Sustainable Catalysis for Green Chemistry and Energy Transition, 2nd Edition

A special issue of Catalysts (ISSN 2073-4344). This special issue belongs to the section "Environmental Catalysis".

Deadline for manuscript submissions: 31 January 2026 | Viewed by 6217

Special Issue Editors


E-Mail Website
Guest Editor
Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
Interests: sustainable catalysis; green chemistry; renewable energy; nanotechnology; biocatalysis; CO2 conversion; biomass valorization; circular economy; machine learning; medicinal plants; climate change mitigation; salinity stress; antioxidants; CRISPR/Cas genome editing
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
Interests: catalysis; green chemistry; or-ganic chemistry; sustainable chemistry; reaction mecha-nisms; catalyst design; renew-able resources; environmen-tally friendly synthesis; waste reduction; process efficiency
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This issue is a continuation of the previous successful Special Issue titled “Sustainable Catalysis for Green Chemistry and Energy Transition”.

Catalysis stands at the forefront of sustainable development, offering transformative solutions in chemistry and energy essential to addressing global environmental challenges. By enabling eco-friendly chemical reactions and advancing renewable energy technologies, catalysis contributes to the achievement of a sustainable future. This field supports green chemistry by reducing waste, enhancing efficiency, and operating under milder conditions, aligning closely with the principles needed for sustainable industry practices. It also plays a pivotal role in the energy transition, where innovative catalytic systems are vital for developing renewable sources such as hydrogen, biofuels, and CO2 reduction technologies, offering cleaner alternatives to traditional fossil fuels.

This Special Issue highlights a range of catalytic innovations designed to meet sustainability goals, with a focus on key areas such as heterogeneous catalysis for renewable energy, emphasizing materials and processes that support hydrogen evolution, CO2 conversion, and biofuel production. Another critical focus is photocatalysis and electrocatalysis, driving solar-driven and electrochemical reactions to transform energy storage and conversion processes.

The scope of this issue further encompasses biocatalysis and biomass valorization, with the aim of exploring enzyme-based systems to convert biomass into valuable chemicals and fuels, thus reducing waste and enhancing resource efficiency. Articles will also cover transition metal and organometallic catalysis, with systems designed to operate under mild conditions, to improve selectivity, and to minimize waste, which are crucial for scalable and green processes.

Integrating catalysis within a circular economy framework is also central, emphasizing catalytic recycling and waste valorization to close the loop in chemical processes, reducing environmental impact. Computational catalysis and machine learning represent an exciting frontier, as computational methods and AI are now essential tools in catalyst design, enabling the prediction and optimization of catalytic behavior for more efficient discovery.

By synthesizing research at this intersection, this issue aims to drive advancements in green chemistry and energy, fostering catalytic solutions that support the transition toward a sustainable, low-carbon future.

Prof. Dr. Wajid Zaman
Prof. Dr. Muhammad Saeed Akhtar
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Catalysts is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • sustainable catalysis
  • green chemistry
  • energy transition
  • heterogeneous catalysis
  • renewable energy
  • hydrogen evolution
  • CO₂ conversion
  • biofuels
  • photocatalysis
  • electrocatalysis
  • biocatalysts
  • biomass valorization
  • transition metal catalysis
  • organometallic catalysis
  • circular economy
  • catalytic recycling
  • computational catalysis
  • machine learning
  • catalyst design
  • low-carbon future

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

19 pages, 3140 KB  
Article
A Novel Scaffold for Tick Management: Binding of Carbamoyl Carboxylic Acid Analogues to Arginine Kinase
by Jose F. Rojas-Cabeza, Elena N. Moreno-Cordova, Andrés Álvarez-Armenta, Christian L. Castro-Riquelme, Adriana Muhlia-Almazan, Alonso A. Lopez-Zavala, Hisila Santacruz-Ortega, Adrián Ochoa-Terán and Rogerio R. Sotelo-Mundo
Catalysts 2025, 15(10), 982; https://doi.org/10.3390/catal15100982 - 14 Oct 2025
Viewed by 440
Abstract
Ticks transmit diseases and harm animals worldwide, and their control primarily relies on pesticides. Resistance to these pesticides has developed consistently over centuries. Arginine Kinase (AK, EC 2.7.3.3) is a conserved, ancestral enzyme that provides reserve energy in emergency situations and a viable [...] Read more.
Ticks transmit diseases and harm animals worldwide, and their control primarily relies on pesticides. Resistance to these pesticides has developed consistently over centuries. Arginine Kinase (AK, EC 2.7.3.3) is a conserved, ancestral enzyme that provides reserve energy in emergency situations and a viable target for novel antiparasitic drugs. Our aim was to evaluate six carbamoyl carboxylic acid analogues (CCAs) as potential lead compounds by investigating their interaction with the active site of Rhipicephalus sanguineus AK (RsAK) using a structural modeling approach. The binding was characterized using fluorescence quenching (Stern–Volmer analysis) and molecular dynamics simulations. The simulations, performed with GROMACS using the CHARMM 26 force field over 100 ns, provided atomic-level insight into the ligand–protein interactions and stability. CCA4 exhibited the lowest dissociation constant (KD~13·10−6 M) among the analogues, which we attribute to its end moieties (carboxylate and a pyridine on the ends). Purely aromatic ends (CCA1) or those with dual carboxylates (CCA6) showed lower affinity, suggesting that electrostatic complementarity and steric fit are processes involved in the binding. Despite requiring optimization, the CCA scaffold represents a novel strategy for tick control. These compounds provide a foundation for developing synergistic agents to enhance the efficacy of sustainable acaricides. Full article
Show Figures

Graphical abstract

9 pages, 1753 KB  
Article
Photocatalytic Degradation of VOCs Using Ga2O3-Coated Mesh for Practical Applications
by Hyeongju Cha, Sunjae Kim, Jinhan Jung, Ji-Hyeon Park, Wan Sik Hwang, Dae-Woo Jeon and Hyunah Kim
Catalysts 2025, 15(10), 972; https://doi.org/10.3390/catal15100972 - 11 Oct 2025
Viewed by 425
Abstract
Volatile organic compounds (VOCs) are major contributors to air pollution, posing significant environmental and health risks. Here we report gallium oxide (Ga2O3)-coated mesh as a practical immobilized photocatalyst for VOC degradation under UVC irradiation. A 3 wt.% Ga2 [...] Read more.
Volatile organic compounds (VOCs) are major contributors to air pollution, posing significant environmental and health risks. Here we report gallium oxide (Ga2O3)-coated mesh as a practical immobilized photocatalyst for VOC degradation under UVC irradiation. A 3 wt.% Ga2O3 suspension was spray-coated onto the stainless-steel mesh, yielding a uniform coating with strong adhesion properties, as confirmed by cross-sectional analysis. Under identical conditions to a Ga2O3 powder, the Ga2O3-coated mesh delivered comparable VOC degradation rates and first-order kinetics while offering superior mechanical stability and ease of handling. Over five consecutive cycles, 93–95% of the VOC degradation efficiency was retained with negligible loss of activity, confirming excellent reusability. Fourier Transform Infrared Spectroscopy (FTIR) spectra of the Ga2O3-coated mesh after degradation reaction revealed significantly reduced VOC peaks, such as C=O and C-O absorption peaks, whereas spectra for the uncoated mesh changed only slightly. These results indicate that VOC degradation originates from the coated photocatalyst. Overall, these findings demonstrate that Ga2O3-coated mesh is a highly efficient, stable, and reusable platform for VOC removal, suggesting its potential for practical applications in air purification and environmental remediation. Full article
Show Figures

Graphical abstract

22 pages, 6790 KB  
Article
Reverse Steam Rising: A Novel Route to Hierarchical Nickel Organometallics for Enhanced Oxygen Evolution
by Nezar H. Khdary, Mamdouh E. Abdelsalam, Abdulrahman S. Alablan, Sami D. Alzahrani, Ahmad O. Fallatah and Muteb F. Alotaibi
Catalysts 2025, 15(10), 918; https://doi.org/10.3390/catal15100918 - 24 Sep 2025
Viewed by 712
Abstract
This work introduces the Reverse Steam Rising Process (RSRP), a novel dissolution method, for the preparation of highly homogeneous organo-nickel composites. This approach enables gradual material dissolution, resulting in improved material integration. We investigate two distinct synthetic pathways: a direct organic material–nickel composite [...] Read more.
This work introduces the Reverse Steam Rising Process (RSRP), a novel dissolution method, for the preparation of highly homogeneous organo-nickel composites. This approach enables gradual material dissolution, resulting in improved material integration. We investigate two distinct synthetic pathways: a direct organic material–nickel composite and a surfactant-assisted variation. Our findings demonstrate that the inclusion of a surfactant significantly improves the properties of the resulting organo-nickel composite. The RSRP method differs from traditional synthesis methods in that it utilizes reverse steam condensation to create a highly porous, multi-level structure. This unique structure significantly boosts the material’s electrocatalytic performance, particularly for the oxygen evolution reaction (OER). The Ni-MOF-CTAB catalyst exhibits an overpotential of 397 mV at 10 mA cm−2 and a Tafel slope of 183 mV dec−1, outperforming pristine Ni-MOF. The hierarchical design promotes superior ion and gas transport, while the distinctive organometallic configuration optimizes electronic interactions critical for OER activity. This innovative process enables precise control over both the micro- and nanoscale morphology of the nickel-based catalyst, ultimately leading to superior performance metrics. This advancement offers a new pathway for developing high-performance nickel organometallic materials for diverse electrocatalytic applications. Full article
Show Figures

Graphical abstract

17 pages, 7186 KB  
Article
Tuning High-Entropy Oxides for Oxygen Evolution Reaction Through Electrocatalytic Water Splitting: Effects of (MnFeNiCoX)3O4 (X = Cr, Cu, Zn, and Cd) on Electrocatalytic Performance
by Milad Zehtab Salmasi, Amir Narimani, Ali Omidkar and Hua Song
Catalysts 2025, 15(9), 827; https://doi.org/10.3390/catal15090827 - 1 Sep 2025
Viewed by 1066
Abstract
This research presents the development of spinel-type high-entropy oxide (HEO) catalysts with the general composition (MnFeNiCoX)3O4, where X represents Cr, Cu, Zn, and Cd, synthesized through a solution combustion method. The impact of the fifth metal element on the [...] Read more.
This research presents the development of spinel-type high-entropy oxide (HEO) catalysts with the general composition (MnFeNiCoX)3O4, where X represents Cr, Cu, Zn, and Cd, synthesized through a solution combustion method. The impact of the fifth metal element on the oxygen evolution reaction (OER) was systematically explored using structural, morphological, and electrochemical characterization techniques. Among the various compositions, the Cr-containing catalyst, (MnFeNiCoCr)3O4, displayed outstanding electrocatalytic behavior, delivering a notably low overpotential of 323 mV at a current density of 10 mA/cm2 in 1.0 M KOH—surpassing the performance of benchmark RuO2. Additionally, this material exhibited the smallest Tafel slope (56 mV/dec), the greatest double-layer capacitance (3.35 mF/cm2), and the most extensive electrochemically active surface area, all indicating enhanced charge transfer capability and high catalytic proficiency. The findings highlight the potential of element tailoring in HEOs as a promising strategy for optimizing water oxidation catalysis. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

41 pages, 3425 KB  
Review
Catalytic Nanomaterials for Soil and Groundwater Remediation: Global Research Trends (2010–2024)
by Motasem Y. D. Alazaiza, Tharaa M. Alzghoul, Madhusudhan Bangalore Ramu and Dia Eddin Nassani
Catalysts 2025, 15(10), 981; https://doi.org/10.3390/catal15100981 - 14 Oct 2025
Viewed by 517
Abstract
This study presents a comprehensive bibliometric analysis of 217 publications on nanomaterials for soil and groundwater remediation, sourced from the Scopus database, covering the period from 2010 to 2024. The findings highlight significant contributions from various countries, with India identified as the leading [...] Read more.
This study presents a comprehensive bibliometric analysis of 217 publications on nanomaterials for soil and groundwater remediation, sourced from the Scopus database, covering the period from 2010 to 2024. The findings highlight significant contributions from various countries, with India identified as the leading contributor, followed by China and the United States. This reflects robust international collaboration in addressing environmental contamination. The analysis also identifies influential journals in this field, particularly “Science of the Total Environment” and “Environmental Science and Technology”, which are recognized for their high citation impact and play a crucial role in disseminating research findings and advancing knowledge in nanomaterials for environmental remediation. A keyword co-occurrence analysis reveals six distinct clusters that emphasize critical research themes. The first cluster focuses on environmental toxicity, underscoring the risks posed by contaminants, particularly heavy metals and emerging pollutants such as PFAS, highlighting the need for advanced monitoring strategies. The second cluster showcases innovative nanoremediation technologies, particularly zero-valent iron (nZVI) and carbon nanotubes (CNTs), which are noted for their effectiveness in pollutant removal despite challenges like surface passivation and high production costs. The third cluster addresses heavy metals and phytoremediation, advocating integrated strategies that enhance crop resilience while managing soil contamination. The fourth cluster explores photocatalysis and advanced oxidation processes, demonstrating how nanomaterials can enhance pollutant degradation through light-activated catalytic methods. The fifth cluster emphasizes adsorption mechanisms for specific contaminants, such as arsenic and pharmaceuticals, suggesting targeted remediation strategies. Finally, the sixth cluster highlights the potential of nanomaterials in agriculture, focusing on their role in improving soil fertility and supporting plant growth. Overall, while nanomaterials demonstrate significant potential for effective environmental remediation, they also pose risks that necessitate careful consideration and further research. Future studies should prioritize optimizing these materials for practical applications, addressing both environmental health and agricultural productivity. Full article
Show Figures

Graphical abstract

22 pages, 2910 KB  
Review
Global Research Trends in Catalysis for Green Hydrogen Production from Wastewater: A Bibliometric Study (2010–2024)
by Motasem Y. D. Alazaiza, Al-Anoud Al-Yazeedi, Talal Al Wahaibi, Farouk Mjalli, Abdulkareem Abubakar, Mohammed Abd El Hameed and Mohammed Javeed Siddique
Catalysts 2025, 15(9), 915; https://doi.org/10.3390/catal15090915 - 22 Sep 2025
Cited by 1 | Viewed by 777
Abstract
By turning a waste stream into a clean energy source, green hydrogen generation from wastewater provides a dual solution to energy and environmental problems. This study presents a thorough bibliometric analysis of research trends in the field of green hydrogen generation from wastewater [...] Read more.
By turning a waste stream into a clean energy source, green hydrogen generation from wastewater provides a dual solution to energy and environmental problems. This study presents a thorough bibliometric analysis of research trends in the field of green hydrogen generation from wastewater between 2010 and 2024. A total of 221 publications were extracted from Scopus database, and VOSviewer (1.6.20) was used as a visualization tool to identify influential authors, institutions, collaborations, and thematic focus areas. The analysis revealed a significant increase in research output, with a peak of 122 publications in 2024, with a total of 705 citations. China had the most contributions with 60 publications, followed by India (30) and South Korea (26), indicating substantial regional involvement in Asia. Keyword co-occurrence and coauthorship network mapping revealed 779 distinct keywords grouped around key themes like electrolysis, hydrogen evolution reactions, and wastewater treatment. Significantly, this work was supported by contributions from 115 publication venues, with the International Journal of Hydrogen Energy emerging as the most active and cited source (40 articles, 539 citations). The multidisciplinary aspect of the area was highlighted by keyword co-occurrence analysis, which identified recurring themes including electrolysis, wastewater treatment, and hydrogen evolution processes. Interestingly, the most-cited study garnered 131 citations and discussed the availability of unconventional water sources for electrolysis. Although there is growing interest in the field, it is still in its initial phases, indicating a need for additional research, particularly in developing countries. This work offers a basic overview for researchers and policymakers who are focused on promoting the sustainable generation of green hydrogen from wastewater. Full article
Show Figures

Figure 1

26 pages, 3695 KB  
Review
Metal-Modified Zeolites for Catalytic Dehydration of Bioethanol to Ethylene: Mechanisms, Preparation, and Performance
by Hailong Ma, Shiwen Zhang, Hui Gao and Dongsheng Wen
Catalysts 2025, 15(8), 791; https://doi.org/10.3390/catal15080791 - 20 Aug 2025
Cited by 1 | Viewed by 1678
Abstract
With increasing demands for sustainable chemical production, bioethanol-derived ethylene offers a promising alternative to petroleum-based routes. This review examines recent advances in metal-modified zeolites for the catalytic conversion of bioethanol to ethylene. The fundamental reaction mechanisms and preparation methodologies are systematically analysed. Various [...] Read more.
With increasing demands for sustainable chemical production, bioethanol-derived ethylene offers a promising alternative to petroleum-based routes. This review examines recent advances in metal-modified zeolites for the catalytic conversion of bioethanol to ethylene. The fundamental reaction mechanisms and preparation methodologies are systematically analysed. Various metal modification strategies are discussed alongside their effects on catalyst properties. The influence of zeolite framework characteristics, metal species selection, and reaction parameters on catalytic performance are evaluated. Detailed attention is given to deactivation mechanisms and strategies for catalyst regeneration and lifetime extension. The analysis provides insights into rational catalyst design for sustainable ethylene production, highlighting opportunities for future research in enhancing catalyst stability and efficiency. Full article
Show Figures

Graphical abstract

Back to TopTop