Hydrodynamic Cavitation-Assisted Photo-Fenton Pretreatment and Yeast Co-Culture as Strategies to Produce Ethanol and Xylitol from Sugarcane Bagasse
Abstract
:1. Introduction
2. Results and Discussion
2.1. Enzymatic Hydrolysis in Erlenmeyer Flasks
2.2. Enzymatic Hydrolysis in the Column Reactor
2.3. Ethanol and Xylitol Production from Co-Culture Fermentation
3. Materials and Methods
3.1. Biomass Pretreatment and Enzymatic Hydrolysis in Erlenmeyer Flasks
3.2. Enzymatic Hydrolysis in a Column Reactor
3.3. Production of Ethanol and Xylitol in Co-Culture Process
3.3.1. Inoculum Preparation
3.3.2. Co-Culture Fermentation
3.4. Analytical Methods
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dragone, G.; Kerssemakers, A.A.J.; Driessen, J.L.S.P.; Yamakawa, C.K.; Brumano, L.P.; Mussatto, S.I. Innovation and strategic orientations for the development of advanced biorefineries. Bioresour. Technol. 2020, 302, 122847. [Google Scholar] [CrossRef] [PubMed]
- Da Fonseca, Y.A.; Gurgel, L.V.A.; Baêta, B.E.L.; Dragone, G.; Mussatto, S.I. Reduced-pressure alkaline pretreatment as an innovative and sustainable technology to extract protein from brewer’s spent grain. J. Clean. Prod. 2023, 416, 137966. [Google Scholar] [CrossRef]
- Yamakawa, C.K.; Rojas, S.T.; Herrera, W.E.; Rossell, C.E.; Maciel, M.R.W.; Maciel Filho, R. Recovery and characterization of cellulosic ethanol from fermentation of sugarcane bagasse. Chem. Eng. Res. Des. 2023, 196, 568–576. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Dragone, G.M. Biomass pretreatment, biorefineries and potential products for a bioeconomy development. In Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery; Mussatto, S.I., Ed.; Elsevier Inc.: Waltham, MA, USA, 2016; pp. 1–22. [Google Scholar] [CrossRef]
- Hilares, R.T.; Dionízio, R.; Prado, C.; Ahmed, M.; da Silva, S.; Santos, J. Pretreatment of sugarcane bagasse using hydrodynamic cavitation technology: Semi-continuous and continuous process. Bioresour. Technol. 2019, 290, 121777. [Google Scholar] [CrossRef]
- Prado, C.A.; Cunha, M.L.S.; Terán-Hilares, R.; Arruda, G.L.D.; Antunes, F.A.F.; Pereira, B.; da Silva, S.S.; Santos, J.C.D. Hydrodynamic cavitation–assisted oxidative pretreatment and sequential production of ethanol and xylitol as innovative approaches for sugarcane bagasse biorefineries. BioEnergy Res. 2024, 16, 2229–2241. [Google Scholar] [CrossRef]
- Prado, C.; Antunes, F.; Rocha, T.; Sánchez-Muñoz, S.; Barbosa, F.; Terán-Hilares, R.; Cruz-Santos, M.; Arruda, G.; da Silva, S.; Santos, J. A review on recent developments in hydrodynamic cavitation and advanced oxidative processes for pretreatment of lignocellulosic materials. Bioresour. Technol. 2022, 345, 126458. [Google Scholar] [CrossRef]
- Zhu, L.; Li, P.; Sun, T.; Kong, M.; Li, X.; Ali, S.; Liu, W.; Fan, S.; Qiao, J.; Li, S.; et al. Overexpression of SFA1 in engineered Saccharomyces cerevisiae to increase xylose utilization and ethanol production from different lignocellulose hydrolysates. Bioresour. Technol. 2020, 313, 123724. [Google Scholar] [CrossRef]
- Pérez-Bibbins, B.; Torrado-Agrasar, A.; Salgado, J.M.; Mussatto, S.I.; Domínguez, J.M. Xylitol production in immobilized cultures: A recent review. Crit. Rev. Biotechnol. 2016, 36, 691–704. [Google Scholar] [CrossRef]
- Mussatto, S.I. Application of xylitol in food formulations and benefits for health. In D-Xylitol; da Silva, S.S., Chandel, A.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 309–323. [Google Scholar] [CrossRef]
- Kaialy, W.; Maniruzzaman, M.; Shojaee, S.; Nokhodchi, A. Antisolvent precipitation of novel xylitol-additive crystals to engineer tablets with improved pharmaceutical performance. Int. J. Pharm. 2014, 477, 282–293. [Google Scholar] [CrossRef]
- Bozell, J.J.; Petersen, G.R. Technology development for the production of biobased products from biorefinery carbohydrates—The US Department of Energy’s “Top 10” revisited. Green Chem. 2010, 12, 539–554. [Google Scholar] [CrossRef]
- Jain, V.; Awasthi, A.; Ghosh, S. Biosynthesis of xylitol by cell immobilization: An insight. Biomass Convers. Biorefin. 2024, 14, 15223–15235. [Google Scholar] [CrossRef]
- Cortivo, P.R.D.; Hickert, L.R.; Hector, R.; Ayub, M.A.Z. Fermentation of oat and soybean hull hydrolysates into ethanol and xylitol by recombinant industrial strains of Saccharomyces cerevisiae under diverse oxygen environments. Ind. Crops Prod. 2018, 113, 10–18. [Google Scholar] [CrossRef]
- Cunha-Pereira, F.D.; Hickert, L.R.; Rech, R.; Dillon, A.P.; Ayub, M.A.Z. Fermentation of hexoses and pentoses from hydrolyzed soybean hull into ethanol and xylitol by Candida guilliermondii BL 13. Braz. J. Chem. Eng. 2017, 34, 927–936. [Google Scholar] [CrossRef]
- de Souza Queiroz, S.; Jofre, F.M.; dos Santos, H.A.; Hernandez-Perez, A.F.; Felipe, M.G.A. Xylitol and ethanol co-production from sugarcane bagasse and straw hemicellulosic hydrolysate supplemented with molasses. Biomass Convers. Biorefin. 2023, 13, 3143–3152. [Google Scholar] [CrossRef]
- Barbosa, M.F.S.; Medeiros, M.B.; Mancilha, I.M.; Schneider, H.; Lee, H. Screening of yeasts for production of xylitol from-D-xylose and some factors which affect xylitol yield in Candida guilliermondii. J. Ind. Microbiol. 1988, 3, 241–251. [Google Scholar] [CrossRef]
- Zahed, O.; Jouzani, G.S.; Abbasalizadeh, S.; Khodaiyan, F.; Tabatabaei, M. Continuous co-production of ethanol and xylitol from rice straw hydrolysate in a membrane bioreactor. Folia Microbiol. 2016, 61, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.; Lee, I.; Jeon, S.H.; Hwang, T.; Han, J.I. Hydrodynamic cavitation as a novel pretreatment approach for bioethanol production from reed. Bioresour. Technol. 2015, 192, 335–339. [Google Scholar] [CrossRef]
- Philippini, R.R.; Martiniano, S.E.; Ingle, A.P.; Franco Marcelino, P.R.; Silva, G.M.; Barbosa, F.G.; Santos, J.C.; da Silva, S.S. Agroindustrial byproducts for the generation of biobased products: Alternatives for sustainable biorefineries. Front. Energy Res. 2020, 8, 152. [Google Scholar] [CrossRef]
- Hilares, R.T.; de Almeida, G.F.; Ahmed, M.A.; Antunes, F.A.; da Silva, S.S.; Han, J.-I.; Santos, J.C. Hydrodynamic cavitation as an efficient pretreatment method for lignocellulosic biomass: A parametric study. Bioresour. Technol. 2017, 235, 301–308. [Google Scholar] [CrossRef]
- Kraber, G.; Lorimer, D.R.; Lyne, A.G.; Kramer, M. A statistical study of 233 pulsar proper motions. Mon. Not. R. Astron. Soc. 2005, 360, 974–992. [Google Scholar] [CrossRef]
- Rao, V.N.; Malu, T.J.; Cheralathan, K.K.; Sakar, M.; Pitchaimuthu, S.; Rodríguez-González, V.; Kumari, M.M.; Shankar, M.V. Light-driven transformation of biomass into chemicals using photocatalysts—Vistas and challenges. J. Environ. Manag. 2021, 284, 111983. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, J.; Cao, J.; Wang, Z. Pretreatment with concurrent UV photocatalysis and alkaline H2O2 enhanced the enzymatic hydrolysis of sisal waste. Bioresour. Technol. 2018, 267, 517–523. [Google Scholar] [CrossRef]
- Hu, J.J.; He, Z.; Zhang, Q.; Dang, J.T.; Zhao, S.H.; Yang, S.; Yang, P.B.; Yan, X.Y. Simultaneous pretreatment with ultraviolet light and alkaline H2O2 to promote enzymatic hydrolysis of corn stover. BioResources 2023, 18, 4754. [Google Scholar] [CrossRef]
- Ruan, L.; Wu, H.; Wu, S.; Zhou, L.; Wu, S.; Shang, C. Optimizing the conditions of pretreatment and enzymatic hydrolysis of sugarcane bagasse for bioethanol production. ACS Omega 2024, 9, 29566–29575. [Google Scholar] [CrossRef] [PubMed]
- Kaur, J.; Taggar, M.S.; Kalia, A.; Sanghera, G.S.; Khatkar, S.K.; Vashisht, P.; Singh, L. Assessment of the chemical pre-treatment methods for the delignification of sugarcane bagasse. Environ. Technol. 2025, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Yaverino-Gutierrez, M.A.; Ramos, L.; Ascencio, J.J.; Chandel, A.K. Enhanced production of clean fermentable sugars by acid pretreatment and enzymatic saccharification of sugarcane bagasse. Processes 2024, 12, 978. [Google Scholar] [CrossRef]
- Sandri, J.P.; Ordeñana, J.; Milessi, T.S.; Zangirolami, T.C.; Mussatto, S.I. Solid feeding and co-culture strategies for an efficient enzymatic hydrolysis and ethanol production from sugarcane bagasse. Environ. Technol. Innov. 2023, 30, 103082. [Google Scholar] [CrossRef]
- Antunes, F.A.F.; Freitas, J.B.F.; Prado, C.A.; Castro-Alonso, M.J.; Diaz-Ruiz, E.; Mera, A.E.; Santos, J.C.; da Silva, S.S. Valorization of corn cobs for xylitol and bioethanol production through column reactor process. Energies 2023, 16, 4841. [Google Scholar] [CrossRef]
- Mesquita, J.F.; Ferraz, A.; Aguiar, A. Alkaline-sulfite pretreatment and use of surfactants during enzymatic hydrolysis to enhance ethanol production from sugarcane bagasse. Bioprocess Biosyst. Eng. 2015, 39, 441–448. [Google Scholar] [CrossRef]
- Ramos, L.; Vasconcelos, M.H.; Milagres, A.M.; Ferraz, A.; Dias, M.O.; Mendes, F.M.; dos Santos, J.C. High-solid enzymatic hydrolysis of sugarcane bagasse and ethanol production in repeated batch process using column reactors. 3 Biotech 2021, 11, 432. [Google Scholar] [CrossRef]
- Saharan, B.S.; Dhanda, D.; Mandal, N.K.; Kumar, R.; Sharma, D.; Sadh, P.K.; Jabborova, D.; Duhan, J.S. Microbial contributions to sustainable paddy straw utilization for economic gain and environmental conservation. Curr. Res. Microb. Sci. 2024, 7, 100264. [Google Scholar] [CrossRef] [PubMed]
- de Arruda, P.V.; dos Santos, J.C.; Rodrigues, R.C.L.B.; da Silva, D.D.V.; Yamakawa, C.K.; de Moraes Rocha, G.J.; Nolasco Júnior, J.; Pradella, J.G.C.; Rossel, C.E.V.; Felipe, M.G.A. Scale up of xylitol production from sugarcane bagasse hemicellulosic hydrolysate by Candida guilliermondii FTI 20037. J. Ind. Eng. Chem. 2017, 47, 297–302. [Google Scholar] [CrossRef]
Run | Conditions (Codified Values) | Solid Recovery * (%) | Pretreated Material Composition (%) | Removal of Components (%) | Hydrolysis Yield (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Iron(II) Sulfate (mg/L) | Pretreatment Time (min) | Glucan | Xylan | Lignin (%) | Glucan (%) | Xylan (%) | Lignin (%) | Glucan (%) | Xylan (%) | ||
1 | 10 (−1) | 5 (−1) | 70 | 51.08 | 21.08 | 16.33 | 10.6 | 38.51 | 54.27 | 70.03 | 42.00 |
2 | 20 (+1) | 5 (−1) | 64 | 57.42 | 22.32 | 12.21 | 8.1 | 40.48 | 68.74 | 70.57 | 68.04 |
3 | 10 (−1) | 20 (+1) | 71 | 51.82 | 21.82 | 17.01 | 8.0 | 35.45 | 51.69 | 70.38 | 61.70 |
4 | 20 (+1) | 20 (+1) | 71 | 53.01 | 17.01 | 20.60 | 5.9 | 49.68 | 41.50 | 92.50 | 83.70 |
5 | 10 (−1) | 12.5 (0) | 64 | 55.46 | 22.76 | 20.41 | 11.3 | 39.31 | 47.75 | 95.98 | 52.00 |
6 | 20 (+1) | 12.5 (0) | 64 | 55.56 | 21.06 | 20.65 | 11.1 | 43.84 | 47.14 | 90.27 | 90.30 |
7 | 15 (0) | 5 (−1) | 72 | 50.7 | 22.7 | 21.19 | 8.7 | 31.90 | 38.97 | 79.79 | 60.50 |
8 | 15 (0) | 20 (+1) | 64 | 51.4 | 22.4 | 20.44 | 17.8 | 40.27 | 47.67 | 80.59 | 72.50 |
9 | 15 (0) | 12.5 (0) | 71 | 51.3 | 22.7 | 18.69 | 8.9 | 32.85 | 46.92 | 90.51 | 72.00 |
10 | 15 (0) | 12.5 (0) | 71 | 51.2 | 22.40 | 15.38 | 9.1 | 33.74 | 56.32 | 90.20 | 69.00 |
11 | 15 (0) | 12.5 (0) | 71 | 51.22 | 22.40 | 15.01 | 9.1 | 33.70 | 57.37 | 90.30 | 70.00 |
Response Variable | Empirical Model |
---|---|
Glucan enzymatic hydrolysis yield (X1%) | X1 = 64.26 − 1.24∙A + 4.64∙B + 0.144∙A∙B − 0.25∙B2 |
Xylan enzymatic hydrolysis yield (X2%) | X2 = −2.11 + 2.88∙A + 3.68∙B − 0.11∙B2 |
Glucan Enzymatic Hydrolysis Yield (%) | Xylan Enzymatic Hydrolysis Yield (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Source | Sum of Square | Degrees of Freedom | Mean Square | F | p | Source | Sum of Squares | Degrees of Freedom | Mean Square | F | p |
Model | 798.53 | 4 | 199.63 | 7.19 | 0.0179 | Model | 1711.84 | 3 | 570.61 | 40.94 | <0.0001 |
Iron II sulfate (A) | 47.88 | 1 | 47.88 | 1.72 | 0.2372 | Iron II sulfate (A) | 1242.43 | 1 | 1242.43 | 89.14 | <0.0001 |
Time (B) | 88.78 | 1 | 88.78 | 3.20 | 0.1241 | Time (B) | 373.83 | 1 | 373.83 | 26.82 | 0.00613 |
AB | 116.42 | 1 | 116.42 | 4.19 | 0.0866 | ||||||
B2 | 545.44 | 1 | 545.44 | 19.63 | 0.0044 | B2 | 95.58 | 1 | 95.58 | 6.86 | 0.0345 |
Residual | 166.69 | 6 | 27.78 | Residual | 97.57 | 7 | 13.94 | ||||
Lack of fit | 166.64 | 4 | 41.66 | 1664.17 | 0.006 | Lack of fit | 92.90 | 5 | 18.58 | 7.96 | 0.1153 |
Pure Error | 0.050 | 2 | 0.025 | Pure Error | 4.67 | 2 | 2.33 | ||||
R2 | 0.83 | R2 | 0.95 |
Run | Inoculum, g/L (Codified Values) | Products, g/L | ||
---|---|---|---|---|
C. tropicalis | S. cerevisiae | Ethanol | Xylitol | |
1 | 0.5 (−1) | 0.5 (−1) | 4.20 | 6.30 |
2 | 1.5 (+1) | 0.5 (−1) | 6.80 | 10.28 |
3 | 0.5 (−1) | 1.5 (+1) | 16.70 | 6.00 |
4 | 1.5 (+1) | 1.5 (+1) | 20.37 | 10.29 |
5 | 0.5 (−1) | 1.0 (0) | 5.20 | 7.40 |
6 | 1.5 (+1) | 1.0 (0) | 7.10 | 10.30 |
7 | 1.0 (0) | 0.5 (−1) | 6.05 | 8.24 |
8 | 1.0 (0) | 1.5 (+1) | 19.85 | 7.02 |
9 | 1.0 (0) | 1.0 (0) | 16.90 | 11.20 |
10 | 1.0 (0) | 1.0 (0) | 16.50 | 10.70 |
11 | 1.0 (0) | 1.0 (0) | 16.70 | 11.21 |
Response Variable | Empirical Model |
---|---|
Ethanol concentration (X1, g/L) | X1 = −21.37 + 43.83∙A + 13.29∙B − 20.55∙A2 |
Xylitol (X2, g/L) | X2 = −1.61 + 3.72A + 16.60∙B − 8.55∙B2 |
Glucan Enzymatic Hydrolysis Yield (%) | Xylan Enzymatic Hydrolysis Yield (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Source | Sum of Square | Degrees of Freedom | Mean Square | F | p | Source | Sum of Squares | Degrees of Freedom | Square Mean Square | F | p |
Model | 348.07 | 3 | 116.02 | 12.72 | 0.0032 | Model | 33.65 | 3 | 11.22 | 10.81 | 0.0051 |
C. tropicalis (A) | 11.12 | 1 | 11.12 | 1.22 | 0.3059 | C. tropicalis (A) | 20.79 | 1 | 20.79 | 20.04 | 0.0029 |
S. cerevisiae (B) | 264.94 | 1 | 264.94 | 29.05 | 0.0010 | S. cerevisiae (B) | 0.38 | 1 | 0.38 | 0.37 | 0.5642 |
A2 | 72.01 | 1 | 72.01 | 7.89 | 0.0262 | ||||||
B2 | 12.47 | 1 | 12.47 | 12.02 | 0.0839 | ||||||
Residual | 63.85 | 7 | 9.12 | Residual | 7.26 | 7 | 1.04 | ||||
Lack of fit | 63.77 | 5 | 12.75 | 318.84 | 0.0031 | Lack of fit | 7.10 | 5 | 4.46 | 17.04 | 0.0564 |
Pure Error | 0.080 | 2 | 0.040 | Pure Error | 0.17 | 2 | 0.083 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prado, C.A.; da Silva, A.J.E.B.; Fernandes, P.A.F.H.P.; Shibukawa, V.P.; Jofre, F.M.; Rodrigues, B.G.; da Silva, S.S.; Mussatto, S.I.; Santos, J.C. Hydrodynamic Cavitation-Assisted Photo-Fenton Pretreatment and Yeast Co-Culture as Strategies to Produce Ethanol and Xylitol from Sugarcane Bagasse. Catalysts 2025, 15, 418. https://doi.org/10.3390/catal15050418
Prado CA, da Silva AJEB, Fernandes PAFHP, Shibukawa VP, Jofre FM, Rodrigues BG, da Silva SS, Mussatto SI, Santos JC. Hydrodynamic Cavitation-Assisted Photo-Fenton Pretreatment and Yeast Co-Culture as Strategies to Produce Ethanol and Xylitol from Sugarcane Bagasse. Catalysts. 2025; 15(5):418. https://doi.org/10.3390/catal15050418
Chicago/Turabian StylePrado, Carina Aline, Ana Júlia E. B. da Silva, Paulo A. F. H. P. Fernandes, Vinicius P. Shibukawa, Fanny M. Jofre, Bruna G. Rodrigues, Silvio Silvério da Silva, Solange I. Mussatto, and Júlio César Santos. 2025. "Hydrodynamic Cavitation-Assisted Photo-Fenton Pretreatment and Yeast Co-Culture as Strategies to Produce Ethanol and Xylitol from Sugarcane Bagasse" Catalysts 15, no. 5: 418. https://doi.org/10.3390/catal15050418
APA StylePrado, C. A., da Silva, A. J. E. B., Fernandes, P. A. F. H. P., Shibukawa, V. P., Jofre, F. M., Rodrigues, B. G., da Silva, S. S., Mussatto, S. I., & Santos, J. C. (2025). Hydrodynamic Cavitation-Assisted Photo-Fenton Pretreatment and Yeast Co-Culture as Strategies to Produce Ethanol and Xylitol from Sugarcane Bagasse. Catalysts, 15(5), 418. https://doi.org/10.3390/catal15050418