Application of Pillared Clays for Water Recovery
Abstract
:1. Introduction
2. Pillared Clays and Advanced Oxidation Processes
2.1. Fenton Process
Application of Pillared Clays in Heterogeneous Fenton Processes
2.2. Photo-Fenton Processes
2.2.1. Application of Pillared Clays in Heterogeneous Photo-Fenton Processes
2.2.2. Influence of Copper in Fe-PILCs
2.3. Ozonation Processes
2.3.1. Homogeneous Catalytic Ozonation
2.3.2. Heterogeneous Catalytic Ozonation
Ozonation with Fe-Pillared Clay
2.4. Catalytic Wet Hydrogen Peroxide Oxidation Process
2.5. Photocatalysis
3. Future Perspectives
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OHCHR. 10th Anniversary of the Recognition of Water and Sanitation as a Human Right by the General Assembly. Available online: https://www.ohchr.org/en/statements/2020/07/10th-anniversary-recognition-water-and-sanitation-human-right-general-assembly (accessed on 25 July 2024).
- UNICEF; World Health Organization (WHO). Progress on Household Drinking-Water, Sanitation and Hygiene 2000–2022: Special Focus on Gender; WHO: Geneva, Switzerland, 2023. [Google Scholar]
- Crini, G.; Lichtfouse, E. Advantages and Disadvantages of Techniques Used for Wastewater Treatment. Environ. Chem. Lett. 2019, 17, 145–155. [Google Scholar] [CrossRef]
- Rezai, B.; Allahkarami, E. Wastewater Treatment Processes—Techniques, Technologies, Challenges Faced, and Alternative Solutions. Soft Computing Techniques Solid Waste Wastewater Management; Elsevier: Amsterdam, The Netherlands, 2021; pp. 35–53. [Google Scholar] [CrossRef]
- Vaz, T.; Quina, M.M.J.; Martins, R.C.; Gomes, J. Olive Mill Wastewater Treatment Strategies to Obtain Quality Water for Irrigation: A Review. Sci. Total Environ. 2024, 931, 172676. [Google Scholar] [CrossRef] [PubMed]
- Fedorov, K.; Dinesh, K.; Sun, X.; Darvishi Cheshmeh Soltani, R.; Wang, Z.; Sonawane, S.; Boczkaj, G. Synergistic Effects of Hybrid Advanced Oxidation Processes (AOPs) Based on Hydrodynamic Cavitation Phenomenon—A Review. Chem. Eng. J. 2022, 432, 134191. [Google Scholar] [CrossRef]
- Chai, W.S.; Cheun, J.Y.; Kumar, P.S.; Mubashir, M.; Majeed, Z.; Banat, F.; Ho, S.H.; Show, P.L. A Review on Conventional and Novel Materials towards Heavy Metal Adsorption in Wastewater Treatment Application. J. Clean. Prod. 2021, 296, 126589. [Google Scholar] [CrossRef]
- Shabir, M.; Yasin, M.; Hussain, M.; Shafiq, I.; Akhter, P.; Nizami, A.S.; Jeon, B.H.; Park, Y.K. A Review on Recent Advances in the Treatment of Dye-Polluted Wastewater. J. Ind. Eng. Chem. 2022, 112, 1–19. [Google Scholar] [CrossRef]
- Martínez-Huitle, C.A.; Rodrigo, M.A.; Sirés, I.; Scialdone, O. Single and Coupled Electrochemical Processes and Reactors for the Abatement of Organic Water Pollutants: A Critical Review. Chem. Rev. 2015, 115, 13362–13407. [Google Scholar] [CrossRef]
- Hübner, U.; Spahr, S.; Lutze, H.; Wieland, A.; Rüting, S.; Gernjak, W.; Wenk, J. Advanced Oxidation Processes for Water and Wastewater Treatment—Guidance for Systematic Future Research. Heliyon 2024, 10, e30402. [Google Scholar] [CrossRef]
- Zhou, A.; Du, J.; Zaoui, A.; Sekkal, W.; Sahimi, M. Molecular Modeling of Clay Minerals: A Thirty-Year Journey and Future Perspectives. Coord. Chem. Rev. 2025, 526, 216347. [Google Scholar] [CrossRef]
- Das, S.; Prateek; Sharma, P.; Kumar, M.; Gupta, R.K.; Sharma, H. A Review on Clay Exfoliation Methods and Modifications for CO2 Capture Application. Mater. Today Sustain. 2023, 23, 100427. [Google Scholar] [CrossRef]
- Kloprogge, J.T. Synthesis of Smectites and Porous Pillared Clay Catalysts: A Review. J. Porous Mater. 1998, 5, 5–41. [Google Scholar] [CrossRef]
- Li, J.; Sun, L.; Lv, G.; Liao, L. Application of Clay Minerals in Lithium-Sulfur Batteries: A Review. J. Energy Storage 2025, 106, 114852. [Google Scholar] [CrossRef]
- Murray, H.H. Chapter 2 Structure and Composition of the Clay Minerals and Their Physical and Chemical Properties. Dev. Clay Sci. 2006, 2, 7–31. [Google Scholar] [CrossRef]
- Najafi, H.; Farajfaed, S.; Zolgharnian, S.; Mosavi Mirak, S.H.; Asasian-Kolur, N.; Sharifian, S. A Comprehensive Study on Modified-Pillared Clays as an Adsorbent in Wastewater Treatment Processes. Process Saf. Environ. Prot. 2021, 147, 8–36. [Google Scholar] [CrossRef]
- Cortés-Murillo, D.; Blanco-Jiménez, C.; Daza, C.E. Clay Exfoliation Method as a Route to Obtain Mesoporous Catalysts for CO2 Methanation. MethodsX 2023, 10, 101955. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, S.; Liu, J.; Xiao, Z.; Yang, M.; Tang, A. Kaolinite Nanoscroll Significantly Inhibiting Polysulfide Ions Shuttle in Lithium Sulfur Batteries. Appl. Clay Sci. 2022, 224, 106516. [Google Scholar] [CrossRef]
- Moma, J.; Baloyi, J.; Ntho, T. Synthesis and Characterization of an Efficient and Stable Al/Fe Pillared Clay Catalyst for the Catalytic Wet Air Oxidation of Phenol. RSC Adv. 2018, 8, 30115–30124. [Google Scholar] [CrossRef]
- Makó, É.; Kovács, A.; Kristóf, T. Influencing Parameters of Direct Homogenization Intercalation of Kaolinite with Urea, Dimethyl Sulfoxide, Formamide, and N-Methylformamide. Appl. Clay Sci. 2019, 182, 105287. [Google Scholar] [CrossRef]
- Seifi, S.; Diatta-Dieme, M.T.; Blanchart, P.; Lecomte-Nana, G.L.; Kobor, D.; Petit, S. Kaolin Intercalated by Urea. Ceramic Applications. Constr. Build. Mater. 2016, 113, 579–585. [Google Scholar] [CrossRef]
- Abdo, S.M.; El-Hout, S.I.; Shawky, A.; Rashed, M.N.; El-Sheikh, S.M. Visible-Light-Driven Photodegradation of Organic Pollutants by Simply Exfoliated Kaolinite Nanolayers with Enhanced Activity and Recyclability. Environ. Res. 2022, 214, 113960. [Google Scholar] [CrossRef]
- Daza, C.E.; Gamba, O.A.; Hernández, Y.; Centeno, M.A.; Mondragón, F.; Moreno, S.; Molina, R. High-Stable Mesoporous Ni-Ce/Clay Catalysts for Syngas Production. Catal. Lett. 2011, 141, 1037–1046. [Google Scholar] [CrossRef]
- Fazlali, F.; Mahjoub, A.R.; Aghayan, H. Adsorption of Toxic Heavy Metals onto Organofunctionalized Acid Activated Exfoliated Bentonite Clay for Achieving Wastewater Treatment Goals. Desalination Water Treat. 2019, 152, 338–350. [Google Scholar] [CrossRef]
- Baloyi, J.; Ntho, T.; Moma, J. Synthesis and Application of Pillared Clay Heterogeneous Catalysts for Wastewater Treatment: A Review. RSC Adv. 2018, 8, 5197–5211. [Google Scholar] [CrossRef]
- Litter, M.I. Introduction to Photochemical Advanced Oxidation Processes for Water Treatment. In Environmental Photochemistry Part II; Springer: Berlin/Heidelberg, Germany, 2005; pp. 325–366. [Google Scholar] [CrossRef]
- Manna, M.; Sen, S. Advanced Oxidation Process: A Sustainable Technology for Treating Refractory Organic Compounds Present in Industrial Wastewater. Environ. Sci. Pollut. Res. Int. 2023, 30, 25477–25505. [Google Scholar] [CrossRef]
- Saravanan, A.; Deivayanai, V.C.; Kumar, P.S.; Rangasamy, G.; Hemavathy, R.V.; Harshana, T.; Gayathri, N.; Alagumalai, K. A Detailed Review on Advanced Oxidation Process in Treatment of Wastewater: Mechanism, Challenges and Future Outlook. Chemosphere 2022, 308, 136524. [Google Scholar] [CrossRef]
- Kokkinos, P.; Venieri, D.; Mantzavinos, D. Advanced Oxidation Processes for Water and Wastewater Viral Disinfection. A Systematic Review. Food Environ. Virol. 2021, 13, 283–302. [Google Scholar] [CrossRef] [PubMed]
- Dobrosz-Gómez, I.; Quintero-Arias, J.D.; Gómez-García, M.Á. Fenton Advanced Oxidation Process for the Treatment of Industrial Textile Wastewater Highly Polluted with Acid-Black 194 Dye. Case Stud. Chem. Environ. Eng. 2024, 9, 100672. [Google Scholar] [CrossRef]
- Rigg, T.; Taylor, W.; Weiss, J. The Rate Constant of the Reaction between Hydrogen Peroxide and Ferrous Ions. J. Chem. Phys. 1954, 22, 575–577. [Google Scholar] [CrossRef]
- Walling, C.; Goosen, A. Mechanism of the Ferric Ion Catalyzed Decomposition of Hydrogen Peroxide. Effect of Organic Substrates. J. Am. Chem. Soc. 1973, 95, 2987–2991. [Google Scholar] [CrossRef]
- Bielski, B.H.J.; Cabelli, D.E.; Arudi, R.L.; Ross, A.B. Reactivity of HO2/O−2 Radicals in Aqueous Solution. J. Phys. Chem. Ref. Data 1985, 14, 1041–1100. [Google Scholar] [CrossRef]
- Diya’uddeen, B.H.; Pouran, R.; Abdul Aziz, A.R.; Daud, W.M.A.W. Fenton Oxidative Treatment of Petroleum Refinery Wastewater: Process Optimization and Sludge Characterization. RSC Adv. 2015, 5, 68159–68168. [Google Scholar] [CrossRef]
- Babuponnusami, A.; Muthukumar, K. A Review on Fenton and Improvements to the Fenton Process for Wastewater Treatment. J. Environ. Chem. Eng. 2014, 2, 557–572. [Google Scholar] [CrossRef]
- Das, A.; Adak, M.K. Photo-Catalyst for Wastewater Treatment: A Review of Modified Fenton, and Their Reaction Kinetics. Appl. Surf. Sci. Adv. 2022, 11, 100282. [Google Scholar] [CrossRef]
- Xu, X.R.; Li, X.Y.; Li, X.Z.; Li, H. Bin Degradation of Melatonin by UV, UV/H2O2, Fe2+/H2O2 and UV/Fe2+/H2O2 Processes. Sep. Purif. Technol. 2009, 68, 261–266. [Google Scholar] [CrossRef]
- Xu, M.; Wu, C.; Zhou, Y.; Xu, M.; Wu, C.; Zhou, Y. Advancements in the Fenton Process for Wastewater Treatment. In Advanced Oxidation Processes—Applications, Trends, and Prospects; Intechopen: London, UK, 2020. [Google Scholar] [CrossRef]
- Zhang, T.; Wen, Y.; Pan, Z.; Kuwahara, Y.; Mori, K.; Yamashita, H.; Zhao, Y.; Qian, X. Overcoming Acidic H2O2/Fe(II/III) Redox-Induced Low H2O2 Utilization Efficiency by Carbon Quantum Dots Fenton-like Catalysis. Environ. Sci. Technol. 2022, 56, 2617–2625. [Google Scholar] [CrossRef] [PubMed]
- Poyatos, J.M.; Muñio, M.M.; Almecija, M.C.; Torres, J.C.; Hontoria, E.; Osorio, F. Advanced Oxidation Processes for Wastewater Treatment: State of the Art. Water Air Soil Pollut. 2010, 205, 187–204. [Google Scholar] [CrossRef]
- Abril-González, M.; Seminario, D.; Pinos-Vélez, V.; Vele, A.; Echeverria-Paredes, P. An Activated Steel Scale Waste Catalyst to Degrade Methylene Blue via the Heterogeneous Fenton Process. Case Stud. Chem. Environ. Eng. 2024, 10, 100857. [Google Scholar] [CrossRef]
- Wang, J.; Tang, J. Fe-Based Fenton-like Catalysts for Water Treatment: Preparation, Characterization and Modification. Chemosphere 2021, 276, 130177. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Wu, F.; Hanna, K.; Mailhot, G. Effect of Ethylenediamine-N,N′-Disuccinic Acid on Fenton and Photo-Fenton Processes Using Goethite as an Iron Source: Optimization of Parameters for Bisphenol A Degradation. Environ. Sci. Pollut. Res. 2013, 20, 39–50. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Yang, X.; Men, B.; Wang, D. Interfacial Mechanisms of Heterogeneous Fenton Reactions Catalyzed by Iron-Based Materials: A Review. J. Environ. Sci. 2016, 39, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Aneggi, E.; Goi, D. Catalytic Activity of Metals in Heterogeneous Fenton-like Oxidation of Wastewater Contaminants: A Review. Environ. Chem. Lett. 2021, 19, 2405–2424. [Google Scholar] [CrossRef]
- Hasan, D.B.; Abdul Aziz, A.R.; Daud, W.M.A.W. Oxidative Mineralisation of Petroleum Refinery Effluent Using Fenton-like Process. Chem. Eng. Res. Des. 2012, 90, 298–307. [Google Scholar] [CrossRef]
- Pergher, S.B.C.; Corma, A.; Fornes, V. Materiales Laminares Pilareados: Preparación y Propiedades. Quim. Nova 1999, 22, 693–709. [Google Scholar] [CrossRef]
- Pandey, P.; Saini, V.K. Pillared Interlayered Clays: Sustainable Materials for Pollution Abatement. Environ. Chem. Lett. 2019, 17, 721–727. [Google Scholar] [CrossRef]
- Gil, A.; Korili, S.A.; Trujillano, R.; Vicente, M.A. Pillared Clays and Related Catalysts; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–522. [Google Scholar] [CrossRef]
- Hadj Bachir, D.; Khalaf, H.; Ferroukhi, S.; Boutoumi, Y.; Schnee, J.; Gaigneaux, E.M. Preparation and Characterization of TiO2 Pillared Clay: Effect of Palladium and Photosensitizer on Photocatalytic Activity. Res. J. Chem. Environ. 2020, 24, 60–73. [Google Scholar]
- Cardona, Y.; Korili, S.A.; Gil, A. Use of Clays and Pillared Clays in the Catalytic Photodegradation of Organic Compounds in Aqueous Solutions. Catal. Rev. 2023, 66, 2063–2110. [Google Scholar] [CrossRef]
- Zamisa, M.K.; Seadira, T.W.; Baloyi, S.J. Transforming Wastewater Treatment: Recent Advancements in Catalytic Wet Air Oxidation with Pillared Clay Catalysts for Phenol Remediation. Environ. Pollut. 2024, 361, 124842. [Google Scholar] [CrossRef] [PubMed]
- Bobu, M.; Yediler, A.; Siminiceanu, I.; Schulte-Hostede, S. Degradation Studies of Ciprofloxacin on a Pillared Iron Catalyst. Appl. Catal. B Environ. 2008, 83, 15–23. [Google Scholar] [CrossRef]
- Adams, J.M.; McCabe, R.W. Chapter 10.2 Clay Minerals as Catalysts. Dev. Clay Sci. 2006, 1, 541–581. [Google Scholar] [CrossRef]
- Yurdakoç, M.; Akçay, M.; Tonbul, Y.; Ok, F.; Yurdakoç, K. Preparation and Characterization of Cr- and Fe-Pillared Bentonites by Using CrCl3, FeCl3, Cr(Acac)3 and Fe(Acac)3 as Precursors. Microporous Mesoporous Mater. 2008, 111, 211–218. [Google Scholar] [CrossRef]
- Mokaya, R.; Jones, W. Pillared Clays and Pillared Acid-Activated Clays: A Comparative-Study of Physical, Acidic, and Catalytic Properties. J. Catal. 1995, 153, 76–85. [Google Scholar] [CrossRef]
- Valverde, J.L.; Romero, A.; Romero, R.; García, P.B.; Sánchez, M.L.; Asencio, I. Preparation and Characterization of Fe-PILCS. Influence of the Synthesis Parameters. Clays Clay Miner. 2005, 53, 613–621. [Google Scholar] [CrossRef]
- Hurtado, L.; Romero, R.; Mendoza, A.; Brewer, S.; Donkor, K.; Gómez-Espinosa, R.M.; Natividad, R. Paracetamol Mineralization by Photo Fenton Process Catalyzed by a Cu/Fe-PILC under Circumneutral PH Conditions. J. Photochem. Photobiol. A Chem. 2019, 373, 162–170. [Google Scholar] [CrossRef]
- Mendoza, A.; Romero, R.; Gutiérrez-Cedillo, G.P.; López-Tellez, G.; Lorenzo-González, O.; Gómez-Espinosa, R.M.; Natividad, R. Selective Production of Dihydroxyacetone and Glyceraldehyde by Photo-Assisted Oxidation of Glycerol. Catal. Today 2020, 358, 149–154. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, S.; Mi, X.; Zhang, R.; Sun, R.; Wu, Y. Nitrobenzene Removal by Novel Pillared Kaolinite-Catalyzed Fenton-like Reaction. Desalination Water Treat. 2021, 218, 210–219. [Google Scholar] [CrossRef]
- Farhadirad, M.; Najafi, H.; Sharifian, S.; Ebrahimian Pirbazari, A.; Asasian-Kolur, N.; Harasek, M. Enhanced Levofloxacin Degradation through Fenton-like Process Using Fe-Silica Pillared Clay Catalyst. Appl. Catal. O Open 2024, 190, 206931. [Google Scholar] [CrossRef]
- Khankhasaeva, S.T.; Dambueva, D.V.; Dashinamzhilova, E.T.; Gil, A.; Vicente, M.A.; Timofeeva, M.N. Fenton Degradation of Sulfanilamide in the Presence of Al,Fe-Pillared Clay: Catalytic Behavior and Identification of the Intermediates. J. Hazard. Mater. 2015, 293, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Tabet, D.; Saidi, M.; Houari, M.; Pichat, P.; Khalaf, H. Fe-Pillared Clay as a Fenton-Type Heterogeneous Catalyst for Cinnamic Acid Degradation. J. Environ. Manag. 2006, 80, 342–346. [Google Scholar] [CrossRef]
- Boukhemkhem, A.; Bedia, J.; Belver, C.; Molina, C.B. Degradation of Pesticides by Heterogeneous Fenton Using Iron-Exchanged Clays. Catal. Commun. 2023, 183, 106771. [Google Scholar] [CrossRef]
- Azmi, N.H.M.; Vadivelu, V.M.; Hameed, B.H. Iron-Clay as a Reusable Heterogeneous Fenton-like Catalyst for Decolorization of Acid Green 25. Desalination Water Treat. 2014, 52, 5583–5593. [Google Scholar] [CrossRef]
- Ramirez, J.H.; Costa, C.A.; Madeira, L.M.; Mata, G.; Vicente, M.A.; Rojas-Cervantes, M.L.; López-Peinado, A.J.; Martín-Aranda, R.M. Fenton-like Oxidation of Orange II Solutions Using Heterogeneous Catalysts Based on Saponite Clay. Appl. Catal. B Environ. 2007, 71, 44–56. [Google Scholar] [CrossRef]
- Feng, J.; Hu, X.; Yue, P.L.; Zhu, H.Y.; Lu, G.Q. A Novel Laponite Clay-Based Fe Nanocomposite and Its Photo-Catalytic Activity in Photo-Assisted Degradation of Orange II. Chem. Eng. Sci. 2003, 58, 679–685. [Google Scholar] [CrossRef]
- Tatibouët, J.M.; Guélou, E.; Fournier, J. Catalytic Oxidation of Phenol by Hydrogen Peroxide over a Pillared Clay Containing Iron. Active Species and PH Effect. Top. Catal. 2005, 33, 225–232. [Google Scholar] [CrossRef]
- Catrinescu, C.; Arsene, D.; Apopei, P.; Teodosiu, C. Degradation of 4-Chlorophenol from Wastewater through Heterogeneous Fenton and Photo-Fenton Process, Catalyzed by Al–Fe PILC. Appl. Clay Sci. 2012, 58, 96–101. [Google Scholar] [CrossRef]
- De León, M.A.; Rodríguez, M.; Marchetti, S.G.; Sapag, K.; Faccio, R.; Sergio, M.; Bussi, J. Raw Montmorillonite Modified with Iron for Photo-Fenton Processes: Influence of Iron Content on Textural, Structural and Catalytic Properties. J. Environ. Chem. Eng. 2017, 5, 4742–4750. [Google Scholar] [CrossRef]
- de Almeida, L.N.B.; Josué, T.G.; Fidelis, M.Z.; Abreu, E.; Bechlin, M.A.; dos Santos, O.A.A.; Lenzi, G.G. Process Comparison for Caffeine Degradation: Fenton, Photo-Fenton, UV/H2O2 and UV/Fe3+. Water Air Soil Pollut. 2021, 232, 147. [Google Scholar] [CrossRef]
- De León, M.A.; Castiglioni, J.; Bussi, J.; Sergio, M. Catalytic Activity of an Iron-Pillared Montmorillonitic Clay Mineral in Heterogeneous Photo-Fenton Process. Catal. Today 2008, 133–135, 600–605. [Google Scholar] [CrossRef]
- Minella, M.; Marchetti, G.; De Laurentiis, E.; Malandrino, M.; Maurino, V.; Minero, C.; Vione, D.; Hanna, K. Photo-Fenton Oxidation of Phenol with Magnetite as Iron Source. Appl. Catal B Environ. 2014, 154–155, 102–109. [Google Scholar] [CrossRef]
- Najjar, W.; Azabou, S.; Sayadi, S.; Ghorbel, A. Catalytic Wet Peroxide Photo-Oxidation of Phenolic Olive Oil Mill Wastewater Contaminants: Part I. Reactivity of Tyrosol over (Al–Fe)PILC. Appl. Catal. B Environ. 2007, 74, 11–18. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, L. Comparative Study of Catalytic Activity of Different Fe-Pillared Bentonites in the Presence of UV Light and H2O2. Sep. Purif. Technol. 2009, 67, 282–288. [Google Scholar] [CrossRef]
- Soon, A.N.; Hameed, B.H. Heterogeneous Catalytic Treatment of Synthetic Dyes in Aqueous Media Using Fenton and Photo-Assisted Fenton Process. Desalination 2011, 269, 1–16. [Google Scholar] [CrossRef]
- Nidheesh, P.V. Heterogeneous Fenton Catalysts for the Abatement of Organic Pollutants from Aqueous Solution: A Review. RSC Adv. 2015, 5, 40552–40577. [Google Scholar] [CrossRef]
- Sum, O.S.N.; Feng, J.; Hu, X.; Yue, P.L. Pillared Laponite Clay-Based Fe Nanocomposites as Heterogeneous Catalysts for Photo-Fenton Degradation of Acid Black 1. Chem. Eng. Sci. 2004, 59, 5269–5275. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Xiang, L.; Huang, Q.; Qiu, J.; Zhang, H.; Sivaiah, M.V.; Baron, F.; Barrault, J.; Petit, S.; et al. Heterogeneous Photo-Fenton Decolorization of Orange II over Al-Pillared Fe-Smectite: Response Surface Approach, Degradation Pathway, and Toxicity Evaluation. J. Hazard. Mater. 2015, 287, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Tak, P.; Ameta, R.; Punjabi, P.B.; Sharma, S. Degradation of Methylene Blue Using Fe-Pillared Bentonite Clay. Acta Chim. Pharm. Indica 2015, 5, 8–15. [Google Scholar]
- Bel Hadjltaief, H.; Da Costa, P.; Galvez, M.E.; Ben Zina, M. Influence of Operational Parameters in the Heterogeneous Photo-Fenton Discoloration of Wastewaters in the Presence of an Iron-Pillared Clay. Ind. Eng. Chem. Res. 2013, 52, 16656–16665. [Google Scholar] [CrossRef]
- Bel Hadjltaief, H.; Da Costa, P.; Beaunier, P.; Gálvez, M.E.; Ben Zina, M. Fe-Clay-Plate as a Heterogeneous Catalyst in Photo-Fenton Oxidation of Phenol as Probe Molecule for Water Treatment. Appl. Clay Sci. 2014, 91–92, 46–54. [Google Scholar] [CrossRef]
- Herney-Ramirez, J.; Vicente, M.A.; Madeira, L.M. Heterogeneous Photo-Fenton Oxidation with Pillared Clay-Based Catalysts for Wastewater Treatment: A Review. Appl. Catal B Environ. 2010, 98, 10–26. [Google Scholar] [CrossRef]
- Mèçabih, Z. Fe-Al-Pillared Clay Used for Conversion of Toluene Through Catalytic Wet Peroxide Oxidation. Pet. Sci. Eng. 2018, 2, 17–24. [Google Scholar] [CrossRef]
- Bracco, E.B.; Marco-Brown, J.L.; Butler, M.; Candal, R.J. Degradation of Oxytetracycline and Characterization of Byproducts Generated by Fenton or Photo-Fenton like Processes after Adsorption on Natural and Iron(III)-Modified Montmorillonite Clays. Environ. Nanotechnol. Monit. Manag. 2023, 19, 100778. [Google Scholar] [CrossRef]
- Sum, O.S.N.; Feng, J.; Hu, X.; Yue, P.L. Photo-Assisted Fenton Mineralization of an Azo-Dye Acid Black 1 Using a Modified Laponite Clay-Based Fe Nanocomposite as a Heterogeneous Catalyst. Top. Catal. 2005, 33, 233–242. [Google Scholar] [CrossRef]
- Feng, J.; Hu, X.; Yue, P.L. Effect of Initial Solution PH on the Degradation of Orange II Using Clay-Based Fe Nanocomposites as Heterogeneous Photo-Fenton Catalyst. Water Res. 2006, 40, 641–646. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Yang, W.; You, L.; Li, J.; Chen, J.; Zhou, K. Simultaneous Reduction of Cr(VI) and Degradation of Tetracycline Hydrochloride by a Novel Iron-Modified Rectorite Composite through Heterogeneous Photo-Fenton Processes. Chem. Eng. J. 2020, 393, 124758. [Google Scholar] [CrossRef]
- Meijide, J.; Lama, G.; Pazos, M.; Sanromán, M.A.; Dunlop, P.S.M. Ultraviolet-Based Heterogeneous Advanced Oxidation Processes as Technologies to Remove Pharmaceuticals from Wastewater: An Overview. J. Environ. Chem. Eng. 2022, 10, 107630. [Google Scholar] [CrossRef]
- Bueno, N.; Pérez, A.; Molina, R.; Moreno, S. Pillared Bentonite from Al-Fe-Cu Polymeric Precursor in Solid State for the Catalytic Oxidation of Amoxicillin. Catal. Today 2023, 418, 114135. [Google Scholar] [CrossRef]
- Khelifi, S.; Ayari, F. Modified Bentonite for Anionic Dye Removal from Aqueous Solutions. Adsorbent Regeneration by the Photo-Fenton Process. C. R. Chim. 2019, 22, 154–160. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Y.; Lee, J.; Xing, L. A Review of Application Mechanism and Research Progress of Fe/Montmorillonite-Based Catalysts in Heterogeneous Fenton Reactions. J. Environ. Chem. Eng. 2024, 12, 112152. [Google Scholar] [CrossRef]
- Molina, C.B.; Sanz-Santos, E.; Boukhemkhem, A.; Bedia, J.; Belver, C.; Rodriguez, J.J. Removal of Emerging Pollutants in Aqueous Phase by Heterogeneous Fenton and Photo-Fenton with Fe2O3-TiO2-Clay Heterostructures. Environ. Sci. Pollut. Res. 2020, 27, 38434–38445. [Google Scholar] [CrossRef] [PubMed]
- Hadjltaief, H.B.; Zina, M.B.; Galvez, M.E.; Da Costa, P. Photo-Fenton Oxidation of Phenol over a Cu-Doped Fe-Pillared Clay. C. R. Chim. 2015, 18, 1161–1169. [Google Scholar] [CrossRef]
- Bosio, G.N.; García Einschlag, F.S.; Carlos, L.; Mártire, D.O. Recent Advances in the Development of Novel Iron–Copper Bimetallic Photo Fenton Catalysts. Catalysts 2023, 13, 159. [Google Scholar] [CrossRef]
- Navalon, S.; Alvaro, M.; Garcia, H. Heterogeneous Fenton Catalysts Based on Clays, Silicas and Zeolites. Appl. Catal. B Environ. 2010, 99, 1–26. [Google Scholar] [CrossRef]
- Timofeeva, M.N.; Khankhasaeva, S.T.; Talsi, E.P.; Panchenko, V.N.; Golovin, A.V.; Dashinamzhilova, E.T.; Tsybulya, S.V. The Effect of Fe/Cu Ratio in the Synthesis of Mixed Fe,Cu,Al-Clays Used as Catalysts in Phenol Peroxide Oxidation. Appl. Catal. B Environ. 2009, 90, 618–627. [Google Scholar] [CrossRef]
- Dorado, F.; de Lucas, A.; García, P.B.; Valverde, J.L.; Romero, A. Preparation of Cu-Ion-Exchanged Fe-PILCs for the SCR of NO by Propene. Appl. Catal. B Environ. 2006, 65, 175–184. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, Z.; Tian, P.; Sheng, Y.; Xu, J.; Han, Y.F. Oxidative Degradation of Nitrobenzene by a Fenton-like Reaction with Fe-Cu Bimetallic Catalysts. Appl. Catal. B Environ. 2019, 244, 1–10. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, C.; Liu, D.; Jiang, L.; Chen, X.; Li, H.; Zhang, F. Photo-Catalytic Oxidation for Pyridine in Circumneutral Aqueous Solution by Magnetic Fe-Cu Materials Activated H2O2. Chem. Eng. Res. Des. 2020, 163, 1–11. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, J.; Yang, B.; Huang, W.; Ma, L. Copper–Catalyzed Activation of Molecular Oxygen for Oxidative Destruction of Acetaminophen: The Mechanism and Superoxide-Mediated Cycling of Copper Species. Chemosphere 2017, 166, 89–95. [Google Scholar] [CrossRef]
- Rekhate, C.V.; Srivastava, J.K. Recent Advances in Ozone-Based Advanced Oxidation Processes for Treatment of Wastewater—A Review. Chem. Eng. J. Adv. 2020, 3, 100031. [Google Scholar] [CrossRef]
- Joseph, C.G.; Farm, Y.Y.; Taufiq-Yap, Y.H.; Pang, C.K.; Nga, J.L.H.; Li Puma, G. Ozonation Treatment Processes for the Remediation of Detergent Wastewater: A Comprehensive Review. J. Environ. Chem. Eng. 2021, 9, 106099. [Google Scholar] [CrossRef]
- Lim, S.; Shi, J.L.; von Gunten, U.; McCurry, D.L. Ozonation of Organic Compounds in Water and Wastewater: A Critical Review. Water Res. 2022, 213, 118053. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekara Pillai, K.; Kwon, T.O.; Moon, I.S. Degradation of Wastewater from Terephthalic Acid Manufacturing Process by Ozonation Catalyzed with Fe2+, H2O2 and UV Light: Direct versus Indirect Ozonation Reactions. Appl. Catal. B Environ. 2009, 91, 319–328. [Google Scholar] [CrossRef]
- Ikehata, K.; Li, Y. Ozone-Based Processes. In Advanced Oxidation Processes for Wastewater Treatment: Emerging Green Chemical Technology; Academic Press: New York, NY, USA, 2018; pp. 115–134. [Google Scholar] [CrossRef]
- Das, P.P.; Dhara, S.; Samanta, N.S.; Purkait, M.K. Advancements on Ozonation Process for Wastewater Treatment: A Comprehensive Review. Chem. Eng. Process.—Process Intensif. 2024, 202, 109852. [Google Scholar] [CrossRef]
- Guinea, E.; Brillas, E.; Centellas, F.; Cañizares, P.; Rodrigo, M.A.; Sáez, C. Oxidation of Enrofloxacin with Conductive-Diamond Electrochemical Oxidation, Ozonation and Fenton Oxidation. A Comparison. Water Res. 2009, 43, 2131–2138. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Demeestere, K.; Hulle, S. Van Comparison and Performance Assessment of Ozone-Based AOPs in View of Trace Organic Contaminants Abatement in Water and Wastewater: A Review. J. Environ. Chem. Eng. 2021, 9, 105599. [Google Scholar] [CrossRef]
- Liang, J.; Fei, Y.; Yin, Y.; Han, Q.; Liu, Y.; Feng, L.; Zhang, L. Advancements in Wastewater Treatment: A Comprehensive Review of Ozone Microbubbles Technology. Environ. Res. 2025, 266, 120469. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Ortega, M.; Ponziak, T.; Barrera-Díaz, C.; Rodrigo, M.A.; Roa-Morales, G.; Bilyeu, B. Use of a Combined Electrocoagulation–Ozone Process as a Pre-Treatment for Industrial Wastewater. Desalination 2010, 250, 144–149. [Google Scholar] [CrossRef]
- Hoigné, J.; Bader, H. Rate Constants of Reactions of Ozone with Organic and Inorganic Compounds in Water—I: Non-Dissociating Organic Compounds. Water Res. 1983, 17, 173–183. [Google Scholar] [CrossRef]
- Sreethawong, T.; Chavadej, S. Color Removal of Distillery Wastewater by Ozonation in the Absence and Presence of Immobilized Iron Oxide Catalyst. J. Hazard. Mater. 2008, 155, 486–493. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.H.; Song, W.C.; Manna, B.; Ha, J.K. Dissolved Ozone Flotation (DOF)—A Promising Technology in Municipal Wastewater Treatment. Desalination 2008, 225, 260–273. [Google Scholar] [CrossRef]
- Rosal, R.; Rodríguez, A.; Perdigón-Melón, J.A.; Petre, A.; García-Calvo, E.; Rosal, R.; Rodríguez, A.; Perdigón-Melón, J.A.; Petre, A.; García-Calvo, E. Oxidation of Dissolved Organic Matter in the Effluent of a Sewage Treatment Plant Using Ozone Combined with Hydrogen Peroxide (O3/H2O2). Chem. Eng. J. 2009, 149, 311–318. [Google Scholar] [CrossRef]
- Nieto-Sandoval, J.; Ammar, R.; Sans, C. Enhancing Nanoplastics Removal by Metal Ion-Catalyzed Ozonation. Chem. Eng. J. Adv. 2024, 19, 100621. [Google Scholar] [CrossRef]
- Ziwei, Y.; Zhe, W.; Shaopo, W.; Jingjie, Y.; Chen, L.; Jing, C. Mechanism of Ozone Catalysis by Transition Metal Hydroxyl Oxides: From Reactive Oxygen Species to Surface Structural Hydroxyl. Desalination Water Treat. 2024, 320, 100823. [Google Scholar] [CrossRef]
- Li, X.; Ma, J.; He, H. Recent Advances in Catalytic Decomposition of Ozone. J. Environ. Sci. 2020, 94, 14–31. [Google Scholar] [CrossRef] [PubMed]
- Fu, P.; Wang, L.; Li, G.; Hou, Z.; Ma, Y. Homogenous Catalytic Ozonation of Aniline Aerofloat Collector by Coexisted Transition Metallic Ions in Flotation Wastewaters. J. Environ. Chem. Eng. 2020, 8, 103714. [Google Scholar] [CrossRef]
- Wu, C.H.; Kuo, C.Y.; Chang, C.L. Homogeneous Catalytic Ozonation of C.I. Reactive Red 2 by Metallic Ions in a Bubble Column Reactor. J. Hazard. Mater. 2008, 154, 748–755. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiang, L.; Lin, F.; Wang, Z.; Yan, B.; Chen, G. Catalytic Deep Degradation of Cl-VOCs with the Assistance of Ozone at Low Temperature over MnO2 Catalysts. Chem. Eng. J. 2021, 426, 130814. [Google Scholar] [CrossRef]
- Pachhade, K.; Sandhya, S.; Swaminathan, K. Ozonation of Reactive Dye, Procion Red MX-5B Catalyzed by Metal Ions. J. Hazard. Mater. 2009, 167, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Zhang, X.; Lei, L. Degradation of Aqueous P-Nitrophenol by Ozonation Integrated with Activated Carbon. Ind. Eng. Chem. Res. 2008, 47, 6809–6815. [Google Scholar] [CrossRef]
- Feng, C.; Zhao, J.; Qin, G.; Diao, P. Construction of the Fe3+-O-Mn3+/2+ Hybrid Bonds on the Surface of Porous Silica as Active Centers for Efficient Heterogeneous Catalytic Ozonation. J. Solid State Chem. 2021, 300, 122266. [Google Scholar] [CrossRef]
- Issaka, E.; Baffoe, J.; Adams, M. Exploring Heterogeneous Catalytic Ozonation: Catalyst Types, Reaction Mechanisms, Applications, Challenges, and Future Outlook. Sustain. Chem. Environ. 2024, 8, 100185. [Google Scholar] [CrossRef]
- Issaka, E.; Amu-Darko, J.N.O.; Yakubu, S.; Fapohunda, F.O.; Ali, N.; Bilal, M. Advanced Catalytic Ozonation for Degradation of Pharmaceutical Pollutants―A Review. Chemosphere 2022, 289, 133208. [Google Scholar] [CrossRef]
- Khuntia, S.; Majumder, S.K.; Ghosh, P. Catalytic Ozonation of Dye in a Microbubble System: Hydroxyl Radical Contribution and Effect of Salt. J. Environ. Chem. Eng. 2016, 4, 2250–2258. [Google Scholar] [CrossRef]
- Zhang, R.; Jin, H.; Ma, L.; Yang, S.; He, G. Synergistic Catalytic Performance of RuSn and PdCe Composite Catalysts for the Hydrogenation of Terephthalic Acid to 1,4-Cyclohexanedimethanol. Catal. Commun. 2024, 187, 106887. [Google Scholar] [CrossRef]
- Jing, X.; Cheng, S.; Men, C.; Zhu, H.; Luo, M.; Li, Z. Study on the Mechanism and Control Strategy of Advanced Treatment of Yeast Wastewater by Ozone Catalytic Oxidation. Water 2023, 15, 274. [Google Scholar] [CrossRef]
- Munir, H.M.S.; Feroze, N.; Ramzan, N.; Sagir, M.; Babar, M.; Tahir, M.S.; Shamshad, J.; Mubashir, M.; Khoo, K.S. Fe-Zeolite Catalyst for Ozonation of Pulp and Paper Wastewater for Sustainable Water Resources. Chemosphere 2022, 297, 134031. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Tu, Y.; Shao, G.; Zhang, F.; Zhou, Z.; Tian, S.; Ren, Z. Catalytic Ozonation Performance of Calcium-Loaded Catalyst (Ca-C/Al2O3) for Effective Treatment of High Salt Organic Wastewater. Sep. Purif. Technol. 2022, 301, 121937. [Google Scholar] [CrossRef]
- Guo, H.; Li, X.; Li, G.; Liu, Y.; Rao, P. Preparation of SnOx-MnOx@Al2O3 for Catalytic Ozonation of Phenol in Hypersaline Wastewater. Ozone Sci. Eng. 2023, 45, 262–275. [Google Scholar] [CrossRef]
- Qi, F.; Chu, W.; Xu, B. Ozonation of Phenacetin in Associated with a Magnetic Catalyst CuFe2O4: The Reaction and Transformation. Chem. Eng. J. 2015, 262, 552–562. [Google Scholar] [CrossRef]
- Akhtar, J.; Amin, N.A.S.; Aris, A. Combined Adsorption and Catalytic Ozonation for Removal of Sulfamethoxazole Using Fe2O3/CeO2 Loaded Activated Carbon. Chem. Eng. J. 2011, 170, 136–144. [Google Scholar] [CrossRef]
- Bing, J.; Hu, C.; Nie, Y.; Yang, M.; Qu, J. Mechanism of Catalytic Ozonation in Fe2O3/Al2O3@SBA-15 Aqueous Suspension for Destruction of Ibuprofen. Environ. Sci. Technol. 2015, 49, 1690–1697. [Google Scholar] [CrossRef]
- Chokshi, N.P.; Chauhan, A.; Chhayani, R.; Sharma, S.; Ruparelia, J.P. Preparation and Application of Ag–Ce–O Composite Metal Oxide Catalyst in Catalytic Ozonation for Elimination of Reactive Black 5 Dye from Aqueous Media. Water Sci. Eng. 2024, 17, 257–265. [Google Scholar] [CrossRef]
- Chen, J.; Wen, W.; Kong, L.; Tian, S.; Ding, F.; Xiong, Y. Magnetically Separable and Durable MnFe2O4 for Efficient Catalytic Ozonation of Organic Pollutants. Ind. Eng. Chem. Res. 2014, 53, 6297–6306. [Google Scholar] [CrossRef]
- Bernal, M.; Romero, R.; Roa, G.; Barrera-Díaz, C.; Torres-Blancas, T.; Natividad, R. Ozonation of Indigo Carmine Catalyzed with Fe-Pillared Clay. Int. J. Photoenergy 2013, 2013, 918025. [Google Scholar] [CrossRef]
- Nasseh, N.; Arghavan, F.S.; Rodriguez-Couto, S.; Hossein Panahi, A.; Esmati, M.; A-Musawi, T.J. Preparation of Activated Carbon@ZnO Composite and Its Application as a Novel Catalyst in Catalytic Ozonation Process for Metronidazole Degradation. Adv. Powder Technol. 2020, 31, 875–885. [Google Scholar] [CrossRef]
- Løgager, T.; Holcman, J.; Sehested, K.; Pedersen, T. Oxidation of Ferrous Ions by Ozone in Acidic Solutions. Inorg. Chem. 1992, 31, 3523–3529. [Google Scholar] [CrossRef]
- Huaccallo-Aguilar, Y.; Álvarez-Torrellas, S.; Larriba, M.; Águeda, V.I.; Delgado, J.A.; Ovejero, G.; García, J. Optimization Parameters, Kinetics, and Mechanism of Naproxen Removal by Catalytic Wet Peroxide Oxidation with a Hybrid Iron-Based Magnetic Catalyst. Catalysts 2019, 9, 287. [Google Scholar] [CrossRef]
- Barrault, J.; Abdellaoui, M.; Bouchoule, C.; Majesté, A.; Tatibouët, J.M.; Louloudi, A.; Papayannakos, N.; Gangas, N.H. Catalytic Wet Peroxide Oxidation over Mixed (Al–Fe) Pillared Clays. Appl. Catal. B Environ. 2000, 27, L225–L230. [Google Scholar] [CrossRef]
- Mejbar, F.; Miyah, Y.; Benjelloun, M.; Ssouni, S.; Saka, K.; Lahrichi, A.; Zerrouq, F. High-Performance of Cu@eggshells for Toxic Dyes Catalytic Wet Peroxide Oxidation: Kinetics, Design of Experiments, Regeneration, and Cost Analysis. Case Stud. Chem. Environ. Eng. 2024, 9, 100572. [Google Scholar] [CrossRef]
- Garcia-Mora, A.M.; Torres-Palma, R.A.; García, H.; Hidalgo-Troya, A.; Galeano, L.A. Removal of Dissolved Natural Organic Matter by the Al/Fe Pillared Clay-Activated-Catalytic Wet Peroxide Oxidation: Statistical Multi-Response Optimization. J. Water Process Eng. 2021, 39, 101755. [Google Scholar] [CrossRef]
- Peralta, Y.M.; Sanabria, N.R.; Carriazo, J.G.; Moreno, S.; Molina, R. Catalytic Wet Hydrogen Peroxide Oxidation of Phenolic Compounds in Coffee Wastewater Using Al–Fe-Pillared Clay Extrudates. Desalination Water Treat. 2015, 55, 647–654. [Google Scholar] [CrossRef]
- Balcı, S.; Tomul, F. Catalytic Wet Peroxide Oxidation of Phenol through Mesoporous Silica-Pillared Clays Supported Iron and/or Titanium Incorporated Catalysts. J. Environ. Manag. 2023, 326, 116835. [Google Scholar] [CrossRef]
- Ben Achma, R.; Ghorbel, A.; Dafinov, A.; Medina, F. Copper-Supported Pillared Clay Catalysts for the Wet Hydrogen Peroxide Catalytic Oxidation of Model Pollutant Tyrosol. Appl. Catal. A Gen. 2008, 349, 20–28. [Google Scholar] [CrossRef]
- Carriazo, J.; Guélou, E.; Barrault, J.; Tatibouët, J.M.; Molina, R.; Moreno, S. Catalytic Wet Peroxide Oxidation of Phenol by Pillared Clays Containing Al–Ce–Fe. Water Res. 2005, 39, 3891–3899. [Google Scholar] [CrossRef] [PubMed]
- García-Mora, A.M.; Portilla-Delgado, C.S.; Torres-Palma, R.A.; Hidalgo-Troya, A.; Galeano, L.A. Catalytic Wet Peroxide Oxidation to Remove Natural Organic Matter from Real Surface Waters at Urban and Rural Drinking Water Treatment Plants. J. Water Process Eng. 2021, 42, 102136. [Google Scholar] [CrossRef]
- Inchaurrondo, N.; Cechini, J.; Font, J.; Haure, P. Strategies for Enhanced CWPO of Phenol Solutions. Appl. Catal. B Environ. 2012, 111–112, 641–648. [Google Scholar] [CrossRef]
- Li, C.; Zhu, N.; Yang, S.; He, X.; Zheng, S.; Sun, Z.; Dionysiou, D.D. A Review of Clay Based Photocatalysts: Role of Phyllosilicate Mineral in Interfacial Assembly, Microstructure Control and Performance Regulation. Chemosphere 2021, 273, 129723. [Google Scholar] [CrossRef] [PubMed]
- Fox, M.A.; Dulay, M.T. Heterogeneous Photocatalysis. Chem. Rev. 1993, 93, 341–357. [Google Scholar] [CrossRef]
- Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95, 69–96. [Google Scholar] [CrossRef]
- Chakravorty, A.; Roy, S. A Review of Photocatalysis, Basic Principles, Processes, and Materials. Sustain. Chem. Environ. 2024, 8, 100155. [Google Scholar] [CrossRef]
- Dlamini, M.C.; Maubane-Nkadimeng, M.S.; Moma, J.A. The Use of TiO2/Clay Heterostructures in the Photocatalytic Remediation of Water Containing Organic Pollutants: A Review. J. Environ. Chem. Eng. 2021, 9, 106546. [Google Scholar] [CrossRef]
- Sun, Z.; Lian, C.; Li, C.; Zheng, S. Investigations on Organo-Montmorillonites Modified by Binary Nonionic/Zwitterionic Surfactant Mixtures for Simultaneous Adsorption of Aflatoxin B1 and Zearalenone. J. Colloid Interface Sci. 2020, 565, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Aslam, U.; Rao, V.G.; Chavez, S.; Linic, S. Catalytic Conversion of Solar to Chemical Energy on Plasmonic Metal Nanostructures. Nat. Catal. 2018, 1, 656–665. [Google Scholar] [CrossRef]
- Hariganesh, S.; Vadivel, S.; Maruthamani, D.; Rangabhashiyam, S. Disinfection By-Products in Drinking Water: Detection and Treatment Methods. In Disinfection By-products in Drinking Water: Detection and Treatment; Elsevier: Amsterdam, The Netherlands, 2020; pp. 279–304. [Google Scholar] [CrossRef]
- Mishra, A.; Mehta, A.; Basu, S. Clay Supported TiO2 Nanoparticles for Photocatalytic Degradation of Environmental Pollutants: A Review. J. Environ. Chem. Eng. 2018, 6, 6088–6107. [Google Scholar] [CrossRef]
- Mori, K.; Kondo, Y.; Morimoto, S.; Yamashita, H. A Multifunctional Heterogeneous Catalyst: Titanium-Containing Mesoporous Silica Material Encapsulating Magnetic Iron Oxide Nanoparticles. Chem. Lett. 2007, 36, 1068–1069. [Google Scholar] [CrossRef]
- Peñas-Garzón, M.; Gómez-Avilés, A.; Bedia, J.; Rodriguez, J.J.; Belver, C. Effect of Activating Agent on the Properties of TiO2/Activated Carbon Heterostructures for Solar Photocatalytic Degradation of Acetaminophen. Materials 2019, 12, 378. [Google Scholar] [CrossRef] [PubMed]
- Boudraa, R.; Talantikite-Touati, D.; Souici, A.; Djermoune, A.; Saidani, A.; Fendi, K.; Amrane, A.; Bollinger, J.C.; Nguyen Tran, H.; Hadadi, A.; et al. Optical and Photocatalytic Properties of TiO2–Bi2O3–CuO Supported on Natural Zeolite for Removing Safranin-O Dye from Water and Wastewater. J. Photochem. Photobiol. A Chem. 2023, 443, 114845. [Google Scholar] [CrossRef]
- Guo, J.; Fan, Y.; Dong, X.; Zeng, H.; Ma, X.; Fu, Y. Study on Preparation of UV-CDs/Zeolite-4A/TiO2 Composite Photocatalyst Coupled with Ultraviolet-Irradiation and Their Application of Photocatalytic Degradation of Dyes. J. Environ. Manag. 2024, 354, 120342. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A.; Mishra, A.; Sharma, M.; Singh, S.; Basu, S. Effect of Silica/Titania Ratio on Enhanced Photooxidation of Industrial Hazardous Materials by Microwave Treated Mesoporous SBA-15/TiO2 Nanocomposites. J. Nanopart. Res. 2016, 18, 209. [Google Scholar] [CrossRef]
- Ji, H.; Liu, W.; Sun, F.; Huang, T.; Chen, L.; Liu, Y.; Qi, J.; Xie, C.; Zhao, D. Experimental Evidences and Theoretical Calculations on Phenanthrene Degradation in a Solar-Light-Driven Photocatalysis System Using Silica Aerogel Supported TiO2 Nanoparticles: Insights into Reactive Sites and Energy Evolution. Chem. Eng. J. 2021, 419, 129605. [Google Scholar] [CrossRef]
- Zhao, S.; Qi, Y.; Lv, H.; Jiang, X.; Wang, W.; Cui, B.; Liu, W.; Shen, Y. Effect of Clay Mineral Support on Photocatalytic Performance of BiOBr-TiO2 for Efficient Photodegradation of Xanthate. Adv. Powder Technol. 2024, 35, 104431. [Google Scholar] [CrossRef]
- Pérez-Carvajal, J.; Aranda, P.; Obregón, S.; Colón, G.; Ruiz-Hitzky, E. TiO2-Clay Based Nanoarchitectures for Enhanced Photocatalytic Hydrogen Production. Microporous Mesoporous Mater. 2016, 222, 120–127. [Google Scholar] [CrossRef]
- Mishra, A.; Mehta, A.; Sharma, M.; Basu, S. Enhanced Heterogeneous Photodegradation of VOC and Dye Using Microwave Synthesized TiO2/Clay Nanocomposites: A Comparison Study of Different Type of Clays. J Alloys Compd. 2017, 694, 574–580. [Google Scholar] [CrossRef]
- Sangare, S.; Belaidi, S.; Saoudi, M.; Bouaziz, C.; Seraghni, N.; Sehili, T. Iron-TiO2 Pillared Clay Nanocomposites: Eco-Friendly Solutions for Photocatalytic Removal of Organic and Pathogen Contaminants. Inorg. Chem. Commun. 2024, 160, 111923. [Google Scholar] [CrossRef]
- Yusuff, A.S.; Olateju, I.I.; Adesina, O.A. TiO2/Anthill Clay as a Heterogeneous Catalyst for Solar Photocatalytic Degradation of Textile Wastewater: Catalyst Characterization and Optimization Studies. Materialia 2019, 8, 100484. [Google Scholar] [CrossRef]
- Hass Caetano Lacerda, E.; Monteiro, F.C.; Kloss, J.R.; Fujiwara, S.T. Bentonite Clay Modified with Nb2O5: An Efficient and Reused Photocatalyst for the Degradation of Reactive Textile Dye. J. Photochem. Photobiol. A Chem. 2020, 388, 112084. [Google Scholar] [CrossRef]
- Tobajas, M.; Belver, C.; Rodriguez, J.J. Degradation of Emerging Pollutants in Water under Solar Irradiation Using Novel TiO2-ZnO/Clay Nanoarchitectures. Chem. Eng. J. 2017, 309, 596–606. [Google Scholar] [CrossRef]
- Carriazo, J.G.; Moreno-Forero, M.; Molina, R.A.; Moreno, S. Incorporation of Titanium and Titanium–Iron Species inside a Smectite-Type Mineral for Photocatalysis. Appl. Clay Sci. 2010, 50, 401–408. [Google Scholar] [CrossRef]
- Paul, B.; Martens, W.N.; Frost, R.L. Immobilised Anatase on Clay Mineral Particles as a Photocatalyst for Herbicides Degradation. Appl. Clay Sci. 2012, 57, 49–54. [Google Scholar] [CrossRef]
- Damardji, B.; Khalaf, H.; Duclaux, L.; David, B. Preparation of TiO2-Pillared Montmorillonite as Photocatalyst Part II: Photocatalytic Degradation of a Textile Azo Dye. Appl. Clay Sci. 2009, 45, 98–104. [Google Scholar] [CrossRef]
- Li, C.; Sun, Z.; Huang, W.; Zheng, S. Facile Synthesis of G-C3N4/Montmorillonite Composite with Enhanced Visible Light Photodegradation of Rhodamine B and Tetracycline. J. Taiwan Inst. Chem. Eng. 2016, 66, 363–371. [Google Scholar] [CrossRef]
- Fatimah, I.; Syu’aib, Y.; Ramanda, G.D.; Kooli, F.; Sagadevan, S.; Oh, W.C. Facile Synthesis of Highly Active and Reusable NiO/Montmorillonite Photocatalyst for Tetracycline Removal by Photocatalytic Oxidation. Inorg. Chem. Commun. 2025, 172, 113731. [Google Scholar] [CrossRef]
- Abdennouri, M.; Baâlala, M.; Galadi, A.; El Makhfouk, M.; Bensitel, M.; Nohair, K.; Sadiq, M.; Boussaoud, A.; Barka, N. Photocatalytic Degradation of Pesticides by Titanium Dioxide and Titanium Pillared Purified Clays. Arab. J. Chem. 2016, 9, S313–S318. [Google Scholar] [CrossRef]
- Pourmadadi, M.; Aghababaei, N.; Abdouss, M. Performance and Reaction Mechanism of Montmorillonite/α-Fe2O3/Starch Bio-Nanocomposite as High-Efficiency Photocatalytic Degradation of Acetaminophen: Characterization, Feasibility, and Pathway. Int. J. Biol. Macromol. 2024, 279, 135363. [Google Scholar] [CrossRef] [PubMed]
- González, B.; Trujillano, R.; Vicente, M.A.; Rives, V.; Korili, S.A.; Gil, A. Photocatalytic Degradation of Trimethoprim on Doped Ti-Pillared Montmorillonite. Appl. Clay Sci. 2019, 167, 43–49. [Google Scholar] [CrossRef]
- Cardona, Y.; Węgrzyn, A.; Miśkowiec, P.; Korili, S.A.; Gil, A. Catalytic Photodegradation of Organic Compounds Using TiO2/Pillared Clays Synthesized Using a Nonconventional Aluminum Source. Chem. Eng. J. 2022, 446, 136908. [Google Scholar] [CrossRef]
- Liang, Y.; Li, W.; Bei, B.; Li, C.; He, Z.; Wang, X.; Zhou, R.; Ding, H.; Li, S. Composites of TiO2 Pillared Sericite: Synthesis, Characterization and Photocatalytic Degradation of Methyl Orange. Appl. Clay Sci. 2023, 242, 107044. [Google Scholar] [CrossRef]
Organic Pollutants | Catalyst | Reaction Conditions | Remotion | Ref |
---|---|---|---|---|
Levofloxacin (LVX) | Iron-silica pillared clay | Catalyst loading = 0.5 g/L Concentration LVX = 50 mg/L pH = 3.0 Temperature = 40 °C 500 mg/L H2O2 Reaction time = 180 min in 5 consecutive runs | XLVX = 90% | [61] |
Sulfanilamide (SA) | Fe, Al-Montmorillonite -pillared clay | Catalyst loading = 3 g/L Concentration SA= 0.29 mmol/L pH = 3.1 and 4.1 Temperature = 30–60 °C H2O2/SA = 1–36 mol/mol Reaction time = 360 min | XSA = 95–99% | [62] |
Cinnamic acid (CA) | Fe-bentonite | Concentration CA = 120 mmol/L pH = 2.9 Temperature = 80 °C Fe-cinnamic acid molar ratio = 10 H2O2/ molar ratio = 83 Reaction time = 60 min | XCA = 90% | [63] |
Pesticides (NPT) | Fe-pillared bentonite | Catalyst loading = 1 g/L Concentration NPT = 5 mg/L pH = 3.0 Temperature = 40 °C H2O2/NPT = 23.2 mg/L for 5 mg/L NPT | XNPT = 100% | [64] |
Nitrobenzene (NB) | Fe-pillared kaolinite | Catalyst loading = 1.0 g/L Concentration NB = 75 mmol/L pH = 3.0 ± 0.05 Temperature = 35 °C 10 mmol/L H2O2 Reaction time = 180 min 10 mmol/L H2O2 | XNB > 85% | [60] |
Acid Green 25 (AG25) | Fe-Ipoh clay | Catalyst loading = 1.25 g/L Concentration AG25 = 50 mg/L pH = 3.0 Temperature = 30 °C 6.7 mM H2O2 Reaction time = 120 min | X = 95% | [65] |
Orange II | Fe/pillared saponite | Catalyst loading = 90 mg/L Concentration Orange II = 0.1 mM pH = 3.0 Temperature = 70 °C 6 mM H2O2 Reaction time = 240 min | XOrange II = 91% | [66] |
Orange II | Fe-Pillared bentonite clay (nanocatalysts) | Catalyst loading = 1 g Concentration Orange II = 0.2 mM pH = 3.0 Temperature = 30 °C 10 mM H2O2 Reaction time = 120 min | XOrange II = 100% | [67] |
Phenol | Al/Fe-pillared clay (bentonite) | Catalyst loading = 5 g/L Concentration Phenol = 5 × 10−4 mol/L pH = 3.7 Temperature = 25 °C 0.1 mol/L H2O2 Reaction time = 180 min | Xphenol = 100% | [68] |
4-chlorophenol (4-CP) | Al/Fe-pillared clay (montmorillonite) | Catalyst loading = 0.5 g/L Concentration 4-CP = 155.6 μmol/L pH = 3.5 Temperature = 30 °C H2O2:4-CP = 13.5:1 (molar ratio) Reaction time = 240 min | X4-CP = 100% | [69] |
Organic Pollutants | Catalyst | Reaction Conditions | Remotion | Ref |
---|---|---|---|---|
Wastewater from yeast production | MnO2 | CODo = 880 mg/L Catalyst loading = 6 g/L O3 350 m/L pH = 12.0 Reaction time = 20 min | 56.02% | [129] |
Petroleum refinery wastewater | Mn-Fe-Cu/Al2O3 | CODo = 2825 mg/L Catalyst loading = 7 g/L O3 2.9 g/h pH = 8.2 Reaction time = 60 min | 67.1% | [42] |
Wastewater from paper production | Fe-NZ | CODo = 400 mg/L Catalyst loading = 10 g/L O3 300 m/L pH = 9.0 Reaction time = 120 min | 71.01% | [130] |
Organic wastewater (high salt content) | Ca-C/Al2O3 | CODo = 100–126 mg/L Catalyst loading = 400 g/L O3 12 m/L pH = 8.36 Reaction time = 40 min | 64.40% | [131] |
Hypersaline wastewater | SnOx-MnOx/Al2O3 | CODo = 500 mg/L Catalyst loading = 40 g/L O3 6 m/L pH = 7.0 Reaction time = 240 min | 93.80% | [132] |
Phenacetin (PNT) | CuFe2O4 | [PNT]o = 0.2 mM Catalyst loading = 2 g/L O3 0.36 m/L pH = 7.72 Reaction time = 180 min | 70% | [133] |
Sulfamethoxazole (SMX) | Fe2O3/CeO2/Actived Carbon | [SMX]o = 40 mg/L Catalyst loading = 2 g/L O3 48 mg/L pH = 7.5 Reaction time = 15 min | 86% | [134] |
Ibuprofen (IBU) | Fe2O3/Al2O3@SBA-15 | [IBU]o = 10 mg/L Catalyst loading = 1.5 g/L O3 30 m/L pH = 7.0 Reaction time = 60 min | 90% | [135] |
Reactive Black 5 dye (RB5) | Ag-Ce-O | [RB5]o = 100 mg/L Catalyst loading = 0.7 g/L O3 60 L/h pH = 10.0 Reaction time = 80 min | 88% | [136] |
4-Chlorophenol (4-CP) | MnFe2O4 | [4-CP]o = 100 mg/L Catalyst loading = 1 g/L O3 5 mg/L pH = 6.21 Reaction time = 30 min | 95.7% | [137] |
Indigo carmine (IC) | Fe-pillared clay | [IC]o = 1000 mg/L Catalyst loading = 100 mg/L O3 0.045 L/min pH = 3.0 Reaction time = 60 min | 100% | [138] |
Organic Pollutants | Catalyst | Reaction Conditions | Remotion | Ref |
---|---|---|---|---|
Phenol compounds in coffee wastewater | Al/Fe-pillared bentonite | CODo = 38,416 mg/L Catalyst loading = 4.10 g H2O2 = 0.17 mol/L Flow rate = 2 mL/h pH = 4.2 Reaction time = 96 h Temperature = 25 °C Eight reuse cycles | Xphenol = 62.4% Selectivity to CO2 = 67.5% | [145] |
Phenol | Fe-Silica pillared clay (SPC) | [Phenol]o = 500 mg/L Catalyst loading = 2 g/L H2O2 = 0.1 mol/L Flow rate = 2 mL/h pH = 3.7 Reaction time = 120 min Temperature = 30 °C Three reuse cycles | Xphenol = 99.5% | [146] |
Tyrosol | Cu/Al-pillared clay | [Tyrosol]o = 3.6 mmol/L Catalyst loading = 1.0 g/L H2O2 = 0.068 M Flow rate = 30 mL/h pH = 5.6 Reaction time = 60 min Temperature = 25 °C | Xtyrosol = 100% | [147] |
Phenol | Al-Ce-Fe/bentonite | [Phenol]o = 47 ppm (5 × 10−4 M) Catalyst loading = 0.5 g H2O2 = stoichiometric amount pH = 3.7 Reaction time = 4 h Temperature = 25 °C | Xphenol = 100% | [148] |
Organic matter in surface water | Al/Fe-pillared clay | [DOC]o = 7.0 mg/L Catalyst loading = 3.81 g/L H2O2 = 0.037 mg/mg C. mg Fe Flow rate = 0.56 cm3/min pH = dependent on sampling location Reaction time = 4 h Temperature = dependent on sampling location | 90% | [149] |
Organic Pollutants | Photocatalyst | Reaction Conditions | Degradation | Ref |
---|---|---|---|---|
Metoprolol tartrate (MET) | TiO2-FeAB (acidified bentonite) TiO2/NB (natural bentonite) | [MET] = 3 × 10−5 M Catalyst loading = 1 g/L UV visible pH = 6.2 Temperature = 20 °C Reaction time = 300 min | 80% 70% | [169] |
Textile wastewater | TiO2-anthill clay | [Textile wastewater] = 3.01 mg/L CODo = 2.89 mg/L Catalyst loading = 2.05 wt% Sunlight pH = 2.0 Reaction time = 1.07 h Four cycles of reuse | 70.92% | [170] |
Blue 19 dye | Nb2O5-bentonite | [Blue 19] = 30 mg/L Catalyst loading = 0.5 g 125 W mercury vapor lamp pH = 3.0 Reaction time = 2 h | 98% | [171] |
Acetaminophen | TiO2-ZnO-cloisite clay | [ACE] = 10 mg/L Catalyst loading = 250 mg/L Solar light Reaction time = 10 h | 100% | [172] |
Phenol | Fe-TiO2-Bentonite | [Phenol] = 5 × 10−4 M Catalyst loading = 0.5 g UV lamp (λ = 330–390 nm) pH = 3.7 Reaction time = 240 min | ≅90% | [173] |
Herbicides (bromacil, chlorotoluran and sulfosulfuron) | TiOSO4-laponite | [Herbicides] = 5 ppm Catalyst loading = 50 mg UV radiation Reaction time = 60 min | 80% | [174] |
Solophenyl red 3BL (SR3BL) | TiO2-pillared montmorillonite | [SR3BL] = 100 mg/L Catalyst loading = 2.5 g/L Solar radiation pH = 5.8 Reaction time = 220 min | 95% | [175] |
Rhodamine B (RHB) and tetracycline (TC) | g-C3N4-montmorillonite | [RHB] = 30 ppm [TC] = 100 ppm Catalyst loading = 2 g/L Visible light Reaction time = 360 min | 87% (RhB) 76% (TC) | [176] |
Tetracycline (TC) | NiO-montmorillonite | [TC] = 10 mg/L Catalyst loading = 0.8 g/L UV radiation (λ = 296 nm) Visible light pH = 6.8–7.1 Reaction time = 180 min Five cycles of use | 94.2% (UV) 75.5% (Visible light) | [177] |
2,4-dichlorophenoxyacetic acid (2,4-D) | Ti-pillared clay | [2,4-D] = 20 mg/L Catalyst loading = 120 mg (10.5 mmol of Ti/clay) UV radiation Reaction time = 90 min | ≅70% | [178] |
Acetaminophen (ACT) | Montmorillonite-Fe2O3/starch | [ACT] = 10 mg/L Catalyst loading = 0.75 g/L UVA radiation (λ = 365 nm) pH = 7.1 Reaction time = 80 min Four cycles of use | 91% | [179] |
Trimethoprim (TMP) | Cr3+/Ti-pillared clay montmorillonite | [TMP] = 25 mg/L Catalyst loading = 1 g/L UV radiation Reaction time = 180 min | 76% | [180] |
Triclosan (TCS) | TiO2/Al-pillared clay | [TCS] = 90 μmol/L Catalyst loading = 1 g/L UV radiation pH = 4.0 Reaction time = 120 min | 85.15 ± 0.49% | [181] |
Methyl orange (MO) | TiO2 pillared sericite | [MO] = 20 mg/L Catalyst loading = 50 mg UV radiation Reaction time = 80 min | 98.5% | [182] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero, R. Application of Pillared Clays for Water Recovery. Catalysts 2025, 15, 159. https://doi.org/10.3390/catal15020159
Romero R. Application of Pillared Clays for Water Recovery. Catalysts. 2025; 15(2):159. https://doi.org/10.3390/catal15020159
Chicago/Turabian StyleRomero, Rubi. 2025. "Application of Pillared Clays for Water Recovery" Catalysts 15, no. 2: 159. https://doi.org/10.3390/catal15020159
APA StyleRomero, R. (2025). Application of Pillared Clays for Water Recovery. Catalysts, 15(2), 159. https://doi.org/10.3390/catal15020159