A Review of Materials for Carbon Dioxide Capture
Abstract
:1. Introduction
2. Sources of Carbon Dioxide (CO2)
3. Methods to Capture Carbon Dioxide (CO2)
3.1. High Concentration Capture Methods
3.2. Direct Air Capture (DAC)
4. Materials for CO2 Capture
4.1. Liquid Absorbents
4.2. Solid Adsorbents
Material | Advantages | Disadvantages | Applications | Refs |
---|---|---|---|---|
Activated carbon | High surface area, cost-effective, | good adsorption capacity, may require modification to improve performance | Industrial emissions, power plants | [120,124,125,148,149,150] |
Zeolites | High selectivity, good thermal stability | High cost, sensitivity to moisture | Industrial and commercial applications, natural gas processing | [120,129,131,151,152,153] |
Metal-organic frameworks (MOFs) | Extremely high surface areas, tunable pore sizes and functionalities | High cost, can be fragile and sensitive to moisture | Flue gases from industries, direct air capture | [40,136,137,138,139] |
Carbon nanotubes (CNTs) | High mechanical strength, very large surface area, can be functionalized | High production cost, complex synthesis process | Flue gases, direct air capture | [120,143,144,145] |
Layered double hydroxides (LDHs) | Chemical nature allows for ion exchange, tunable interlayer chemistry | Lower stability compared to other adsorbents, slower kinetics | Flue gas treatment, post-combustion power plants | [146,147,154,155,156] |
Polymeric ionic liquids (PILs) | Tailorable for specific separations, can be regenerated, high thermal stability | High viscosity, may require specific conditions for optimal performance | Specific industrial applications, flue gas treatment | [97,98] |
4.3. Comparison of Materials
Materials | Absorption Capacity (mol CO2/kg Sorbent) | Cost ($/g Sorbent) | Application | TRL (Companies) | Refs |
---|---|---|---|---|---|
Amine based solutions/amine blends | 8.2 mol CO2/kg of MEA [159] (can be higher for hindered amines) | 200–500 | -Flue gas -Direct air capture | 9 (Mitsubishi Heavy Industries (Tokyo, Japan), Fluor (Irving, TX, USA), Aker Solutions (Fornebu, Norway), BASF (Ludwigshafen, Germany)) | [70,71,73,90,111,160,161,162] |
Inorganic chemical solvents (K2CO3, NaOH, NH3 solutions) | 7.24 (K2CO3) [163], 3.21 (NaOH) [164], 27 (NH3) [165] | 7 (K2CO3), 0.6 (NaOH), 3.8 (NH3) | -Pre-combustion capture (IGCC plants) -Direct air capture | 4–7 (SRI International (Menlo Park, CA, USA), Baker Hughes (Houston, TX, USA) and University of Illinois (Urbana-Champaign, IL, USA)) | [81,82,83,112,113,114,115,116,117] |
Ionic liquids | As high as 3.6 mol CO2/kg IL [166] | 20–50 | -Pre-combustion capture (IGCC plants) -Flue gas treatment -Direct air capture | 3 (R&D Lab scale) | [34,74,84,90,91] |
Activated carbon | 2–4 mol CO2/kg [167] (poor at low pressures) | 18 | -Flue gas with high concentration of CO2 | 1. Pressure Swing Adsorption- 9 (Air Liquide (Paris, France), Air Products (Allentown, PA, USA), UOP (Des Plaines, IL, USA)) 2. Temperature Swing Adsorption-5–7 (Svante (Burnaby, BC, Canada), Kawasaki CO2 Capture (Tokyo, Japan)) | [120,124,125,148,149,150] |
Zeolites | Over 8 mol CO2/kg [167,168] (good even at low pressures) | 0.2–5 | -Flue gas treatment -Direct air capture | [120,129,131,151,152,153] | |
Metal-organic frameworks (MOFs) | 4 mol CO2/kg [169] (poor at low pressures) | 20–50 | -Flue gas treatment -Direct air capture | [40,136,137,138,139] | |
Graphene/carbon nanotubes (CNTs) | Up to 5 mol CO2/kg [144] (poor at low pressures) | 600–800 | -Flue gas treatment -Direct air capture | [120,143,144,145] |
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Intergovernmental Panel On Climate Change (IPCC). Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK, 2023; ISBN 978-1-00-915789-6. [Google Scholar]
- Wang, P.; Liu, Z.; Pan, Z.; González-Arias, J.; Shang, L.; Wang, Y.; Zhang, Z. Advances in life cycle assessment of chemical absorption-based carbon capture technologies. Sep. Purif. Technol. 2024, 346, 127252. [Google Scholar] [CrossRef]
- Yan, Y.; Borhani, T.N.; Subraveti, S.G.; Pai, K.N.; Prasad, V.; Rajendran, A.; Nkulikiyinka, P.; Asibor, J.O.; Zhang, Z.; Shao, D.; et al. Harnessing the power of machine learning for carbon capture, utilisation, and storage (CCUS)—A state-of-the-art review. Energy Environ. Sci. 2021, 14, 6122–6157. [Google Scholar] [CrossRef]
- IEA—International Energy Agency. Available online: https://www.iea.org/search/products (accessed on 23 April 2024).
- Van Den Broek, M.; Berghout, N.; Rubin, E.S. The potential of renewables versus natural gas with CO2 capture and storage for power generation under CO2 constraints. Renew. Sustain. Energy Rev. 2015, 49, 1296–1322. [Google Scholar] [CrossRef]
- United Nations. Paris Agreement; 2015. Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed on 22 April 2024).
- Ozkan, M.; Custelcean, R. Guest Editors The status and prospects of materials for carbon capture technologies. MRS Bull. 2022, 47, 390–394. [Google Scholar] [CrossRef]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Hauck, J. Global Carbon Budget 2024. Earth Syst. Sci. Data Discuss. 2024; 1–133, preprint. [Google Scholar] [CrossRef]
- Lian, X.; Xu, L.; Chen, M.; Wu, C.; Li, W.; Huang, B.; Cui, Y. Carbon Dioxide Captured by Metal Organic Frameworks and Its Subsequent Resource Utilization Strategy: A Review and Prospect. J. Nanosci. Nanotechnol. 2019, 19, 3059–3078. [Google Scholar] [CrossRef]
- Kothandaraman, A. Carbon Dioxide Capture by Chemical Absorption: A Solvent Comparison Study. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2010. [Google Scholar]
- Kothandaraman, J.; Goeppert, A.; Czaun, M.; Olah, G.A.; Surya Prakash, G.K. CO2 capture by amines in aqueous media and its subsequent conversion to formate with reusable ruthenium and iron catalysts. Green Chem. 2016, 18, 5831–5838. [Google Scholar] [CrossRef]
- Climate Watch Methodology for GHGs Emissions. Available online: https://wri-sites.s3.us-east-1.amazonaws.com/climatewatch.org/www.climatewatch.org/climate-watch/wri_metadata/CW_GHG_Method_Note.pdf (accessed on 20 February 2025).
- Foster, V.; Bedrosyan, D. Understanding CO2 Emissions from the Global Energy Sector; World Bank Group: Washington, DC, USA, 2014. [Google Scholar]
- Garg, A.; Shukla, P.R.; Kankal, B.; Mahapatra, D. CO2 emission in India: Trends and management at sectoral, sub-regional and plant levels. Carbon Manag. 2017, 8, 111–123. [Google Scholar] [CrossRef]
- Daziano, R.A.; Waygood, E.O.D.; Patterson, Z.; Braun Kohlová, M. Increasing the influence of CO2 emissions information on car purchase. J. Clean. Prod. 2017, 164, 861–871. [Google Scholar] [CrossRef]
- Gray, N.; McDonagh, S.; O’Shea, R.; Smyth, B.; Murphy, J.D. Decarbonising ships, planes and trucks: An analysis of suitable low-carbon fuels for the maritime, aviation and haulage sectors. Adv. Appl. Energy 2021, 1, 100008. [Google Scholar] [CrossRef]
- Kim, Y.; Worrell, E. International comparison of CO2 emission trends in the iron and steel industry. Energy Policy 2002, 30, 827–838. [Google Scholar] [CrossRef]
- Xu, C.C.; Cang, D. A brief overview of low CO2 emission technologies for iron and steel making. J. Iron Steel Res. Int. 2010, 17, 1–7. [Google Scholar] [CrossRef]
- Climate Watch. Washington, DC: World Resources Institute. 2024. Available online: https://www.climatewatchdata.org (accessed on 3 April 2024).
- Li, Y.L.; Han, M.Y.; Liu, S.Y.; Chen, G.Q. Energy consumption and greenhouse gas emissions by buildings: A multi-scale perspective. Build. Environ. 2019, 151, 240–250. [Google Scholar] [CrossRef]
- Ibn-Mohammed, T.; Greenough, R.; Taylor, S.; Ozawa-Meida, L.; Acquaye, A. Operational vs. embodied emissions in buildings—A review of current trends. Energy Build. 2013, 66, 232–245. [Google Scholar] [CrossRef]
- Röck, M.; Saade, M.R.M.; Balouktsi, M.; Rasmussen, F.N.; Birgisdottir, H.; Frischknecht, R.; Habert, G.; Lützkendorf, T.; Passer, A. Embodied GHG emissions of buildings—The hidden challenge for effective climate change mitigation. Appl. Energy 2020, 258, 114107. [Google Scholar] [CrossRef]
- US EPA, O. Sources of Greenhouse Gas Emissions. Overviews and Factsheets. Available online: https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions (accessed on 18 June 2024).
- Shen, W.; Cao, L.; Li, Q.; Zhang, W.; Wang, G.; Li, C. Quantifying CO2 emissions from China’s cement industry. Renew. Sustain. Energy Rev. 2015, 50, 1004–1012. [Google Scholar] [CrossRef]
- Worrell, E.; Price, L.; Martin, N.; Hendriks, C.; Meida, L.O. CARBON DIOXIDE EMISSIONS FROM THE GLOBAL CEMENT INDUSTRY. Annu. Rev. Energy. Environ. 2001, 26, 303–329. [Google Scholar] [CrossRef]
- Liu, Z.; Zheng, G.; Ye, Z.; Gao, P. CO 2 emissions from industrial sector in Fujian Province, China: A decomposition analysis. IOP Conf. Ser. Earth Environ. Sci. 2018, 208, 012039. [Google Scholar] [CrossRef]
- Lasocki, T.J. Climate Change Mitigation Through Forestry: Theory and Practice. J. Sustain. For. 2001, 14, 147–166. [Google Scholar] [CrossRef]
- Mendelsohn, R.; Sohngen, B. The Net Carbon Emissions fromHistoric Land Use and Land UseChange. JfE 2019, 34, 263–283. [Google Scholar] [CrossRef]
- Parajuli, R.; Joshi, O.; Maraseni, T. Incorporating Forests, Agriculture, and Energy Consumption in the Framework of the Environmental Kuznets Curve: A Dynamic Panel Data Approach. Sustainability 2019, 11, 2688. [Google Scholar] [CrossRef]
- Madejski, P.; Chmiel, K.; Subramanian, N.; Kuś, T. Methods and Techniques for CO2 Capture: Review of Potential Solutions and Applications in Modern Energy Technologies. Energies 2022, 15, 887. [Google Scholar] [CrossRef]
- Energy.gov Office of Fossil Energy and Carbon Management. Pre-Combustion Carbon Capture Research. Energy.gov. Available online: https://www.energy.gov/fecm/pre-combustion-carbon-capture-research (accessed on 9 September 2024).
- National Energy Technology Laboratory. Carbon Dioxide Capture Approaches. netl.doe.gov. Available online: https://netl.doe.gov/research/carbon-management/energy-systems/gasification/gasifipedia/capture-approaches (accessed on 9 September 2024).
- Hospital-Benito, D.; Lemus, J.; Moya, C.; Santiago, R.; Paramio, C.; Palomar, J. Aspen plus supported design of pre-combustion CO2 capture processes based on ionic liquids. Sep. Purif. Technol. 2022, 290, 120841. [Google Scholar] [CrossRef]
- Sohaib, Q.; Muhammad, A.; Younas, M.; Rezakazemi, M. Modeling pre-combustion CO2 capture with tubular membrane contactor using ionic liquids at elevated temperatures. Sep. Purif. Technol. 2020, 241, 116677. [Google Scholar] [CrossRef]
- Program Plan-carbon Capture. US Department of Energy 2013. Available online: https://netl.doe.gov/sites/default/files/2020-11/Program-Plan-Carbon-Capture-2013.pdf (accessed on 22 April 2024).
- Beavis, R. The EU FP6 CACHET project—Final results. Energy Procedia 2011, 4, 1074–1081. [Google Scholar] [CrossRef]
- Jurado, N.; Darabkhani, H.G.; Anthony, E.J.; Oakey, J.E. Oxy-fuel Combustion for Carbon Capture and Sequestration (CCS) from a Coal/Biomass Power Plant: Experimental and Simulation Studies. In Progress in Clean Energy, Volume 2: Novel Systems and Applications; Dincer, I., Colpan, C.O., Kizilkan, O., Ezan, M.A., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 177–192. ISBN 978-3-319-17031-2. [Google Scholar]
- National Energy Technology Laboratory. Oxy-Combustion. Available online: https://www.netl.doe.gov/node/7477 (accessed on 9 September 2024).
- Yadav, S.; Mondal, S.S. A review on the progress and prospects of oxy-fuel carbon capture and sequestration (CCS) technology. Fuel 2022, 308, 122057. [Google Scholar] [CrossRef]
- Chung, Y.G.; Gómez-Gualdrón, D.A.; Li, P.; Leperi, K.T.; Deria, P.; Zhang, H.; Vermeulen, N.A.; Stoddart, J.F.; You, F.; Hupp, J.T.; et al. In silico discovery of metal-organic frameworks for precombustion CO 2 capture using a genetic algorithm. Sci. Adv. 2016, 2, e1600909. [Google Scholar] [CrossRef]
- Feron, P.H.M.; Hendriks, C.A. CO2 Capture Process Principles and Costs. Oil Gas Sci. Technol.—Rev. D’ifp Energ. Nouv. 2005, 60, 451–459. [Google Scholar] [CrossRef]
- Abanades, J.C.; Arias, B.; Lyngfelt, A.; Mattisson, T.; Wiley, D.E.; Li, H.; Ho, M.T.; Mangano, E.; Brandani, S. Emerging CO2 capture systems. Int. J. Greenh. Gas Control 2015, 40, 126–166. [Google Scholar] [CrossRef]
- Wu, J.; Chung, T.-S. Supramolecular Polymer Network Membranes with Molecular-Sieving Nanocavities for Efficient Pre-Combustion CO2 Capture. Small Methods 2022, 6, 2101288. [Google Scholar] [CrossRef]
- Zhang, P.; Tong, J.; Huang, K.; Zhu, X.; Yang, W. The current status of high temperature electrochemistry-based CO2 transport membranes and reactors for direct CO2 capture and conversion. Prog. Energy Combust. Sci. 2021, 82, 100888. [Google Scholar] [CrossRef]
- Luis, P.; Van Gerven, T.; Van Der Bruggen, B. Recent developments in membrane-based technologies for CO2 capture. Prog. Energy Combust. Sci. 2012, 38, 419–448. [Google Scholar] [CrossRef]
- Dai, Y.; Niu, Z.; Luo, W.; Wang, Y.; Mu, P.; Li, J. A review on the recent advances in composite membranes for CO2 capture processes. Sep. Purif. Technol. 2023, 307, 122752. [Google Scholar] [CrossRef]
- Ozkan, M.; Nayak, S.P.; Ruiz, A.D.; Jiang, W. Current status and pillars of direct air capture technologies. iScience 2022, 25, 103990. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, D.M.; Smit, B.; Long, J.R. Carbon Dioxide Capture: Prospects for New Materials. Angew. Chem. Int. Ed. 2010, 49, 6058–6082. [Google Scholar] [CrossRef]
- Alalwan, H.A.; Alminshid, A.H. CO2 capturing methods: Chemical looping combustion (CLC) as a promising technique. Sci. Total Environ. 2021, 788, 147850. [Google Scholar] [CrossRef] [PubMed]
- Chemical Looping Combustion. netl.doe.gov. Available online: https://netl.doe.gov/node/7478 (accessed on 21 June 2024).
- Manovic, V.; Anthony, E.J. Integration of Calcium and Chemical Looping Combustion using Composite CaO/CuO-Based Materials. Environ. Sci. Technol. 2011, 45, 10750–10756. [Google Scholar] [CrossRef]
- Li, Q.; Liang, J.; Long, D.T.; Cheng, W.L.; Dong, C.Q.; Zhang, J.J. Research on Chemical Materials with Characteristic on Chemical Looping Combustion of Co-Doped Fe2O3 Oxygen Carrier with CO. AMM 2014, 540, 30–34. [Google Scholar] [CrossRef]
- Chen, L.; Kong, L.; Bao, J.; Combs, M.; Nikolic, H.S.; Fan, Z.; Liu, K. Experimental evaluations of solid-fueled pressurized chemical looping combustion—The effects of pressure, solid fuel and iron-based oxygen carriers. Appl. Energy 2017, 195, 1012–1022. [Google Scholar] [CrossRef]
- Matzen, M.; Pinkerton, J.; Wang, X.; Demirel, Y. Use of natural ores as oxygen carriers in chemical looping combustion: A review. Int. J. Greenh. Gas Control 2017, 65, 1–14. [Google Scholar] [CrossRef]
- Ksepko, E. Perovskite Sr(Fe1-xCux)O3-δ materials for chemical looping combustion applications. Int. J. Hydrogen Energy 2018, 43, 9622–9634. [Google Scholar] [CrossRef]
- Budzianowski, W.M. Single solvents, solvent blends, and advanced solvent systems in CO2 capture by absorption: A review. Int. J. Glob. Warm. 2015, 7, 184–225. [Google Scholar] [CrossRef]
- NETL DOE. Selexol. netl.doe.gov. Available online: https://netl.doe.gov/research/coal/energy-systems/gasification/gasifipedia/selexol (accessed on 16 September 2024).
- Kohl, A.L.; Nielsen, R. Gas Purification, 5th ed.; Gulf Professional Publishing: Houston, TX, USA, 1997; ISBN 978-0-08-050720-0. [Google Scholar]
- Pellegrini, G.; Strube, R.; Manfrida, G. Comparative study of chemical absorbents in postcombustion CO2 capture. Energy 2010, 35, 851–857. [Google Scholar] [CrossRef]
- Wang, M.; Lawal, A.; Stephenson, P.; Sidders, J.; Ramshaw, C. Post-combustion CO2 capture with chemical absorption: A state-of-the-art review. Chem. Eng. Res. Des. 2011, 89, 1609–1624. [Google Scholar] [CrossRef]
- Asif, M.; Suleman, M.; Haq, I.; Jamal, S.A. Post-combustion CO2 capture with chemical absorption and hybrid system: Current status and challenges. Greenh. Gases 2018, 8, 998–1031. [Google Scholar] [CrossRef]
- Vaidya, P.D.; Kenig, E.Y. CO2-Alkanolamine Reaction Kinetics: A Review of Recent Studies. Chem. Eng. Technol. 2007, 30, 1467–1474. [Google Scholar] [CrossRef]
- Xiao, M.; Cui, D.; Liu, H.; Tontiwachwuthikul, P.; Liang, Z. A new model for correlation and prediction of equilibrium CO2 solubility in N-methyl-4-piperidinol solvent. AIChE J. 2017, 63, 3395–3403. [Google Scholar] [CrossRef]
- Lee, J.I.; Otto, F.D.; Mather, A.E. The solubility of H2 S and CO2 in aqueous monoethanolamine solutions. Can. J. Chem. Eng. 1974, 52, 803–805. [Google Scholar] [CrossRef]
- Lee, J.I.; Otto, F.D.; Mather, A.E. Solubility of carbon dioxide in aqueous diethanolamine solutions at high pressures. J. Chem. Eng. Data 1972, 17, 465–468. [Google Scholar] [CrossRef]
- Jou, F.Y.; Mather, A.E.; Otto, F.D. Solubility of hydrogen sulfide and carbon dioxide in aqueous methyldiethanolamine solutions. Ind. Eng. Chem. Proc. Des. Dev. 1982, 21, 539–544. [Google Scholar] [CrossRef]
- Miao, Y.; Wang, Y.; Ge, B.; He, Z.; Zhu, X.; Li, J.; Liu, S.; Yu, L. Mixed Diethanolamine and Polyethyleneimine with Enhanced CO2 Capture Capacity from Air. Adv. Sci. 2023, 10, 2207253. [Google Scholar] [CrossRef]
- Mota-Martinez, M.T.; Samdani, S.; Berrouk, A.S.; Kroon, M.C.; Peters, C.J. Effect of Additives on the CO2 Absorption in Aqueous MDEA Solutions. Ind. Eng. Chem. Res. 2014, 53, 20032–20035. [Google Scholar] [CrossRef]
- Bernhardsen, I.M.; Knuutila, H.K. A review of potential amine solvents for CO2 absorption process: Absorption capacity, cyclic capacity and pKa. Int. J. Greenh. Gas Control 2017, 61, 27–48. [Google Scholar] [CrossRef]
- Sartori, G.; Savage, D.W. Sterically hindered amines for carbon dioxide removal from gases. Ind. Eng. Chem. Fund. 1983, 22, 239–249. [Google Scholar] [CrossRef]
- Dibenedetto, A.; Aresta, M.; Fragale, C.; Narracci, M. Reaction of silylalkylmono- and silylalkyldi-amines with carbon dioxide: Evidence of formation of inter- and intra-molecular ammonium carbamates and their conversion into organic carbamates of industrial interest under carbon dioxide catalysis. Green Chem. 2002, 4, 439–443. [Google Scholar] [CrossRef]
- Yeh, J.T.; Pennline, H.W.; Resnik, K.P. Study of CO2 Absorption and Desorption in a Packed Column. Energy Fuels 2001, 15, 274–278. [Google Scholar] [CrossRef]
- Mimura, T.; Suda, T.; Iwaki, I.; Honda, A.; Kumazawa, H. Kinetics of Reaction Between Carbon Dioxide and Sterically Hindered Amines for Carbon Dioxide Recovery from Power Plant Flue Gases. Chem. Eng. Commun. 1998, 170, 245–260. [Google Scholar] [CrossRef]
- Hu, H.; Li, F.; Xia, Q.; Li, X.; Liao, L.; Fan, M. Research on influencing factors and mechanism of CO2 absorption by poly-amino-based ionic liquids. Int. J. Greenh. Gas Control 2014, 31, 33–40. [Google Scholar] [CrossRef]
- De Meyer, F.; Bignaud, C. The use of catalysis for faster CO2 absorption and energy-efficient solvent regeneration: An industry-focused critical review. Chem. Eng. J. 2022, 428, 131264. [Google Scholar] [CrossRef]
- Afari, D.B.; Coker, J.; Narku-Tetteh, J.; Idem, R. Comparative Kinetic Studies of Solid Absorber Catalyst (K/MgO) and Solid Desorber Catalyst (HZSM-5)-Aided CO2 Absorption and Desorption from Aqueous Solutions of MEA and Blended Solutions of BEA-AMP and MEA-MDEA. Ind. Eng. Chem. Res. 2018, 57, 15824–15839. [Google Scholar] [CrossRef]
- Shi, H.; Huang, M.; Huang, Y.; Cui, L.; Zheng, L.; Cui, M.; Jiang, L.; Ibrahim, H.; Tontiwachwuthikul, P. Eley–Rideal model of heterogeneous catalytic carbamate formation based on CO2–MEA absorptions with CaCO3, MgCO3 and BaCO3. R. Soc. Open Sci. 2019, 6, 190311. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, Y.; Yang, J.; Gao, H.; Huang, Y.; Luo, X.; Liang, Z.; Tontiwachwuthikul, P. Amine-based CO2 capture aided by acid-basic bifunctional catalyst: Advancement of amine regeneration using metal modified MCM-41. Chem. Eng. J. 2020, 383, 123077. [Google Scholar] [CrossRef]
- Gao, H.; Huang, Y.; Zhang, X.; Bairq, Z.A.S.; Huang, Y.; Tontiwachwuthikul, P.; Liang, Z. Catalytic performance and mechanism of SO42−/ZrO2/SBA-15 catalyst for CO2 desorption in CO2-loaded monoethanolamine solution. Appl. Energy 2020, 259, 114179. [Google Scholar] [CrossRef]
- Abanades, J.C.; Criado, Y.A.; Fernández, J.R. An air CO2 capture system based on the passive carbonation of large Ca(OH)2 structures. Sustain. Energy Fuels 2020, 4, 3409–3417. [Google Scholar] [CrossRef]
- Isa, F.; Zabiri, H.; Ng, N.K.S.; Shariff, A.M. CO2 removal via promoted potassium carbonate: A review on modeling and simulation techniques. Int. J. Greenh. Gas Control 2018, 76, 236–265. [Google Scholar] [CrossRef]
- Al-Hamed, K.H.M.; Dincer, I. A comparative review of potential ammonia-based carbon capture systems. J. Environ. Manag. 2021, 287, 112357. [Google Scholar] [CrossRef]
- Chehrazi, M.; Moghadas, B.K. A review on CO2 capture with chilled ammonia and CO2 utilization in urea plant. J. CO2 Util. 2022, 61, 102030. [Google Scholar] [CrossRef]
- Zhao, H.; Baker, G.A. Functionalized ionic liquids for CO2 capture under ambient pressure. Green Chem. Lett. Rev. 2023, 16, 2149280. [Google Scholar] [CrossRef]
- Foorginezhad, S.; Yu, G.; Ji, X. Reviewing and screening ionic liquids and deep eutectic solvents for effective CO2 capture. Front. Chem. 2022, 10, 951951. [Google Scholar] [CrossRef]
- Zhao, Z.; Gao, J.; Luo, M.; Liu, X.; Zhao, Y.; Fei, W. Molecular Simulation and Experimental Study on Low-Viscosity Ionic Liquids for High-Efficient Capturing of CO2. Energy Fuels 2022, 36, 1604–1613. [Google Scholar] [CrossRef]
- Ochedi, F.O.; Yu, J.; Yu, H.; Liu, Y.; Hussain, A. Carbon dioxide capture using liquid absorption methods: A review. Environ. Chem. Lett. 2021, 19, 77–109. [Google Scholar] [CrossRef]
- Kammerer, S.; Borho, I.; Jung, J.; Schmidt, M.S. Review: CO2 capturing methods of the last two decades. Int. J. Environ. Sci. Technol. 2023, 20, 8087–8104. [Google Scholar] [CrossRef]
- Li, F.; Zeng, S.; Bai, Y.; Dong, H.; Wang, H.; Ji, X.; Zhang, X. Efficient and Reversible Chemisorption of Carbon Dioxide with Dianionic-Functionalized Ionic Liquid-Based Solvents. Energy Fuels 2020, 34, 8526–8533. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, J.; Mumford, K.; Stevens, G.W.; Fei, W.; Wang, Y. Recent advances in carbon dioxide capture and utilization with amines and ionic liquids. Green Chem. Eng. 2020, 1, 16–32. [Google Scholar] [CrossRef]
- Yang, L.; Chen, J.; Ma, N.; Li, X.; Huang, Z. CO2 absorption enhancement of fluorinated ionic liquids on nonaqueous biphasic absorbents: Experimental and theoretical study. Carbon Capture Sci. Technol. 2023, 9, 100147. [Google Scholar] [CrossRef]
- Gu, Y.; Hou, Y.; Ren, S.; Sun, Y.; Wu, W. Hydrophobic Functional Deep Eutectic Solvents Used for Efficient and Reversible Capture of CO2. ACS Omega 2020, 5, 6809–6816. [Google Scholar] [CrossRef]
- He, X.; Gao, Y.; Shi, Y.; Zhang, X.; Liang, Z.; Zhang, R.; Song, X.; Lai, Q.; Adidharma, H.; Russell, A.G.; et al. [EMmim][NTf2]—A Novel Ionic Liquid (IL) in Catalytic CO2 Capture and ILs’ Applications. Adv. Sci. 2023, 10, 2205352. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.-Z.; Zhao, Y.-N.; He, L.-N. CO2 chemistry: Task-specific ionic liquids for CO2 capture/activation and subsequent conversion. RSC Adv. 2011, 1, 545. [Google Scholar] [CrossRef]
- Zhang, J.-B.; Peng, H.; Liu, Y.; Tao, D.-J.; Wu, P.; Fan, J.-P.; Huang, K. Highly Efficient CO2 Capture by Polyethylenimine Plus 1-Ethyl-3-Methylimidazolium Acetate Mixed Absorbents. ACS Sustain. Chem. Eng. 2019, 7, 9369–9377. [Google Scholar] [CrossRef]
- Aquino, A.S.; Bernard, F.L.; Vieira, M.O.; Borges, J.V.; Rojas, M.F.; Vecchia, F.D.; Ligabue, R.A.; Seferin, M.; Menezes, S.; Einloft, S. A New Approach to CO2 Capture and Conversion Using Imidazolium Based-Ionic Liquids as Sorbent and Catalyst. J. Braz. Chem. Soc. 2014, 25, 2251–2257. [Google Scholar] [CrossRef]
- Zulfiqar, S.; Sarwar, M.I.; Mecerreyes, D. Polymeric ionic liquids for CO2 capture and separation: Potential, progress and challenges. Polym. Chem. 2015, 6, 6435–6451. [Google Scholar] [CrossRef]
- Sadeghpour, M.; Yusoff, R.; Aroua, M.K. Polymeric ionic liquids (PILs) for CO2 capture. Rev. Chem. Eng. 2017, 33, 183–200. [Google Scholar] [CrossRef]
- Jiang, D.; He, Y.; Zhang, J.; Yin, J.; Ding, J.; Wang, S.; Li, H. Conjugate acid-base bi-functional polymeric ionic liquids (CAB-PILs) as efficient catalysts for CO2 capture and subsequent glycidol cycloaddition reaction. J. Mol. Liq. 2023, 375, 121284. [Google Scholar] [CrossRef]
- Zhang, Z.; Cai, J.; Chen, F.; Li, H.; Zhang, W.; Qi, W. Progress in enhancement of CO2 absorption by nanofluids: A mini review of mechanisms and current status. Renew. Energy 2018, 118, 527–535. [Google Scholar] [CrossRef]
- Devakki, B.; Thomas, S. Experimental Investigation on Absorption Performance of Nanofluids for CO2 Capture. Int. J. Air-Cond. Ref. 2020, 28, 2050017. [Google Scholar] [CrossRef]
- Lee, W.; Xu, R.; Kim, S.; Park, J.H.; Kang, Y.T. Nanofluid and nanoemulsion absorbents for the enhancement of CO2 absorption performance. J. Clean. Prod. 2021, 291, 125848. [Google Scholar] [CrossRef]
- Yu, W.; Wang, T.; Park, A.-H.A.; Fang, M. Review of liquid nano-absorbents for enhanced CO2 capture. Nanoscale 2019, 11, 17137–17156. [Google Scholar] [CrossRef]
- Chen, W.-H.; Chen, S.-M.; Hung, C.-I. Carbon dioxide capture by single droplet using Selexol, Rectisol and water as absorbents: A theoretical approach. Appl. Energy 2013, 111, 731–741. [Google Scholar] [CrossRef]
- Tsunatu, D.; Mohammed-Dabo, I.; Waziri, S. Technical Evaluation of Selexol-Based CO2 Capture Process for a Cement Plant. BJECC 2015, 5, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Hochgesand, G. Rectisol and Purisol. Ind. Eng. Chem. 1970, 62, 37–43. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, L.; Song, D. Conceptual design, optimization and thermodynamic analysis of a CO2 capture process based on Rectisol. Energy 2022, 244, 122566. [Google Scholar] [CrossRef]
- Schütz, M.; Daun, M.; Weinspach, P.-M.; Krumbeck, M.; Hein, K.R.G. Study on the CO2-recovery from an ICGCC-plant. Energy Convers. Manag. 1992, 33, 357–363. [Google Scholar] [CrossRef]
- MilliporeSigma|Life Science Products & Service Solutions. Available online: https://www.sigmaaldrich.com/US/en (accessed on 30 September 2024).
- Kearns, D.D.; Liu, H.; Consoli, C.; Technology Readiness And Costs Of CCS. Global CCS Institute. 2021. Available online: https://scienceforsustainability.org/w/images/b/bc/Technology-Readiness-and-Costs-for-CCS-2021-1.pdf (accessed on 21 February 2025).
- Karlov, S.P.; Kazenin, D.A.; Baranov, D.A.; Volkov, A.V.; Polyanin, D.A.; Vyaz’min, A.V. Interphase effects and macrokinetics of chemisorption in the absorption of CO2 by aqueous solutions of alkalis and amines. Russ. J. Phys. Chem. 2007, 81, 665–679. [Google Scholar] [CrossRef]
- Hu, G.; Smith, K.; Wu, Y.; Kentish, S.; Stevens, G. Recent Progress on the Performance of Different Rate Promoters in Potassium Carbonate Solvents for CO2 Capture. Energy Procedia 2017, 114, 2279–2286. [Google Scholar] [CrossRef]
- Hu, G.; Nicholas, N.J.; Smith, K.H.; Mumford, K.A.; Kentish, S.E.; Stevens, G.W. Carbon dioxide absorption into promoted potassium carbonate solutions: A review. Int. J. Greenh. Gas Control 2016, 53, 28–40. [Google Scholar] [CrossRef]
- Borhani, T.N.G.; Azarpour, A.; Akbari, V.; Wan Alwi, S.R.; Manan, Z.A. CO2 capture with potassium carbonate solutions: A state-of-the-art review. Int. J. Greenh. Gas Control 2015, 41, 142–162. [Google Scholar] [CrossRef]
- Li, L.; Chen, X.; Chen, Z.; Gao, R.; Yu, H.; Yuan, T.; Liu, Z.; Maeder, M. Heterogeneous catalysts for the hydrogenation of amine/alkali hydroxide solvent captured CO2 to formate: A review. Greenh. Gases 2021, 11, 807–823. [Google Scholar] [CrossRef]
- Fu, L.; Ren, Z.; Si, W.; Ma, Q.; Huang, W.; Liao, K.; Huang, Z.; Wang, Y.; Li, J.; Xu, P. Research progress on CO2 capture and utilization technology. J. CO2 Util. 2022, 66, 102260. [Google Scholar] [CrossRef]
- Du, J.; Yang, W.; Xu, L.; Bei, L.; Lei, S.; Li, W.; Liu, H.; Wang, B.; Sun, L. Review on post-combustion CO2 capture by amine blended solvents and aqueous ammonia. Chem. Eng. J. 2024, 488, 150954. [Google Scholar] [CrossRef]
- Akeeb, O.; Wang, L.; Xie, W.; Davis, R.; Alkasrawi, M.; Toan, S. Post-combustion CO2 capture via a variety of temperature ranges and material adsorption process: A review. J. Environ. Manag. 2022, 313, 115026. [Google Scholar] [CrossRef]
- Samanta, A.; Zhao, A.; Shimizu, G.K.H.; Sarkar, P.; Gupta, R. Post-Combustion CO2 Capture Using Solid Sorbents: A Review. Ind. Eng. Chem. Res. 2012, 51, 1438–1463. [Google Scholar] [CrossRef]
- Lu, C.; Bai, H.; Wu, B.; Su, F.; Hwang, J.F. Comparative Study of CO2 Capture by Carbon Nanotubes, Activated Carbons, and Zeolites. Energy Fuels 2008, 22, 3050–3056. [Google Scholar] [CrossRef]
- Nie, L.; Mu, Y.; Jin, J.; Chen, J.; Mi, J. Recent developments and consideration issues in solid adsorbents for CO2 capture from flue gas. Chin. J. Chem. Eng. 2018, 26, 2303–2317. [Google Scholar] [CrossRef]
- Wei, J.W.; Zhao, S.S. Capture of Carbon Dioxide by Adsorption—A Review. AMR 2012, 538–541, 2240–2245. [Google Scholar] [CrossRef]
- Diyuk, V.E.; Zaderko, A.N.; Grischenko, L.M.; Tsapyuk, G.G.; Vakaliuk, A.V.; Lisnyak, V.V.; Mariychuk, R. CO2 adsorption on pristine, oxidized, and diethylamine-functionalized activated carbon sorbents. E3S Web Conf. 2020, 154, 07001. [Google Scholar] [CrossRef]
- Maniarasu, R.; Rathore, S.K.; Murugan, S. Potential of using biomass based activated carbon for carbon dioxide capture. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1130, 012022. [Google Scholar] [CrossRef]
- Khalili, S.; Khoshandam, B.; Jahanshahi, M. Synthesis of activated carbon/polyaniline nanocomposites for enhanced CO2 adsorption. RSC Adv. 2016, 6, 35692–35704. [Google Scholar] [CrossRef]
- Bhatti, A.H.; Waris, M.; Kazmi, W.W.; Bhatti, U.H.; Min, G.H.; Park, B.C.; Kweon, S.; Baek, I.H.; Nam, S.C. Metal impregnated activated carbon as cost-effective and scalable catalysts for amine-based CO2 capture. J. Environ. Chem. Eng. 2023, 11, 109231. [Google Scholar] [CrossRef]
- Bhatti, A.H.; Waris, M.; Kazmi, W.W.; Kang, K.-H.; Bhatti, U.H. Acid-treated activated carbon as simple and inexpensive catalyst to accelerate CO2 desorption from aqueous amine solution. Carbon Capture Sci. Technol. 2023, 8, 100131. [Google Scholar] [CrossRef]
- Malini, K.; Selvakumar, D.; Kumar, N.S. Activated carbon from biomass: Preparation, factors improving basicity and surface properties for enhanced CO2 capture capacity—A review. J. CO2 Util. 2023, 67, 102318. [Google Scholar] [CrossRef]
- Kumar, S.; Srivastava, R.; Koh, J. Utilization of zeolites as CO2 capturing agents: Advances and future perspectives. J. CO2 Util. 2020, 41, 101251. [Google Scholar] [CrossRef]
- Rahmah, W.; Kadja, G.T.M.; Mahyuddin, M.H.; Saputro, A.G.; Dipojono, H.K.; Wenten, I.G. Small-pore zeolite and zeotype membranes for CO2 capture and sequestration—A review. J. Environ. Chem. Eng. 2022, 10, 108707. [Google Scholar] [CrossRef]
- Cecilia, J.A.; Vilarrasa-García, E.; Morales-Ospino, R.; Finocchio, E.; Busca, G.; Sapag, K.; Villarroel-Rocha, J.; Bastos-Neto, M.; Azevedo, D.C.S.; Rodríguez-Castellón, E. Kaolinite-based zeolites synthesis and their application in CO2 capture processes. Fuel 2022, 320, 123953. [Google Scholar] [CrossRef]
- Dabbawala, A.A.; Ismail, I.; Vaithilingam, B.V.; Polychronopoulou, K.; Singaravel, G.; Morin, S.; Berthod, M.; Al Wahedi, Y. Synthesis of hierarchical porous Zeolite-Y for enhanced CO2 capture. Microporous Mesoporous Mater. 2020, 303, 110261. [Google Scholar] [CrossRef]
- Zhang, C.; Qin, X.; Xue, Z.; Shi, H.; Meng, X.; Feng, B.; Wang, X.; Yang, N. Water enhanced methanol decomposition for simultaneous heat recovery and ready-to-use synthesis gas production over CO2 capture enhanced Ni/zeolite 4A catalyst. Int. J. Hydrogen Energy 2023, 48, 21701–21711. [Google Scholar] [CrossRef]
- Alivand, M.S.; Mazaheri, O.; Wu, Y.; Stevens, G.W.; Scholes, C.A.; Mumford, K.A. Catalytic Solvent Regeneration for Energy-Efficient CO2 Capture. ACS Sustain. Chem. Eng. 2020, 8, 18755–18788. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, Y.; Gao, H.; Luo, X.; Liang, Z.; Tontiwachwuthikul, P. Zeolite catalyst-aided tri-solvent blend amine regeneration: An alternative pathway to reduce the energy consumption in amine-based CO2 capture process. Appl. Energy 2019, 240, 827–841. [Google Scholar] [CrossRef]
- Ding, M.; Flaig, R.W.; Jiang, H.-L.; Yaghi, O.M. Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chem. Soc. Rev. 2019, 48, 2783–2828. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Wang, Y.; Shah, B.B.; Zhao, D. CO2 Capture in Metal–Organic Framework Adsorbents: An Engineering Perspective. Adv. Sustain. Syst. 2019, 3, 1800080. [Google Scholar] [CrossRef]
- Liu, J.; Thallapally, P.K.; McGrail, B.P.; Brown, D.R.; Liu, J. Progress in adsorption-based CO2 capture by metal–organic frameworks. Chem. Soc. Rev. 2012, 41, 2308–2322. [Google Scholar] [CrossRef]
- Trickett, C.A.; Helal, A.; Al-Maythalony, B.A.; Yamani, Z.H.; Cordova, K.E.; Yaghi, O.M. The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion. Nat. Rev. Mater. 2017, 2, 17045. [Google Scholar] [CrossRef]
- Wei, K.; Xing, L.; Li, Y.; Xu, T.; Li, Q.; Wang, L. Heteropolyacid modified Cerium-based MOFs catalyst for amine solution regeneration in CO2 capture. Sep. Purif. Technol. 2022, 293, 121144. [Google Scholar] [CrossRef]
- Tyagi, P.; Singh, D.; Malik, N.; Kumar, S.; Singh Malik, R. Metal catalyst for CO2 capture and conversion into cyclic carbonate: Progress and challenges. Mater. Today 2023, 65, 133–165. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, H.; Fei, H. Unusual Missing Linkers in an Organosulfonate-Based Primitive–Cubic (pcu)-Type Metal–Organic Framework for CO2 Capture and Conversion under Ambient Conditions. ACS Catal. 2018, 8, 2519–2525. [Google Scholar] [CrossRef]
- Keller, L.; Ohs, B.; Lenhart, J.; Abduly, L.; Blanke, P.; Wessling, M. High capacity polyethylenimine impregnated microtubes made of carbon nanotubes for CO2 capture. Carbon 2018, 126, 338–345. [Google Scholar] [CrossRef]
- Irani, M.; Jacobson, A.T.; Gasem, K.A.M.; Fan, M. Modified carbon nanotubes/tetraethylenepentamine for CO2 capture. Fuel 2017, 206, 10–18. [Google Scholar] [CrossRef]
- Ngoy, J.M.; Wagner, N.; Riboldi, L.; Bolland, O. A CO2 Capture Technology Using Multi-walled Carbon Nanotubes with Polyaspartamide Surfactant. Energy Procedia 2014, 63, 2230–2248. [Google Scholar] [CrossRef]
- Dewangan, N.; Hui, W.M.; Jayaprakash, S.; Bawah, A.-R.; Poerjoto, A.J.; Jie, T.; Jangam, A.; Hidajat, K.; Kawi, S. Recent progress on layered double hydroxide (LDH) derived metal-based catalysts for CO2 conversion to valuable chemicals. Catal. Today 2020, 356, 490–513. [Google Scholar] [CrossRef]
- Li, C.; Wei, M.; Evans, D.G.; Duan, X. Layered Double Hydroxide-based Nanomaterials as Highly Efficient Catalysts and Adsorbents. Small 2014, 10, 4469–4486. [Google Scholar] [CrossRef]
- García, S.; Gil, M.V.; Martín, C.F.; Pis, J.J.; Rubiera, F.; Pevida, C. Breakthrough adsorption study of a commercial activated carbon for pre-combustion CO2 capture. Chem. Eng. J. 2011, 171, 549–556. [Google Scholar] [CrossRef]
- Lahuri, A.H.; Ling, M.N.K.; Rahim, A.A.; Nordin, N. Adsorption Kinetics for CO2 Capture using Cerium Oxide Impregnated on Activated carbon. Acta Chim. Slov. 2020, 67, 570–580. [Google Scholar] [CrossRef]
- Zhang, C.; Sun, S.; He, S.; Wu, C. Direct air capture of CO2 by KOH-activated bamboo biochar. J. Energy Inst. 2022, 105, 399–405. [Google Scholar] [CrossRef]
- Kulkarni, A.R.; Zhao, Z.-J.; Siahrostami, S.; Nørskov, J.K.; Studt, F. Cation-exchanged zeolites for the selective oxidation of methane to methanol. Catal. Sci. Technol. 2018, 8, 114–123. [Google Scholar] [CrossRef]
- Narsimhan, K.; Iyoki, K.; Dinh, K.; Román-Leshkov, Y. Catalytic Oxidation of Methane into Methanol over Copper-Exchanged Zeolites with Oxygen at Low Temperature. ACS Cent. Sci. 2016, 2, 424–429. [Google Scholar] [CrossRef]
- Stuckert, A.N.; Yang, R.T. CO2 Capture from the Atmosphere and Simultaneous Concentration Using Zeolites and Amine-Grafted SBA-15. Environ. Sci. Technol. 2011, 45, 10257–10264. [Google Scholar] [CrossRef]
- Ram Reddy, M.K.; Xu, Z.P.; Lu, G.Q.; Diniz Da Costa, J.C. Layered Double Hydroxides for CO2 Capture: Structure Evolution and Regeneration. Ind. Eng. Chem. Res. 2006, 45, 7504–7509. [Google Scholar] [CrossRef]
- Veerabhadrappa, M.G.; Maroto-Valer, M.M.; Chen, Y.; Garcia, S. Layered Double Hydroxides-Based Mixed Metal Oxides: Development of Novel Structured Sorbents for CO2 Capture Applications. ACS Appl. Mater. Interfaces 2021, 13, 11805–11813. [Google Scholar] [CrossRef]
- Santamaría, L.; Korili, S.A.; Gil, A. Layered double hydroxides for CO2 adsorption at moderate temperatures: Synthesis and amelioration strategies. Chem. Eng. J. 2023, 455, 140551. [Google Scholar] [CrossRef]
- Menmuir, D.; Florence, S.; Taylor, K. Next Generation Carbon Capture Technology: Technology Review Work Package 2. 2022. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1079540/aecom-next-gen-carbon-capture-technology-technology-review-annex-1.pdf (accessed on 21 February 2025).
- Bukar, A.M.; Asif, M. Technology readiness level assessment of carbon capture and storage technologies. Renew. Sustain. Energy Rev. 2024, 200, 114578. [Google Scholar] [CrossRef]
- Freguia, S.; Rochelle, G.T. Modeling of CO2 capture by aqueous monoethanolamine. AIChE J. 2003, 49, 1676–1686. [Google Scholar] [CrossRef]
- Closmann, F.; Nguyen, T.; Rochelle, G.T. MDEA/Piperazine as a solvent for CO2 capture. Energy Procedia 2009, 1, 1351–1357. [Google Scholar] [CrossRef]
- Gomes, J.; Santos, S.; Bordado, J. Choosing amine-based absorbents for CO2 capture. Environ. Technol. 2015, 36, 19–25. [Google Scholar] [CrossRef]
- El Hadri, N.; Quang, D.V.; Goetheer, E.L.V.; Abu Zahra, M.R.M. Aqueous amine solution characterization for post-combustion CO2 capture process. Appl. Energy 2017, 185, 1433–1449. [Google Scholar] [CrossRef]
- Jayakumar, A.; Gomez, A.; Mahinpey, N. Post-combustion CO2 capture using solid K2CO3: Discovering the carbonation reaction mechanism. Appl. Energy 2016, 179, 531–543. [Google Scholar] [CrossRef]
- Helmi, M.; Moazami, F.; Ghaemi, A.; Hemmati, A. Synthesis, characterization and performance evaluation of NaOH@Chitosan-Fe3O4 as an adsorbent for CO2 capture. Fuel 2023, 338, 127300. [Google Scholar] [CrossRef]
- Budzianowski, W.M. Mitigating NH3 Vaporization from an Aqueous Ammonia Process for CO2 Capture. Int. J. Chem. React. Eng. 2011, 9. [Google Scholar] [CrossRef]
- Zeng, S.; Zhang, X.; Bai, L.; Zhang, X.; Wang, H.; Wang, J.; Bao, D.; Li, M.; Liu, X.; Zhang, S. Ionic-Liquid-Based CO2 Capture Systems: Structure, Interaction and Process. Chem. Rev. 2017, 117, 9625–9673. [Google Scholar] [CrossRef]
- Siriwardane, R.V.; Shen, M.-S.; Fisher, E.P.; Poston, J.A. Adsorption of CO2 on Molecular Sieves and Activated Carbon. Energy Fuels 2001, 15, 279–284. [Google Scholar] [CrossRef]
- Choi, S.; Drese, J.H.; Jones, C.W. Adsorbent Materials for Carbon Dioxide Capture from Large Anthropogenic Point Sources. ChemSusChem 2009, 2, 796–854. [Google Scholar] [CrossRef]
- Li, J.-R.; Kuppler, R.J.; Zhou, H.-C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1477. [Google Scholar] [CrossRef]
Material | Advantages | Disadvantages | Applications | Refs |
---|---|---|---|---|
Amine-based solvents | High CO2 absorption capacity, fast kinetics, well-established technology | Corrosive, energy-intensive regeneration, degrades over time | Post-combustion capture in power plants, industrial emissions | [70,71,73,90,111] |
Potassium carbonate (K2CO3) | Low regeneration energy, less toxic, less costly compared to amines | Lower absorption capacity compared to amines, requires high temperatures | Pre-combustion capture in integrated gasification combined cycle (IGCC) | [81,112,113,114] |
Hydroxides (e.g., NaOH, Ca(OH)2 solutions) | High CO2 absorption capacity, relatively low cost | Corrosive, requires careful handling, disposal challenges | Industrial emissions, flue gas treatment | [115,116] |
Ammonia (NH3) solution | High CO2 absorption capacity, can be regenerated using waste heat | Toxic, requires careful handling, ammonia slip issues | Pre-combustion capture in hydrogen production | [82,83,117] |
Ionic liquids (ILs) | Low volatility, chemical stability, tunable properties | High cost, limited scalability, | Post-combustion and pre-combustion capture in power plants, industrial emissions | [34,74,84,90,91] |
Polymeric ionic liquids | High thermal stability, low vapor pressure, tunable properties | High cost, more research required | Can be used as sorbents or in supported liquid membranes | [97,98,99] |
Nanofluids | Increased surface area for absorption, enhanced heat transfer properties | Stability issues for nanoparticles (nanoparticles agglomeration), further research required | CO2 capture in rotating packed bed systems | [100,101] |
Commercial solvents (Selexol, rectisol, purisol) | Efficient for industrial emissions, high CO2 absorption capacity | High energy requirement for regeneration, high cost | Industrial emissions, flue gas treatment | [104,105,106,107,108] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rana, A.; Andino, J.M. A Review of Materials for Carbon Dioxide Capture. Catalysts 2025, 15, 273. https://doi.org/10.3390/catal15030273
Rana A, Andino JM. A Review of Materials for Carbon Dioxide Capture. Catalysts. 2025; 15(3):273. https://doi.org/10.3390/catal15030273
Chicago/Turabian StyleRana, Ashish, and Jean M. Andino. 2025. "A Review of Materials for Carbon Dioxide Capture" Catalysts 15, no. 3: 273. https://doi.org/10.3390/catal15030273
APA StyleRana, A., & Andino, J. M. (2025). A Review of Materials for Carbon Dioxide Capture. Catalysts, 15(3), 273. https://doi.org/10.3390/catal15030273