Previous Issue
Volume 15, April
 
 

Catalysts, Volume 15, Issue 5 (May 2025) – 12 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
3 pages, 126 KiB  
Editorial
Exclusive Review Papers in Catalysis in Organic and Polymer Chemistry
by Victorio Cadierno and Raffaella Mancuso
Catalysts 2025, 15(5), 417; https://doi.org/10.3390/catal15050417 - 23 Apr 2025
Abstract
In advanced organic chemistry and polymer chemistry, catalysts are recognized as fundamental to making reactions selective, efficient, and achievable in a single step [...] Full article
(This article belongs to the Special Issue Exclusive Review Papers in Catalysis in Organic and Polymer Chemistry)
23 pages, 21660 KiB  
Article
Cu1Ni2/Al2O3 Catalyst from Its Hydrotalcite Precusor with Highly Active Sites for Efficient Hydrogenation of Levulinic Acid Toward 2-Methyltetrahydrofuran
by Jie Qin, Guohong Chen, Kaiqi Zheng, Jiajun Wu, Fanan Wang, Xueping Liu and Rengui Weng
Catalysts 2025, 15(5), 416; https://doi.org/10.3390/catal15050416 - 23 Apr 2025
Abstract
2-Methyltetrahydrofuran (2-MTHF), a hydrogenated derivative of levulinic acid (LA), is a biomass-derived platform compound with diverse and significant applications as a biofuel, gasoline additive, green solvent, and pharmaceutical synthesis intermediate. This study investigates the preparation of a Cu1Ni2/Al2 [...] Read more.
2-Methyltetrahydrofuran (2-MTHF), a hydrogenated derivative of levulinic acid (LA), is a biomass-derived platform compound with diverse and significant applications as a biofuel, gasoline additive, green solvent, and pharmaceutical synthesis intermediate. This study investigates the preparation of a Cu1Ni2/Al2O3 catalyst through the calcination–reduction of CuNiAl hydrotalcite as a precursor, which was subsequently utilized in the hydrogenation of LA to produce 2-MTHF. The calcination–reduction process applied to CuNiAl hydrotalcite results in a lattice confinement effect. This method not only disperses the active metal sites but also alters the bonding patterns of the active metals, thereby enhancing the activity and stability of the Cu1Ni2/Al2O3 catalyst. The results indicate that complete conversion of LA and a 2-MTHF yield of 87.6% can be achieved under optimal conditions of 190 °C, 5 MPa hydrogen, and a reaction time of 5 h, demonstrating an efficient one-step conversion process. Additionally, the catalyst's recyclability was assessed through multiple reuse tests, with a loss of activity of only 9.2% after six cycle experiments, suggesting its feasibility and reliability for industrial applications. Full article
(This article belongs to the Section Catalytic Materials)
21 pages, 3335 KiB  
Review
Progress in Catalytic Oxidation of Noble Metal-Based Carbon Monoxide: Oxidation Mechanism, Sulfur Resistance, and Modification
by Yali Tong, Shuo Wang and Tao Yue
Catalysts 2025, 15(5), 415; https://doi.org/10.3390/catal15050415 - 23 Apr 2025
Abstract
Carbon monoxide (CO) is an important air pollutant generated from the incomplete combustion of fossil fuels, particularly in industrial processes such as iron and steel smelting, power generation, and waste incineration, posing environmental challenges that demand effective removal strategies. Recent advances in noble [...] Read more.
Carbon monoxide (CO) is an important air pollutant generated from the incomplete combustion of fossil fuels, particularly in industrial processes such as iron and steel smelting, power generation, and waste incineration, posing environmental challenges that demand effective removal strategies. Recent advances in noble metal catalysts for catalytic oxidation of CO, particularly Pt-, Pd-, and Rh-based systems, have been extensively studied. However, there is still a lack of systematic review on noble metal-based catalytic oxidation of CO, especially regarding the effects of different active components of the catalysts and the mechanism of sulfur resistance. Based on extensive research and literature findings, this study comprehensively concluded the advances in noble metal-based catalytic oxidation of CO. The effects of preparation methods, supports, and physicochemical properties on the catalytic performance of CO were explored. In addition, the mechanism of the catalytic oxidation of CO were further summarized. Furthermore, given the prevalence of SO2 in the flue gas, the mechanism of sulfur poisoning deactivation of catalysts and the anti-sulfur strategies were further reviewed. Exploration of new supporting materials, catalyst surface reconstruction, doping modification, and other catalyst design strategies demonstrate potential in improving sulfur resistance and catalytic efficiency. This study provides valuable insights into the design and optimization of noble metal-based catalysts for the catalytic oxidation of CO. Full article
(This article belongs to the Section Environmental Catalysis)
Show Figures

Graphical abstract

23 pages, 4612 KiB  
Review
Advancements in Chemical Recycling Catalysts for Plastic Waste in South Korea
by Taemin Jang, Ik Shin, Jungwook Choi, Sohyeon Lee, Hyein Hwang, Minchang Kim and Byung Hyo Kim
Catalysts 2025, 15(5), 414; https://doi.org/10.3390/catal15050414 - 23 Apr 2025
Abstract
Plastics are widely used in various industries because of their light weight, low cost, and high durability. The mass production and consumption of plastics have led to a rapid increase in plastic waste problem, necessitating the development of effective recycling technologies. The chemical [...] Read more.
Plastics are widely used in various industries because of their light weight, low cost, and high durability. The mass production and consumption of plastics have led to a rapid increase in plastic waste problem, necessitating the development of effective recycling technologies. The chemical recycling of plastics has emerged as a promising strategy to address these challenges, enabling the conversion of plastic waste into high-purity monomers or oils, even from contaminated or mixed plastic feedstock. This review focuses on the development of catalysts for the chemical recycling of plastics in South Korea, which has one of the highest per capita plastic consumption rates and both academic and industrial efforts in this field. We examine catalytic depolymerization processes for recovering monomers from polymers, such as polyethylene terephthalate (PET) and polycarbonate (PC), as well as catalytic pyrolysis processes for polyolefins, including polyethylene (PE), polypropylene (PP), and polystyrene (PS). By summarizing recent academic research and industrial initiatives in South Korea, this review highlights the strategic role of the country in advancing chemical recycling. Moreover, this review proposes future research directions including the development of reusable catalysts, energy-efficient recycling process, and strategies for recycling mixed or contaminated plastic waste. Full article
(This article belongs to the Special Issue State of the Art of Catalytical Technology in Korea, 2nd Edition)
Show Figures

Figure 1

20 pages, 6664 KiB  
Article
Constructing Pt/Hierarchical HY Bifunctional Catalysts for Selective Hydroisomerization of Phenanthrene to Alkyl-Adamantanes
by Nan Jiang, Xiaopo Niu, Danni Liu, Kaige Zhang, Zhen Guo, Yue Qin, Wenli Zhao, Xiangwen Zhang and Qingfa Wang
Catalysts 2025, 15(5), 413; https://doi.org/10.3390/catal15050413 - 23 Apr 2025
Abstract
Designing bifunctional catalysts for efficient hydroisomerization of phenanthrene to alkyl-adamantane is a great challenge for producing high-density fuels. Herein, a bifunctional Pt catalyst was fabricated by developing hierarchical H-MSY-T zeolites with an NOA-co strategy. The influence of different mesopore template agents on the [...] Read more.
Designing bifunctional catalysts for efficient hydroisomerization of phenanthrene to alkyl-adamantane is a great challenge for producing high-density fuels. Herein, a bifunctional Pt catalyst was fabricated by developing hierarchical H-MSY-T zeolites with an NOA-co strategy. The influence of different mesopore template agents on the hierarchical structure of H-MSY-T zeolite was investigated. Effective regulation of pore structure and acid distribution of zeolites was achieved by adjusting the templating agents. The block copolymer P123 promoted the formation of mesoporous structures via self-assembly with a large mesopore centered at 8 nm. Large mesoporous structure and suitable distribution of Bronsted acid boosted the hydroisomerization of phenanthrene. The highest alkyl-adamantane yield of 45.9 wt% was achieved on the Pt/MSY-P1 catalyst and a reaction network of hydroisomerization was proposed. This work provides guidance to design highly selective bifunctional catalysts for the one-step hydroconversion of tricyclic aromatic hydrocarbons into high-density fuels. Full article
(This article belongs to the Special Issue Advanced Catalysis for Energy and Environmental Applications)
Show Figures

Figure 1

17 pages, 5147 KiB  
Article
Response Surface Optimization of Biodiesel Production via Esterification Reaction of Methanol and Oleic Acid Catalyzed by a Brönsted–Lewis Catalyst PW/UiO/CNTs-OH
by Xuyao Xing, Qiong Wu, Li Zhang and Qing Shu
Catalysts 2025, 15(5), 412; https://doi.org/10.3390/catal15050412 - 23 Apr 2025
Abstract
In this study, a Brönsted–Lewis bifunctional acidic catalyst PW/UiO/CNTs-OH was synthesized via the hydrothermal method. The parameters for the esterification reaction of oleic acid with methanol catalyzed by PW/UiO/CNTs-OH were optimized using central composite design-response surface methodology (CCD-RSM). A biodiesel yield of 92.9% [...] Read more.
In this study, a Brönsted–Lewis bifunctional acidic catalyst PW/UiO/CNTs-OH was synthesized via the hydrothermal method. The parameters for the esterification reaction of oleic acid with methanol catalyzed by PW/UiO/CNTs-OH were optimized using central composite design-response surface methodology (CCD-RSM). A biodiesel yield of 92.9% was achieved under the optimized conditions, retaining 82.3% biodiesel yield after four catalytic cycles. The enhanced catalytic performance of PW/UiO/CNTs-OH can be attributed as follows: the [Zr6O4(OH)4]12+ anchored on the surface of multi-walled carbon nanotubes (MWCNTs) can serve as nucleation sites for UiO-66, not only encapsulating H3[P(W3O10)4] (HPW) but also reversing the quadrupole moment of MWCNTs to generate Lewis acid sites. In addition, introduction of HPW during synthesis of UiO-66 decreases the solution pH, inducing the protonation of p-phthalic acid (PTA) to disrupt the coordination with the [Zr6O4(OH)4] cluster, thereby creating an unsaturated Zr4+ site with electron pair-accepting capability, which generates Lewis acid sites. EIS analysis revealed that PW/UiO/CNTs-OH has higher electron migration efficiency than UiO-66 and PW/UiO. Furthermore, NH3-TPD and Py-IR analyses showed that PW/UiO/CNTs-OH possessed high densities of Lewis acidic sites of 83.69 μmol/g and Brönsted acidic sites of 9.98 μmol/g. Full article
(This article belongs to the Section Biomass Catalysis)
Show Figures

Graphical abstract

18 pages, 2996 KiB  
Article
Bacterial Inactivation and Organic Pollutant Degradation in Slaughterhouse Wastewater Using Ag2O/Ba/TiO2 Nanocomposite
by Habib Ullah, Izhar Elahi, Sahar Saleem, Rab Nawaz, Shafi Ullah, Samia Qadeer, Bilal Kabeer, Muzammil Anjum, Yi Liu, Asfandyar Shahab, Abubakr M. Idris and Zepeng Rao
Catalysts 2025, 15(5), 411; https://doi.org/10.3390/catal15050411 - 23 Apr 2025
Abstract
Slaughterhouses generate a huge amount of highly polluted wastewater; if left untreated, this effluent could seriously threaten the environment and human health. In the present study, Ag2O/Ba/TiO2 nanocomposite was synthesized using the precipitation method, and its efficacy was investigated for [...] Read more.
Slaughterhouses generate a huge amount of highly polluted wastewater; if left untreated, this effluent could seriously threaten the environment and human health. In the present study, Ag2O/Ba/TiO2 nanocomposite was synthesized using the precipitation method, and its efficacy was investigated for the remediation of real slaughterhouse wastewater (SWW) under visible light. Its performance was assessed for the inactivation of bacterial strains identified in SWW and for the degradation of total organic solids, volatile solids, fixed solids, and heavy metals. The results indicated an excellent photocatalytic performance of the synthesized Ag2O/Ba/TiO2 nanocomposites, confirmed by 87.3% volatile solids, 30% total organic solids, and 40% fixed solids removal from SWW. The zone of inhibition runs from 4 to 9 mm, and the nanocomposites have demonstrated outstanding bacterial inactivation activity in this range. It has been shown that the synthetic Ag2O/Ba/TiO2 nanocomposites can function as an effective photocatalyst for the remediation of SWW and other waste products produced by various industries worldwide. Full article
Show Figures

Figure 1

17 pages, 3550 KiB  
Article
Advanced Degradation of Aniline in Secondary Effluent from a Chemical Industry Park by Cobalt Ferrite/Peracetic Acid System
by Jinxiang Gao, Peishan Yang, Mingxin Zhu, Hua Zhou and Shunlong Pan
Catalysts 2025, 15(5), 410; https://doi.org/10.3390/catal15050410 - 23 Apr 2025
Abstract
The residual emerging pollutants in secondary effluent from a chemical industry park contain potential risks for natural waters. Herein, the cobalt ferrite/peracetic acid system was employed to destroy aniline, a typical emerging pollutant, with a reaction rate of 0.0147 min−1 at pH [...] Read more.
The residual emerging pollutants in secondary effluent from a chemical industry park contain potential risks for natural waters. Herein, the cobalt ferrite/peracetic acid system was employed to destroy aniline, a typical emerging pollutant, with a reaction rate of 0.0147 min−1 at pH 7.0. Singlet oxygen (1O2) served as the predominant reactive species for aniline degradation, with superoxide radicals (O2) and organic radicals (R-O) acting in secondary roles. The valence transition between Co(II) and Co(III) on the CoFe2O4 surface played a determining role in the reaction progression. The presence of anions and humic acids with low concentrations had minimal impact on aniline removal. Additionally, the CoFe2O4 catalyst demonstrated excellent recyclability, maintaining a pollutant removal rate above 93% over five consecutive cycles. Lastly, the CoFe2O4/PAA system demonstrates effective treatment of typical pollutants, including phenolic compounds, pesticides, antibiotics, and dyes, achieving removal rates of 77.48% to 99.99%. Furthermore, it significantly enhances water quality in the treatment of actual secondary effluent, offering a novel theoretical foundation and practical insights for applying this catalytic system in wastewater treatment. Full article
Show Figures

Graphical abstract

22 pages, 4566 KiB  
Article
Evaluation of Vanadium Oxide Nanocatalysts over Graphene for Propylene Production Through Oxidative Propane Dehydrogenations
by Robabeh Mousavi, Armin Fazlinezhad, Abdollah Fallah Shojaei, Alimorad Rashidi and Moslem Fattahi
Catalysts 2025, 15(5), 409; https://doi.org/10.3390/catal15050409 - 23 Apr 2025
Abstract
This study reports an efficient and low-cost hydrothermal method for synthesizing vanadium oxide/graphene nanocatalysts. Field-emission scanning electron microscopy (FESEM) revealed the formation of nanostructured catalysts with consistent and directional shapes, as confirmed by X-ray diffraction (XRD). Fourier transform infrared (FTIR) spectroscopy indicated the [...] Read more.
This study reports an efficient and low-cost hydrothermal method for synthesizing vanadium oxide/graphene nanocatalysts. Field-emission scanning electron microscopy (FESEM) revealed the formation of nanostructured catalysts with consistent and directional shapes, as confirmed by X-ray diffraction (XRD). Fourier transform infrared (FTIR) spectroscopy indicated the presence of V2O5 and graphene, highlighting their bonds and structures. Thermogravimetric analysis (TGA) identified three stages of weight loss in the nanocatalysts, corresponding to water molecule evaporation, decomposition of residual organics, and the formation of yellow vanadium pentoxide particles due to the oxidation of vanadium V4+. Gas chromatography analysis from 450 °C to 600 °C showed that ethylene selectivity increased with temperature, while propylene selectivity showed the opposite trend. The effectiveness of these nanocatalysts was assessed in the oxidative dehydrogenation of propane using temperature programmed reduction. The approach of graphene-based vanadium oxide nanostructures will open up a new insight into the fabrication of high-performance catalysts. Full article
(This article belongs to the Section Catalytic Reaction Engineering)
Show Figures

Graphical abstract

28 pages, 10138 KiB  
Review
Carbon Nitride and Its Hybrid Photocatalysts for CO2 Reduction C1 Product Selectivity
by Zhi Zhu, Wei Wang, Hongping Li, Jun Zhao and Xu Tang
Catalysts 2025, 15(5), 408; https://doi.org/10.3390/catal15050408 - 22 Apr 2025
Abstract
The transformation of abundant and cost-effective CO2 molecules into valuable chemical feedstocks or fuels represents an appealing yet challenging research objective. Artificial photosynthesis offers a promising pathway for CO2 reduction reactions (CO2RR) under mild and environmentally friendly conditions. Graphitic [...] Read more.
The transformation of abundant and cost-effective CO2 molecules into valuable chemical feedstocks or fuels represents an appealing yet challenging research objective. Artificial photosynthesis offers a promising pathway for CO2 reduction reactions (CO2RR) under mild and environmentally friendly conditions. Graphitic carbon nitride (g-C3N4) has attracted significant attention for its potential to enhance the efficiency and selectivity of CO2RR through synthesis and modification strategies. This review explores recent advancements in g-C3N4 and its hybrid photocatalysts for selective CO2 conversions. We examine key factors influencing CO2RR product selectivity, including electron count and reaction dynamics, CO2 and reduction intermediates adsorption/desorption, and proton regulation affecting competitive hydrogen evolution. By summarizing various strategies to enhance CO2 photoreduction performance, this work provides a comprehensive analysis of CO2RR selectivity mechanisms for each approach. This review aims to inspire research endeavors towards developing efficient artificial systems for enhanced CO2RR efficiency and product selectivity. Full article
(This article belongs to the Special Issue Recent Advances in Photocatalytic CO2 Reduction)
Show Figures

Graphical abstract

18 pages, 5518 KiB  
Article
MNP (M = Zn, Cu, and Ag) Catalyst Embedded onto Zeolite Y Surface for Efficient Dye Reduction and Antimicrobial Activity
by Hamza Benaouda, Nabila Bouchiba, Mohammed Hachemaoui, José Abad-López, Farid Bennabi, Adel Mokhtar, Mohamed Abdelkrim Hasnaoui, Issam Ismail, Mohamed Abboud and Bouhadjar Boukoussa
Catalysts 2025, 15(5), 407; https://doi.org/10.3390/catal15050407 - 22 Apr 2025
Abstract
This paper deals with synthesizing Zn, Cu, and AgNPs supported on the surface of zeolite Y for catalytic and antimicrobial applications. Firstly, the zeolite Na-Y was exchanged with solutions containing metal precursors and then a chemical treatment was used to transform the metal [...] Read more.
This paper deals with synthesizing Zn, Cu, and AgNPs supported on the surface of zeolite Y for catalytic and antimicrobial applications. Firstly, the zeolite Na-Y was exchanged with solutions containing metal precursors and then a chemical treatment was used to transform the metal cations into metal nanoparticles. The different samples were characterized by different characterization methods. The reduction of methylene blue (MB) and orange (OG) dyes in the presence of NaBH4 and nanocatalysts in a simple and binary system showed good results. It was shown in this study that the concentration of the reagents, the nature of metal species, and the nature of the dye can influence the conversion of the dye. The calculated kapp obtained by the best catalyst (Ag/Y) in a simple system was 1.882 min−1 and 1.115 min−1 for MB and OG dyes, respectively. It was found that the Ag/Y catalyst was more selective via MB in the binary system containing OG+MB dyes. The reuse of the Ag/Y catalyst in five cycles showed good results via the conversion of the MB dye without losing its performance. For antimicrobial activities, encouraging results have been recorded on different strains having inhibition zones between 14 and 25 mm. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

15 pages, 19552 KiB  
Article
Facile Synthesis of Binuclear Imidazole-Based Poly(ionic liquid) via Monomer Self-Polymerization: Unlocking High-Efficiency CO2 Conversion to Cyclic Carbonate
by Ranran Li, Yuqiao Jiang, Linyan Cheng, Cheng Fang, Hongping Li, Jing Ding, Hui Wan and Guofeng Guan
Catalysts 2025, 15(5), 406; https://doi.org/10.3390/catal15050406 - 22 Apr 2025
Abstract
Strategic utilization of carbon dioxide as both a carbon mitigation tool and a sustainable C1 feedstock represents a pivotal pathway toward green chemistry. Although poly(ionic liquid)s (PILs) exhibit promise in CO2 conversion, conventional divinylbenzene (DVB) cross-linked architectures are limited by reduced ionic [...] Read more.
Strategic utilization of carbon dioxide as both a carbon mitigation tool and a sustainable C1 feedstock represents a pivotal pathway toward green chemistry. Although poly(ionic liquid)s (PILs) exhibit promise in CO2 conversion, conventional divinylbenzene (DVB) cross-linked architectures are limited by reduced ionic density and limited accessibility of active sites. Herein, we reported a binuclear imidazolium-functionalized PIL catalyst (P-BVIMCl), synthesized through a simple self-polymerization process, derived from rationally designed ionic liquid monomers formed by quaternization of 1,4-bis(chloromethyl)benzene with N-vinylimidazole. The dual active sites in P-BVIMCl-quaternary ammonium cation (N+) and nucleophilic chloride anion (Cl) synergistically enhanced CO2 adsorption/activation and epoxide ring-opening. Under optimal catalyst preparation conditions (100 °C, 24 h, water/ethanol = 1:3 (v/v), 10 wt% AIBN initiator) and reaction conditions (100 °C, 2.0 MPa CO2, 10 mmol epichlorohydrin, 6.7 wt% catalyst loading, 3.0 h), P-BVIMCl catalyzed the synthesis of glycerol carbonate (GLC) with a yield of up to 93.4% and selectivity of 99.6%, maintaining activity close to 90% after five cycles. Systematic characterization and density functional theory (DFT) calculations confirmed the synergistic activation mechanism. This work established a paradigm for constructing high-ionic-density catalysts through molecular engineering, advancing the development of high-performance PILs for industrial CO2 valorization. Full article
(This article belongs to the Special Issue Ionic Liquids and Deep Eutectic Solvents in Catalysis)
Show Figures

Graphical abstract

Previous Issue
Back to TopTop