, 14, 1306–1322. [Google Scholar] [CrossRef]
- Youn, S.W.; Ko, T.Y.; Kim, Y.H.; Kim, Y.A. Pd(II)/Cu(II)-Catalyzed Regio- and Stereoselective Synthesis of (E)-3-Arylmethyleneisoindolin-1-ones Using Air as the Terminal Oxidant. Org Lett. 2018, 20, 7869–7874. [Google Scholar] [CrossRef]
- Patureau, F.W.; Besset, T.; Glorius, F. Rhodium-catalyzed oxidative olefination of C-H bonds in acetophenones and benzamides. Angew. Chem. Int. Ed. 2011, 50, 1064–1067. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-L.; Shang, M.; Sun, S.-Z.; Zhou, Z.-L.; Laforteza, B.N.; Yu, J.-Q. Cu (II)-catalyzed coupling of aromatic C–H bonds with malonates. Org. Lett. 2015, 17, 1228–1231. [Google Scholar] [CrossRef]
- Foster, R.W.; Tame, C.J.; Hailes, H.C.; Sheppard, T.D. Highly Regioselective Synthesis of Substituted Isoindolinones via Ruthenium-Catalyzed Alkyne Cyclotrimerizations. Adv. Synth. Catal. 2013, 355, 2353–2360. [Google Scholar] [CrossRef] [PubMed]
- Saini, H.K.; Nandwana, N.K.; Dhiman, S.; Rangan, K.; Kumar, A. Sequential Copper-Catalyzed Sonogashira Coupling, Hydroamination and Palladium-Catalyzed Intramolecular Direct Arylation: Synthesis of Azepino-Fused Isoindolinones. Eur. J. Org. Chem. 2017, 7277–7282. [Google Scholar] [CrossRef]
- Guo, S.; Wang, F.; Sun, L.; Zhang, X.; Fan, X. Palladium-Catalyzed Oxidative Cyclocarbonylation of Isoquinolones with CO via C− H/N− H Bond Cleavage: Easy Access to Isoindolo [2, 1-b] isoquinoline-5, 7-dione Derivatives. Adv. Synth. Catal. 2018, 360, 2537–3545. [Google Scholar] [CrossRef]
- Soto, Y.; Nishimata, T.; Kori, M.J. Asymmetric synthesis of isoindoline and isoquinoline derivatives using nickel (0)-catalyzed [2+ 2+ 2] cocyclization. Org. Chem. 1994, 59, 6133–6135. [Google Scholar] [CrossRef]
- Wójcicka, A.; Redzicka, A. An Overview of the Biological Activity of Pyrrolo[3,4-c]pyridine Derivatives. Pharmaceuticals 2021, 14, 354. [Google Scholar] [CrossRef] [PubMed]
- Abdallahi, S.M.; Ewies, E.F.; El-Shazly, M.; Ould Elemine, B.; Hadou, A.; Moncol, J.; Lawson, A.M.; Daïch, A.; Othman, M. Autotandem Catalysis: Inexpensive and Green Access to Functionalized Ketones by Intermolecular Iron-Catalyzed Amidoalkynylation/Hydration Cascade Reaction via N-Acyliminium Ion Chemistry. Chem. Eur. J. 2021, 27, 15440–15449. [Google Scholar] [CrossRef]
- Chopade, P.R.; Louie, J. [2+2+2] Cycloaddition reactions catalyzed by transition metal complexes. Adv. Synth. Catal. 2006, 348, 2307–2327. [Google Scholar] [CrossRef]
- Ramana, C.V.; Dushing, M.P.; Mohapatra, S.; Mallik, R.; Gonnade, R.G. Target cum flexibility: An alkyne [2+2+2]-cyclotrimerization strategy for synthesis of trinem library. Tetrahedron Letters 2011, 52, 38–41. [Google Scholar] [CrossRef]
- Witulski, B.; Stengel, T.; Fernández-Hernández, J.M. Chemo- and regioselective crossed alkyne cyclotrimerisation of 1,6-diynes with terminal monoalkynes mediated by Grubbs’ catalyst or Wilkinson’s catalyst. Chem. Commun. 2000, 1965–1966. [Google Scholar] [CrossRef]
- Kezuka, S.; Tanaka, S.; Ohe, T.; Nakaya, Y.; Takeuchi, R.J. Iridium complex-catalyzed [2+2+2] cycloaddition of α, ω-diynes with monoynes and monoenes. Org. Chem. 2006, 71, 543–552. [Google Scholar] [CrossRef]
- Saino, N.; Amemiya, F.; Tanabe, E.; Kase, K.; Okamoto, S.A. Highly Practical Instant Catalyst for Cyclotrimerization of Alkynes to Substituted Benzenes. Org. Lett. 2006, 8, 1439–1442. [Google Scholar] [CrossRef] [PubMed]
- Reppe, W.; Schweckendiek, W.J. * CYCLISIERENDE POLYMERISATION VON ACETYLEN. 3. BENZOL, BENZOLDERIVATE UND HYDROAROMATISCHE VERBINDUNGEN. Justus Liebigs Ann. Chem. 1948, 560, 104–116. [Google Scholar]
- Kotha, S.; Sreevani, G. Synthesis of Spiro Barbiturates and Meldrum's Acid Derivatives via a [2+2+2] Cyclotrimerization. Synthesis 2018, 50, 4883–4888. [Google Scholar] [CrossRef]
- YWatanabe, K.; Satoh, Y.; Kamei, M.; Furukawa, H.; Fuji, M.; Obora, Y. NbCl5/Zn/PCy3-System-Catalyzed Intramolecular [2+2+2] Cycloadditions of Diynes and Alkenes To Form Bicyclic Cyclohexadienes. Org. Lett. 2017, 19, 5398–5401. [Google Scholar] [CrossRef]
- Jónsson, H.F.; Evjen, S.; Fiksdahl, A. Gold (i)-catalyzed [2+ 2+ 2] cyclotrimerization of 1, 3-diarylpropargyl acetals. Org. Lett. 2017, 19, 2202–2205. [Google Scholar] [CrossRef]
- Zhao, W.-C.; Wang, X.; Feng, J.; Tian, P.; He, Z.-T. Palladium-catalyzed desymmetric [2+2+2] cycloaddition of 1,6-enyne and alkyne. Tetrahedron 2021, 79, 131862. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, X.; Yang, N.; Xi, C. Highly regioselective cyclotrimerization of terminal alkynes catalyzed by Fe (II) complexes bearing 2-(benzimidazolyl)-6-(1-(arylimino) ethyl) pyridines. Catal. Commun. 2011, 12, 489–492. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, M.; Chen, Y.; Zhang, S.; Wang, X.-N.; Chang, J. Synthesis of amino-substituted α-and δ-carbolines via metal-free [2+2+2] cycloaddition of functionalized alkyne-nitriles with ynamides. Org. Lett. 2019, 21, 1331–1336. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.; Cao, W.; Liu, Y.; Wang, L.; Chen, P.; Tang, Y.J. Metal-Free [2+2+2] Cycloaddition of Ynamide–Nitriles with Ynamides: A Highly Regio-and Chemoselective Synthesis of δ-Carboline Derivatives. Org. Chem. 2018, 83, 13308–13324. [Google Scholar] [CrossRef] [PubMed]
- You, X.; Xie, X.; Wang, G.; Xiong, M.; Sun, R.; Chen, H.; Liu, Y. Nickel-Catalyzed [2+2+2] Cycloaddition of Alkyne-Nitriles with Alkynes Assisted by Lewis Acids: Efficient Synthesis of Fused Pyridines. Chem. Eur. J. 2016, 22, 16765–16769. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.B.; Islam, M.I.; Nath, N.; Emran, T.B.; Rahman, M.R.; Sharma, R.; Martin, M.M. Recent advances in pyridine scaffold: Focus on chemistry, synthesis, and antibacterial activities. Biomed Res. Int. 2023, 2023, 9967591. [Google Scholar] [CrossRef]
- Sugiyama, Y.; Amo, M.; Ibe, K.; Okamoto, S. Synthesis of 2-Aminopyridines via Cobalt-Catalyzed Cycloaddition of Diynes with N-Substituted and N-Unsubstituted Cyanamides. Adv. Synth. Catal. 2023, 365, 3897–3901. [Google Scholar] [CrossRef]
- Ipouck, M.; Merel, D.S.; Gaillard, S.; Whitby, R.J.; Witulski, B.; Renaud, J.L. Iron (II)-catalysed [2+2+2] cycloaddition for pyridine ring construction. Chem. Commun. 2014, 50, 593–595. [Google Scholar]
- Chen, Y.L.; Sharma, P.; Liu, R.S. Sulfonamide-directed gold-catalyzed [2+2+2]-cycloadditions of nitriles with two discrete ynamides to construct 2, 4-diaminopyridine cores. Chem. Commun. 2016, 52, 3187–3190. [Google Scholar] [CrossRef] [PubMed]
- Sheng, J.; Wang, Y.; Su, X.; He, R.; Chen, C. Copper-catalyzed [2+2+2] modular synthesis of multisubstituted pyridines: Alkenylation of nitriles with vinyliodonium salts. Angew. Chem. Int. Ed. 2017, 56, 4824–4828. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Prescher, S.; Louie, J. A Serendipitous Discovery of a Nickel-Catalyst for Cycloaddition of Diynes with Unactivated Nitriles. Angew. Chem. Int. Ed. 2011, 50, 10694–10698. [Google Scholar] [CrossRef]
- Medina, S.; Domínguez, G.; Pérez-Castells, J. Efficient Generation of Pyridines by Ruthenium Carbene Mediated [2+2+2] Cyclotrimerization. Org. Lett. 2012, 14, 4982–4985. [Google Scholar] [CrossRef]
- Komine, Y.; Tanaka, K. Rhodium-catalyzed complete regioselective intermolecular cross-cyclotrimerization of aryl ethynyl ethers and nitriles or isocyanates at room temperature. Org. Lett. 2010, 12, 1312–1315. [Google Scholar] [CrossRef]
Entry | R1 | Catalyst | Solvent | Product | Yield [b] |
---|---|---|---|---|---|
1 | Ph/Me | Fe(OTf)3 | - [c,d] | - | ND |
2 | Ph/Me | Fe(OAc)2/L/Zn | - [c,d] | - | ND |
3 | Ph/Me | FeI2/dppp/Zn | - [c,d] | - | ND |
4 | Ph | RhCl(PPh3)3 | PhMe | - [d] | ND |
5 | Me | RhCl(PPh3)3 | PhMe | 4 | 35 |
6 | Me | RhCl(PPh3)3 | PhMe | 4 | 15 |
7 | Me | RhCl(PPh3)3 | THF | 4 | 17 |
8 | Me | RhCl(PPh3)3 | DCE | 4 | 25 |
9 | Ph | Grubbs-I/II | - [c,d] | - [d] | ND |
10 | Me | Grubbs-I | PhMe | 4 | 10 |
11 | Me | Grubbs-II | PhMe | 4 | 15 |
Entry | Catalyst | Add of 3a (h) | t (h) | T (°C) | Yield (%) [b] | 4a:4a’ [c] |
---|---|---|---|---|---|---|
1 | RhCl(PPh3)3 | 0.5 | 48 | rt | 29 | 55:45 |
2 | RhCl(PPh3)3 | 0.5 | 0.3 | reflux | 47 | 60:40 |
3 | RhCl(PPh3)3 | 1 | 0.5 | reflux | 55 | 58:42 |
4 | RhCl(PPh3)3 | 2 | 2 | reflux | 68 | 60:40 |
5 | RhCl(PPh3)3 | 3 | 2 | reflux | 60 | 57:43 |
6 | RhCl(PPh3)3 | 2 | 1 | reflux | 76 | 60:40 |
7 | RhCl(PPh3)3 | 2 | 1 | 80 | 64 | 57:43 |
8 [d] | RhCl(PPh3)3 | 2 | 1 | reflux | 20 | 60:40 |
9 [e] | RhCl(PPh3)3 | 2 | 1 | reflux | 43 | 60:40 |
10 [f] | RhCl(PPh3)3 | 2 | 1 | reflux | 55 | 58:42 |
11 [g] | RhCl(PPh3)3 | 2 | 1 | reflux | 60 | 56:44 |
12 [h] | RhCl(PPh3)3 | 2 | 1 | reflux | 52 | 57:43 |
13 [i] | RhCl(PPh3)3 | 2 | 1 | reflux | 45 | 57:43 |
14 | Grubbs-I | 2 | 1 | reflux | 20 | 60:40 |
15 [j] | Grubbs-I | 2 | 1 | reflux | 15 | 58:42 |
16 | Grubbs-II | 2 | 1 | reflux | 30 | 60:40 |
17 [k] | Grubbs-II | 2 | 1 | reflux | 12 | 60:40 |
Entry | Alkyne | t (h) | 4:4′ [b] | Yield (%) [c] of 4 + 4′ |
---|---|---|---|---|
1 | 1 | 57:43 | 76 | |
2 | 4 | 54:46 | 69 | |
3 | 1 | 60:40 | 68 | |
4 | 6 | 61:39 | 58 | |
5 | 1 | 58:42 | 75 | |
6 | 5 | 100:00 | 59 | |
7 | 3 | 100:00 | 83 | |
8 | 6 | 57:43 | 71 [d] | |
9 | 8 | 63:37 | 43 [d] |
Entry | Alkyne | t (h) | 4:4′ [b] | Yield (%) [c] of 4 + 4′ |
---|---|---|---|---|
1 | 24 | 60:40 | 51 | |
2 | 2 | 73:27 | 40 | |
3 | 8 | 55:45 | 54 [d] | |
4 | 10 | 100:00 | 45 | |
5 | 3 | 60:40 | 88 [d] |
Entry | Alkyne | Time (h) | 4:4′ [b] | Yield (%) [c] of 4 + 4′ |
---|---|---|---|---|
1 | 1 | 60:40 | 60 | |
2 | 4 | 58:42 | 59 [d] | |
3 | 3 | 51:41 | 70 | |
4 | 3 | 53:47 | 68 [d] | |
5 | 4 | 61:39 | 51 | |
6 | 3 | 100:00 | 51 | |
7 | 2 | 100:00 | 73 | |
8 | 1 | 70:30 | 69 | |
9 | 2 | 63:37 | 55 | |
10 | 8 | 100:00 | 35 | |
11 | 2 | 60:40 | 70 [d] | |
12 | 3 | 58:42 | 82 [d] | |
13 | 7 | 67:33 | 72 [d] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdallahi, S.M.; Ewies, E.F.; El-Shazly, M.; Ould Elemine, B.; Hadou, A.; Lawson, A.M.; Daïch, A.; Othman, M. Iron/Rhodium Bimetallic Lewis Acid/Transition Metal Relay Catalysis for Alkynylation/Cyclotrimerization Sequential Reactions Toward Isoindolinone Derivatives from N,O-Cyclic Acetals. Catalysts 2025, 15, 151. https://doi.org/10.3390/catal15020151
Abdallahi SM, Ewies EF, El-Shazly M, Ould Elemine B, Hadou A, Lawson AM, Daïch A, Othman M. Iron/Rhodium Bimetallic Lewis Acid/Transition Metal Relay Catalysis for Alkynylation/Cyclotrimerization Sequential Reactions Toward Isoindolinone Derivatives from N,O-Cyclic Acetals. Catalysts. 2025; 15(2):151. https://doi.org/10.3390/catal15020151
Chicago/Turabian StyleAbdallahi, Sidi Mohamed, Ewies Fawzy Ewies, Mohamed El-Shazly, Brahim Ould Elemine, Abderrahmane Hadou, Ata Martin Lawson, Adam Daïch, and Mohamed Othman. 2025. "Iron/Rhodium Bimetallic Lewis Acid/Transition Metal Relay Catalysis for Alkynylation/Cyclotrimerization Sequential Reactions Toward Isoindolinone Derivatives from N,O-Cyclic Acetals" Catalysts 15, no. 2: 151. https://doi.org/10.3390/catal15020151
APA StyleAbdallahi, S. M., Ewies, E. F., El-Shazly, M., Ould Elemine, B., Hadou, A., Lawson, A. M., Daïch, A., & Othman, M. (2025). Iron/Rhodium Bimetallic Lewis Acid/Transition Metal Relay Catalysis for Alkynylation/Cyclotrimerization Sequential Reactions Toward Isoindolinone Derivatives from N,O-Cyclic Acetals. Catalysts, 15(2), 151. https://doi.org/10.3390/catal15020151