Tuning High-Entropy Oxides for Oxygen Evolution Reaction Through Electrocatalytic Water Splitting: Effects of (MnFeNiCoX)3O4 (X = Cr, Cu, Zn, and Cd) on Electrocatalytic Performance
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterization of Electrocatalysts
2.2. OER Performance
Electrocatalyst | Substrate | Overpotential at 10 mA/cm2 (mV) | Tafel Slope (mV/dec) | Electrolyte | Reference |
---|---|---|---|---|---|
(CoCuFeMnNi)3O4 | GCE | 400 | 76.7 | 1.0 M KOH | [18] |
(MgCoNiCuZn)O | CFP | 360 | 61.4 | 1.0 M KOH | [19] |
(FeCrCoNiAl0.1)Ox-films | Titanium foil | 381 | 60.9 | 1.0 M KOH | [43] |
(Co0.2Mn0.2Ni0.2Fe0.2Zn0.2)Fe2O4 | CFP | 326 | 53.6 | 1.0 M KOH | [20] |
(Fe0.2Co0.2Ni0.2Cr0.2Cu0.2)3O4 | Ni foam | 338 | 71.4 | 1.0 M KOH | [22] |
(Fe0.2Co0.2Ni0.2Cr0.2Mn0.2)3O4 | Ni foam | 298 | 59 | 1.0 M KOH | [22] |
NiCuCo-sulfides | GCE | 340 | 96 | 1.0 M KOH | [44] |
(MnFeNiCoCr)3O4 | CFP | 323 | 56 | 1.0 M KOH | This work |
3. Experimental Section
3.1. Materials
3.2. Catalyst Synthesis
3.3. Characterization Techniques
3.4. Electrochemical Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Zhou, D.; Deng, T.; He, G.; Chen, A.; Sun, X.; Yang, Y.; Miao, P. Research progress of oxygen evolution reaction catalysts for electrochemical water splitting. ChemSusChem 2021, 14, 5359–5383. [Google Scholar] [CrossRef]
- Zehtab Salmasi, M.; Omidkar, A.; Nguyen, H.M.; Song, H. MXenes as electrocatalysts for hydrogen production through the electrocatalytic water splitting process: A mini review. Energy Rev. 2024, 3, 100070. [Google Scholar] [CrossRef]
- Kim, J.S.; Kim, B.; Kim, H.; Kang, K. Recent progress on multimetal oxide catalysts for the oxygen evolution reaction. Adv. Energy Mater. 2018, 8, 1702774. [Google Scholar] [CrossRef]
- Nguyen, T.X.; Huang, Z.-T.; Ting, J.-M. Iron-concentration adjusted Multi-Metal oxides for optimized oxygen evolution reaction performance. Appl. Surf. Sci. 2021, 570, 151160. [Google Scholar] [CrossRef]
- García-Mota, M.; Vojvodic, A.; Metiu, H.; Man, I.C.; Su, H.; Rossmeisl, J.; Nørskov, J.K. Tailoring the activity for oxygen evolution Electrocatalysis on rutile TiO2 (110) by transition-metal substitution. ChemCatChem 2011, 3, 1607–1611. [Google Scholar] [CrossRef]
- Wu, Z.; Zou, Z.; Huang, J.; Gao, F. Fe-doped NiO mesoporous nanosheets array for highly efficient overall water splitting. J. Catal. 2018, 358, 243–252. [Google Scholar] [CrossRef]
- Xiao, Z.; Huang, Y.-C.; Dong, C.-L.; Xie, C.; Liu, Z.; Du, S.; Chen, W.; Yan, D.; Tao, L.; Shu, Z. Operando identification of the dynamic behavior of oxygen vacancy-rich Co3O4 for oxygen evolution reaction. J. Am. Chem. Soc. 2020, 142, 12087–12095. [Google Scholar] [CrossRef]
- Song, J.; Wei, C.; Huang, Z.-F.; Liu, C.; Zeng, L.; Wang, X.; Xu, Z.J. A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 2020, 49, 2196–2214. [Google Scholar] [CrossRef]
- Ma, Y.; Ma, Y.; Wang, Q.; Schweidler, S.; Botros, M.; Fu, T.; Hahn, H.; Brezesinski, T.; Breitung, B. High-entropy energy materials: Challenges and new opportunities. Energy Environ. Sci. 2021, 14, 2883–2905. [Google Scholar] [CrossRef]
- Sarkar, A.; Wang, Q.; Schiele, A.; Chellali, M.R.; Bhattacharya, S.S.; Wang, D.; Brezesinski, T.; Hahn, H.; Velasco, L.; Breitung, B. High-entropy oxides: Fundamental aspects and electrochemical properties. Adv. Mater. 2019, 31, 1806236. [Google Scholar] [CrossRef]
- Zhai, Y.; Ren, X.; Wang, B.; Liu, S. High-entropy catalyst—A novel platform for electrochemical water splitting. Adv. Funct. Mater. 2022, 32, 2207536. [Google Scholar] [CrossRef]
- Li, T.; Yao, Y.; Ko, B.H.; Huang, Z.; Dong, Q.; Gao, J.; Chen, W.; Li, J.; Li, S.; Wang, X. Carbon-supported high-entropy oxide nanoparticles as stable electrocatalysts for oxygen reduction reactions. Adv. Funct. Mater. 2021, 31, 2010561. [Google Scholar] [CrossRef]
- He, L.; Kang, H.; Hou, G.; Qiao, X.; Jia, X.; Qin, W.; Wu, X. Low-temperature synthesis of nano-porous high entropy spinel oxides with high grain boundary density for oxygen evolution reaction. Chem. Eng. J. 2023, 460, 141675. [Google Scholar] [CrossRef]
- Yen, J.-Z.; Yang, Y.-C.; Tuan, H.-Y. Interface engineering of high entropy Oxide@ Polyaniline heterojunction enables highly stable and excellent lithium ion storage performance. Chem. Eng. J. 2022, 450, 137924. [Google Scholar] [CrossRef]
- Akrami, S.; Murakami, Y.; Watanabe, M.; Ishihara, T.; Arita, M.; Fuji, M.; Edalati, K. Defective high-entropy oxide photocatalyst with high activity for CO2 conversion. Appl. Catal. B 2022, 303, 120896. [Google Scholar] [CrossRef]
- Lee, S.A.; Bu, J.; Lee, J.; Jang, H.W. High-entropy nanomaterials for advanced electrocatalysis. Small Sci. 2023, 3, 2200109. [Google Scholar] [CrossRef]
- Albedwawi, S.H.; AlJaberi, A.; Haidemenopoulos, G.N.; Polychronopoulou, K. High entropy oxides-exploring a paradigm of promising catalysts: A review. Mater. Des. 2021, 202, 109534. [Google Scholar] [CrossRef]
- Wang, D.; Liu, Z.; Du, S.; Zhang, Y.; Li, H.; Xiao, Z.; Chen, W.; Chen, R.; Wang, Y.; Zou, Y.; et al. Low-temperature synthesis of small-sized high-entropy oxides for water oxidation. J. Mater. Chem. A 2019, 7, 24211–24216. [Google Scholar] [CrossRef]
- Liu, F.; Yu, M.; Chen, X.; Li, J.; Liu, H.; Cheng, F. Defective high-entropy rocksalt oxide with enhanced metal-oxygen covalency for electrocatalytic oxygen evolution. Chin. J. Catal. 2022, 43, 122–129. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, T.; Ye, Y.; Dai, W.; Zhu, Y.; Pan, Y. Stabilizing Oxygen Vacancy in Entropy-Engineered CoFe2O4-Type Catalysts for Co-prosperity of Efficiency and Stability in an Oxygen Evolution Reaction. ACS Appl. Mater. Interfaces 2020, 12, 32548–32555. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.; Lu, T.; Pan, Y. Novel and promising electrocatalyst for oxygen evolution reaction based on MnFeCoNi high entropy alloy. J. Power Sources 2019, 430, 104–111. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, X.; Wei, H.; Yu, H.; Xie, Y. Construction of spinel (Fe0.2Co0.2Ni0.2Cr0.2M0.2)3O4 (M = Mg, Mn, Zn, and Cu) high-entropy oxides with tunable valance states for oxygen evolution reaction. J. Alloys Compd. 2024, 989, 174304. [Google Scholar] [CrossRef]
- Du, J.; Bao, S.; Li, W.; Chen, Y.; Fan, B. Structural, thermal, magnetic and microwave-absorbing properties of spinel-structured high entropy oxide (MnFeCoNiX)3O4 (X = Zn, Cu, Cr). Ceram. Int. 2024, 50, 14697–14707. [Google Scholar] [CrossRef]
- Du, Y.; Yang, F.; Li, J.; Jiang, M.; Yin, J.; Hu, Q.; Zhang, J. Electrocatalytic performances of high-entropy spinel oxide (Cr1/5Mn1/5Ni1/5Fe1/5Co1/5)3O4 for oxygen reduction/evolution reactions in alkaline electrolyte. J. Alloys Compd. 2024, 1004, 175923. [Google Scholar] [CrossRef]
- Mao, A.; Quan, F.; Xiang, H.-Z.; Zhang, Z.-G.; Kuramoto, K.; Xia, A.-L. Facile synthesis and ferrimagnetic property of spinel (CoCrFeMnNi)3O4 high-entropy oxide nanocrystalline powder. J. Mol. Struct. 2019, 1194, 11–18. [Google Scholar] [CrossRef]
- Arun, S.R.; Jacob, G. Exploring the charge storage ability of the spinel-type high entropy oxide (MnFeCoNiZn)3O4 nanoparticles for supercapacitor applications. Chem. Eng. J. Adv. 2025, 21, 100708. [Google Scholar] [CrossRef]
- Zehtab Salmasi, M.; Omidkar, A.; Ying, H.; Song, H. Enhanced phenol degradation in wastewater using non-thermal plasma coupled with NiO/g-C3N4 nanocomposite catalyst. J. Environ. Chem. Eng. 2025, 13, 117180. [Google Scholar] [CrossRef]
- Xu, H.; Liu, L.; Gao, J.; Du, P.; Fang, G.; Qiu, H.-J. Hierarchical nanoporous V2O3 Nanosheets anchored with alloy nanoparticles for efficient electrocatalysis. ACS Appl. Mater. Interfaces 2019, 11, 38746–38753. [Google Scholar] [CrossRef]
- Moradi, M.; Hasanvandian, F.; Bahadoran, A.; Shokri, A.; Zerangnasrabad, S.; Kakavandi, B. New high-entropy transition-metal sulfide nanoparticles for electrochemical oxygen evolution reaction. Electrochim. Acta 2022, 436, 141444. [Google Scholar] [CrossRef]
- Cychosz, K.A.; Guillet-Nicolas, R.; García-Martínez, J.; Thommes, M. Recent advances in the textural characterization of hierarchically structured nanoporous materials. Chem. Soc. Rev. 2017, 46, 389–414. [Google Scholar] [CrossRef]
- Duan, Y.; Sun, S.; Xi, S.; Ren, X.; Zhou, Y.; Zhang, G.; Yang, H.; Du, Y.; Xu, Z.J. Tailoring the Co 3d-O 2p covalency in LaCoO3 by Fe substitution to promote oxygen evolution reaction. Chem. Mater. 2017, 29, 10534–10541. [Google Scholar] [CrossRef]
- Ansari, A.A.; Ahmad, N.; Alam, M.; Adil, S.F.; Ramay, S.M.; Albadri, A.; Ahmad, A.; Al-Enizi, A.M.; Alrayes, B.F.; Assal, M.E. Physico-chemical properties and catalytic activity of the sol-gel prepared Ce-ion doped LaMnO3 perovskites. Sci. Rep. 2019, 9, 7747. [Google Scholar] [CrossRef]
- Phadtare, D.; Kondawar, S.; Athawale, A.; Rode, C. Crystalline LaCoO3 perovskite as a novel catalyst for glycerol transesterification. Mol. Catal. 2019, 475, 110496. [Google Scholar] [CrossRef]
- Nguyen, T.X.; Liao, Y.-C.; Lin, C.-C.; Su, Y.-H.; Ting, J.-M. Advanced High Entropy Perovskite Oxide Electrocatalyst for Oxygen Evolution Reaction. Adv. Funct. Mater. 2021, 31, 2101632. [Google Scholar] [CrossRef]
- Zhao, X.; Li, X.; Yan, Y.; Xing, Y.; Lu, S.; Zhao, L.; Zhou, S.; Peng, Z.; Zeng, J. Electrical and structural engineering of cobalt selenide nanosheets by Mn modulation for efficient oxygen evolution. Appl. Catal. B 2018, 236, 569–575. [Google Scholar] [CrossRef]
- He, L.; Wang, N.; Sun, B.; Zhong, L.; Yao, M.; Hu, W.; Komarneni, S. High-entropy FeCoNiMn (oxy) hydroxide as high-performance electrocatalyst for OER and boosting clean carrier production under quasi-industrial condition. J. Clean. Prod. 2022, 356, 131680. [Google Scholar] [CrossRef]
- Fu, H.Q.; Zhang, L.; Wang, C.W.; Zheng, L.R.; Liu, P.F.; Yang, H.G. 1D/1D hierarchical nickel sulfide/phosphide nanostructures for electrocatalytic water oxidation. ACS Energy Lett. 2018, 3, 2021–2029. [Google Scholar] [CrossRef]
- Zhang, W.; Ma, X.; Zhong, C.; Ma, T.; Deng, Y.; Hu, W.; Han, X. Pyrite-type CoS2 nanoparticles supported on nitrogen-doped graphene for enhanced water splitting. Front. Chem. 2018, 6, 569. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-C.; Ihm, S.-K. Application of spinel-type cobalt chromite as a novel catalyst for combustion of chlorinated organic pollutants. Environ. Sci. Technol. 2001, 35, 222–226. [Google Scholar] [CrossRef]
- Kim, J.H.; Jang, Y.J.; Kim, J.H.; Jang, J.-W.; Choi, S.H.; Lee, J.S. Defective ZnFe2O4 nanorods with oxygen vacancy for photoelectrochemical water splitting. Nanoscale 2015, 7, 19144–19151. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Park, T.; Yi, J.W.; Henzie, J.; Kim, J.; Wang, Z.; Jiang, B.; Bando, Y.; Sugahara, Y.; Tang, J. Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv. Mater. 2019, 31, 1807134. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Huang, Z.; Yuan, H.; Yang, Z.; Zhang, C.; Xu, Y.; Zhang, W.; Zheng, H.; Cao, R. Quasi-single-crystalline CoO hexagrams with abundant defects for highly efficient electrocatalytic water oxidation. Chem. Sci. 2018, 9, 6961–6968. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Wu, H.; Yin, R.; Wang, X.; Zhong, H.; Fu, Q.; Wan, W.; Cheng, T.; Shi, Y.; Cai, G.; et al. Preparation and electrocatalytic properties of (FeCrCoNiAl0.1)Ox high-entropy oxide and NiCo-(FeCrCoNiAl0.1)Ox heterojunction films. J. Alloys Compd. 2021, 868, 159108. [Google Scholar] [CrossRef]
- Wu, X.; Li, S.; Liu, J.; Yu, M. Mesoporous hollow nested nanospheres of Ni, Cu, Co-based mixed sulfides for electrocatalytic oxygen reduction and evolution. ACS Appl. Nano. Mater. 2019, 2, 4921–4932. [Google Scholar] [CrossRef]
- Lao, Y.; Huang, X.; Liu, L.; Mo, X.; Huang, J.; Qin, Y.; Mo, Q.; Hui, X.; Yang, Z.; Jiang, W. Structure-activity relationship study of high entropy oxides catalysts for oxygen evolution reaction. Chem. Eng. J. 2024, 481, 148428. [Google Scholar] [CrossRef]
- Moradi, M.; Hasanvandian, F.; Ghahraman Afshar, M.; Larimi, A.; Khorasheh, F.; Niknam, E.; Rahman Setayesh, S. Incorporation of Fe in mixed CoCu-alkoxide hollow sphere for enhancing the electrochemical water oxidation performance. Mater. Today Chem. 2021, 22, 100586. [Google Scholar] [CrossRef]
Electrocatalyst | Overpotential at Current Density of (mV) | Tafel Slope (mV/dec) | Cedl (mF/cm2) | ||
---|---|---|---|---|---|
1 (mA/cm2) | 10 (mA/cm2) | 100 (mA/cm2) | |||
(MnFeNiCo)3O4 | 303 | 368 | 582 | 58 | 3.06 |
(MnFeNiCoCd)3O4 | 332 | 417 | 665 | 89 | 1.23 |
(MnFeNiCoZn)3O4 | 335 | 402 | 664 | 76 | 1.24 |
(MnFeNiCoCu)3O4 | 321 | 398 | 622 | 69 | 1.32 |
(MnFeNiCoCr)3O4 | 260 | 323 | 504 | 56 | 3.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zehtab Salmasi, M.; Narimani, A.; Omidkar, A.; Song, H. Tuning High-Entropy Oxides for Oxygen Evolution Reaction Through Electrocatalytic Water Splitting: Effects of (MnFeNiCoX)3O4 (X = Cr, Cu, Zn, and Cd) on Electrocatalytic Performance. Catalysts 2025, 15, 827. https://doi.org/10.3390/catal15090827
Zehtab Salmasi M, Narimani A, Omidkar A, Song H. Tuning High-Entropy Oxides for Oxygen Evolution Reaction Through Electrocatalytic Water Splitting: Effects of (MnFeNiCoX)3O4 (X = Cr, Cu, Zn, and Cd) on Electrocatalytic Performance. Catalysts. 2025; 15(9):827. https://doi.org/10.3390/catal15090827
Chicago/Turabian StyleZehtab Salmasi, Milad, Amir Narimani, Ali Omidkar, and Hua Song. 2025. "Tuning High-Entropy Oxides for Oxygen Evolution Reaction Through Electrocatalytic Water Splitting: Effects of (MnFeNiCoX)3O4 (X = Cr, Cu, Zn, and Cd) on Electrocatalytic Performance" Catalysts 15, no. 9: 827. https://doi.org/10.3390/catal15090827
APA StyleZehtab Salmasi, M., Narimani, A., Omidkar, A., & Song, H. (2025). Tuning High-Entropy Oxides for Oxygen Evolution Reaction Through Electrocatalytic Water Splitting: Effects of (MnFeNiCoX)3O4 (X = Cr, Cu, Zn, and Cd) on Electrocatalytic Performance. Catalysts, 15(9), 827. https://doi.org/10.3390/catal15090827