Cost-Effective and Facile Preparation of Fe2O3 Nanoparticles Decorated N-Doped Mesoporous Carbon Materials: Transforming Mulberry Leaf into a Highly Active Electrocatalyst for Oxygen Reduction Reactions
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental
3.1. Chemicals
3.2. Apparatus
3.3. Preparation of Fe2O3/N-PCs Catalysts
3.4. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bashyam, R.; Zelenay, P. A Class of Non-Precious Metal Composite Catalysts for Fuel Cells. Nature 2006, 443, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Xue, Y.; Qu, L.; Choi, H.-J.; Baek, J.-B. Metal-Free Catalysts for Oxygen Reduction Reaction. Chem. Rev. 2015, 115, 4823–4892. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.; Liao, S.; You, C.; Chen, R. Phosphorus and Nitrogen Dual Doped and Simultaneously Reduced Graphene Oxide with High Surface Area as Efficient Metal-Free Electrocatalyst for Oxygen Reduction. Catalysts 2015, 5, 981–991. [Google Scholar] [CrossRef]
- Zhou, X.; Qiao, J.; Yang, L.; Zhang, J. A Review of Graphene-Based Nanostructural Materials for Both Catalyst Supports and Metal-Free Catalysts in Pem Fuel Cell Oxygen Reduction Reactions. Adv. Energy Mater. 2014, 4, 1289–1295. [Google Scholar] [CrossRef]
- Osmieri, L.; Escudero-Cid, R.; Armandi, M.; Videla, A.H.M.; Fierro, J.L.G.; Ocón, P.; Specchia, S. Fe-N/C Catalysts for Oxygen Reduction Reaction Supported on Different Carbonaceous Materials. Performance in Acidic and Alkaline Direct Alcohol Fuel Cells. Appl. Catal. B 2017, 205, 637–653. [Google Scholar] [CrossRef]
- He, C.; Zhang, T.; Sun, F.; Li, C.; Lin, Y. Fe/N Co-Doped Mesoporous Carbon Nanomaterial as an Efficient Electrocatalyst for Oxygen Reduction Reaction. Electrochim. Acta. 2017, 231, 549–556. [Google Scholar] [CrossRef]
- Wei, Q.; Tong, X.; Zhang, G.; Qiao, J.; Gong, Q.; Sun, S. Nitrogen-Doped Carbon Nanotube and Graphene Materials for Oxygen Reduction Reactions. Catalysts 2015, 5, 1574–1602. [Google Scholar] [CrossRef]
- Zhang, T.; He, C.; Sun, F.; Ding, Y.; Wang, M.; Peng, L.; Wang, J.; Lin, Y. Co3O4 Nanoparticles Anchored on Nitrogen-Doped Reduced Graphene Oxide as a Multifunctional Catalyst for H2O2 Reduction, Oxygen Reduction and Evolution Reaction. Sci. Rep. 2017, 7, 43638. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.P.; Bae, E.J.; Yu, J.-S. Fe–P: A New Class of Electroactive Catalyst for Oxygen Reduction Reaction. J. Am. Chem. Soc. 2015, 137, 3165–3168. [Google Scholar] [CrossRef] [PubMed]
- Sa, Y.J.; Seo, D.-J.; Woo, J.; Lim, J.T.; Cheon, J.Y.; Yang, S.Y.; Lee, J.M.; Kang, D.; Shin, T.J.; Shin, H.S. A General Approach to Preferential Formation of Active Fe-N X Sites in Fe-N/C Electrocatalysts for Efficient Oxygen Reduction Reaction. J. Am. Chem. Soc. 2016, 138, 15046–15056. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; You, S.; Wang, W.; Liu, G.; Qi, D.; Chen, X.; Qu, J.; Ren, N. Biomass-Derived Porous Fe3C/Tungsten Carbide/Graphitic Carbon Nanocomposite for Efficient Electrocatalysis of Oxygen Reduction. ACS Appl. Mater. Interfaces 2016, 8, 32307–32316. [Google Scholar] [CrossRef] [PubMed]
- Park, M.J.; Lee, J.H.; Hembram, K.; Lee, K.-R.; Han, S.S.; Yoon, C.W.; Nam, S.-W.; Kim, J.Y. Oxygen Reduction Electrocatalysts Based on Coupled Iron Nitride Nanoparticles with Nitrogen-Doped Carbon. Catalysts 2016, 6, 86. [Google Scholar] [CrossRef]
- Zhang, T.; He, C.; Li, L.; Lin, Y. Preparation of Nitrogen-Doped Carbon Nanoblocks with High Electrocatalytic Activity for Oxygen Reduction Reaction in Alkaline Solution. Chin. J. Catal. 2016, 37, 1275–1282. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Wilkinson, D.P.; Zhang, J. Noncarbon Support Materials for Polymer Electrolyte Membrane Fuel Cell Electrocatalysts. Chem. Rev. 2011, 111, 7625–7651. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; Mahmood, A.; Liang, Z.; Zou, R.; Guo, S. Earth-Abundant Nanomaterials for Oxygen Reduction. Angew. Chem. Int. Ed. 2016, 55, 2650–2676. [Google Scholar] [CrossRef] [PubMed]
- Tachibana, N.; Ikeda, S.; Yukawa, Y.; Kawaguchi, M. Highly Porous Nitrogen-Doped Carbon Nanoparticles Synthesized Via Simple Thermal Treatment and Their Electrocatalytic Activity for Oxygen Reduction Reaction. Carbon 2017, 115, 515–525. [Google Scholar] [CrossRef]
- Xue, H.; Wang, T.; Gong, H.; Guo, H.; Fan, X.; Song, L.; Xia, W.; Feng, Y.; He, J. Co3O4 Nanoparticle-Decorated N-Doped Mesoporous Carbon Nanofibers as an Efficient Catalyst for Oxygen Reduction Reaction. Catalysts 2017, 7, 189. [Google Scholar] [CrossRef]
- He, C.; Li, L.; Zhang, T.; Sun, F.; Wang, C.; Lin, Y. Nitrogen-Doped Amorphous Carbon with Effective Electrocatalytic Activity toward Oxygen Reduction Reaction. Mater. Res. Bull. 2016, 84, 118–123. [Google Scholar] [CrossRef]
- Chung, M.W.; Choi, C.H.; Lee, S.Y.; Woo, S.I. Dimensionality-Dependent Oxygen Reduction Activity on Doped Graphene: Is Graphene a Promising Substrate for Electrocatalysis? Nano Energy 2015, 11, 526–532. [Google Scholar] [CrossRef]
- Zhu, H.; Sun, Z.; Chen, M.; Cao, H.; Li, K.; Cai, Y.; Wang, F. Highly Porous Composite Based on Tungsten Carbide and N-Doped Carbon Aerogels for Electrocatalyzing Oxygen Reduction Reaction in Acidic and Alkaline Media. Electrochim. Acta. 2017, 236, 154–160. [Google Scholar] [CrossRef]
- Rivera, L.M.; Fajardo, S.; Arévalo, M.D.C.; García, G.; Pastor, E. S-and N-Doped Graphene Nanomaterials for the Oxygen Reduction Reaction. Catalysts 2017, 7, 278. [Google Scholar] [CrossRef]
- Zheng, J.; Zhou, W.; Liu, T.; Liu, S.; Wang, C.; Guo, L. Homologous Nio//Ni2p Nanoarrays Grown on Nickel Foams: A Well Matched Electrode Pair with High Stability in Overall Water Splitting. Nanoscale 2017, 9, 4409–4418. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.-S.; Yang, S.; Sun, Y.; Parvez, K.; Feng, X.; Müllen, K. 3D Nitrogen-Doped Graphene Aerogel-Supported Fe3O4 Nanoparticles as Efficient Electrocatalysts for the Oxygen Reduction Reaction. J. Am. Chem. Soc. 2012, 134, 9082–9085. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Ge, L.; Chen, Z.-G.; Liang, F.; Xu, H.-Y.; Motuzas, J.; Julbe, A.; Zhu, Z. Amorphous Iron Oxide Decorated 3D Heterostructured Electrode for Highly Efficient Oxygen Reduction. Chem. Mater. 2011, 23, 4193–4198. [Google Scholar] [CrossRef]
- Li, M.; Xiong, Y.; Liu, X.; Han, C.; Zhang, Y.; Bo, X.; Guo, L. Iron and Nitrogen Co-Doped Carbon Nanotubes@Hollow Carbon Fibers Derived from Plant Biomass as Efficient Catalysts for Oxygen Reduction Reaction. J. Mater. Chem. A 2015, 3, 9658–9667. [Google Scholar] [CrossRef]
- Zhou, K.; Zhou, W.; Liu, X.; Wang, Y.; Wan, J.; Chen, S. Nitrogen Self-Doped Porous Carbon from Surplus Sludge as Metal-Free Electrocatalysts for Oxygen Reduction Reactions. ACS Appl. Mater. Interfaces 2014, 6, 14911–14918. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-C.; Hou, P.-X.; Zhao, S.-Y.; Liu, C.; Tang, D.-M.; Cheng, M.; Zhang, F.; Cheng, H.-M. A 3D Bi-Functional Porous N-Doped Carbon Microtube Sponge Electrocatalyst for Oxygen Reduction and Oxygen Evolution Reactions. Energy Environ. Sci. 2016, 9, 3079–3084. [Google Scholar] [CrossRef]
- Raj, C.R.; Samanta, A.; Noh, S.H.; Mondal, S.; Okajima, T.; Ohsaka, T. Emerging New Generation Electrocatalysts for the Oxygen Reduction Reaction. J. Mater. Chem. A. 2016, 4, 11156–11178. [Google Scholar] [CrossRef]
- Zang, Y.; Zhang, H.; Zhang, X.; Liu, R.; Liu, S.; Wang, G.; Zhang, Y.; Zhao, H. Fe/Fe2O3 Nanoparticles Anchored on Fe-N-Doped Carbon Nanosheets as Bifunctional Oxygen Electrocatalysts for Rechargeable Zinc-Air Batteries. Nano Res. 2016, 9, 2123–2137. [Google Scholar] [CrossRef]
- Vezzù, K.; Delpeuch, A.B.; Negro, E.; Polizzi, S.; Nawn, G.; Bertasi, F.; Pagot, G.; Artyushkova, K.; Atanassov, P.; Di Noto, V. Fe-Carbon Nitride “Core-Shell” Electrocatalysts for the Oxygen Reduction Reaction. Electrochim. Acta. 2016, 222, 1778–1791. [Google Scholar] [CrossRef]
- Wu, H.; Geng, J.; Ge, H.; Guo, Z.; Wang, Y.; Zheng, G. Egg-Derived Mesoporous Carbon Microspheres as Bifunctional Oxygen Evolution and Oxygen Reduction Electrocatalysts. Adv. Energy Mater. 2016, 6, 1600794. [Google Scholar] [CrossRef]
- Hu, B.; Wang, K.; Wu, L.; Yu, S.H.; Antonietti, M.; Titirici, M.M. Engineering Carbon Materials from the Hydrothermal Carbonization Process of Biomass. Adv. Mater. 2010, 22, 813–828. [Google Scholar] [CrossRef] [PubMed]
- Ma, N.; Jia, Y.A.; Yang, X.; She, X.; Zhang, L.; Peng, Z.; Yao, X.; Yang, D. Seaweed Biomass Derived (Ni, Co)/Cnt Nanoaerogels: Efficient Bifunctional Electrocatalysts for Oxygen Evolution and Reduction Reactions. J. Mater. Chem. A. 2016, 4, 6376–6384. [Google Scholar] [CrossRef]
- Li, Q.; Cao, R.; Cho, J.; Wu, G. Nanocarbon Electrocatalysts for Oxygen Reduction in Alkaline Media for Advanced Energy Conversion and Storage. Adv. Energy Mater. 2014, 4, 1301415. [Google Scholar] [CrossRef]
- Choi, C.H.; Chung, M.W.; Kwon, H.C.; Chung, J.H.; Woo, S.I. Nitrogen-Doped Graphene/Carbon Nanotube Self-Assembly for Efficient Oxygen Reduction Reaction in Acid Media. Appl. Catal. B 2014, 144, 760–766. [Google Scholar] [CrossRef]
- Yang, G.; Choi, W.; Pu, X.; Yu, C. Scalable Synthesis of Bi-Functional High-Performance Carbon Nanotube Sponge Catalysts and Electrodes with Optimum C-N-Fe Coordination for Oxygen Reduction Reaction. Energy Environ. Sci. 2015, 8, 1799–1807. [Google Scholar] [CrossRef]
- Bennett, J.A.; Wilson, K.; Lee, A.F. Catalytic Applications of Waste Derived Materials. J. Mater. Chem. A. 2016, 4, 3617–3637. [Google Scholar] [CrossRef]
- González-García, E.; Martín Martín, G. Biomass Yield and Nutrient Content of a Tropical Mulberry Forage Bank: Effects of Season, Harvest Frequency and Fertilization Rate. Grass Forage Sci. 2017, 72, 248–260. [Google Scholar] [CrossRef]
- Lee, S.; Kwak, D.-H.; Han, S.-B.; Lee, Y.-W.; Lee, J.-Y.; Choi, I.-A.; Park, H.-S.; Park, J.-Y.; Park, K.-W. Bimodal Porous Iron/Nitrogen-Doped Highly Crystalline Carbon Nanostructure as a Cathode Catalyst for the Oxygen Reduction Reaction in an Acid Medium. ACS Catal. 2016, 6, 5095–5102. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, L.-B.; Jiang, W.-J.; Zhang, X.; Chen, Y.-Y.; Wei, Z.; Wan, L.-J.; Hu, J.-S. Sodium Chloride-Assisted Green Synthesis of a 3D Fe-N-C Hybrid as a Highly Active Electrocatalyst for the Oxygen Reduction Reaction. J. Mater. Chem. A. 2016, 4, 7781–7787. [Google Scholar] [CrossRef]
- Zhou, D.; Yang, L.; Yu, L.; Kong, J.; Yao, X.; Liu, W.; Xu, Z.; Lu, X. Fe/N/C Hollow Nanospheres by Fe (iii)-Dopamine Complexation-Assisted One-Pot Doping as Nonprecious-Metal Electrocatalysts for Oxygen Reduction. Nanoscale 2015, 7, 1501–1509. [Google Scholar] [CrossRef] [PubMed]
- Pedrazzetti, L.; Soltani, P.; Mezzi, A.; Kaciulis, S.; Nobili, L.; Tommasini, M.M.S.; Magagnin, L. Galvanic Displaced Nickel-Silicon and Copper-Silicon Interfaces: A Dft Investigation. ECS Trans. 2017, 75, 7–13. [Google Scholar] [CrossRef]
- Deng, C.; Ding, F.; Li, X.; Guo, Y.; Ni, W.; Yan, H.; Sun, K.; Yan, Y.-M. Templated-Preparation of a Three-Dimensional Molybdenum Phosphide Sponge as a High Performance Electrode for Hydrogen Evolution. J. Mater. Chem. A 2016, 4, 59–66. [Google Scholar] [CrossRef]
- Zhang, Y.-X.; Guo, X.; Zhai, X.; Yan, Y.-M.; Sun, K.-N. Diethylenetriamine (Deta)—Assisted Anchoring of Co3o4 Nanorods on Carbon Nanotubes as Efficient Electrocatalysts for the Oxygen Evolution Reaction. J. Mater. Chem. A 2015, 3, 1761–1768. [Google Scholar] [CrossRef]
- Yang, L.; Su, Y.; Li, W.; Kan, X. Fe/N/C Electrocatalysts for Oxygen Reduction Reaction in Pem Fuel Cells Using Nitrogen-Rich Ligand as Precursor. J. Phys. Chem. C 2015, 119, 11311–11319. [Google Scholar] [CrossRef]
- Guo, Z.; Xiao, Z.; Ren, G.; Xiao, G.; Zhu, Y.; Dai, L.; Jiang, L. Natural Tea-Leaf-Derived, Ternary-Doped 3D Porous Carbon as a High-Performance Electrocatalyst for the Oxygen Reduction Reaction. Nano Res. 2016, 9, 1244–1255. [Google Scholar] [CrossRef]
- Wang, M.-Q.; Yang, W.-H.; Wang, H.-H.; Chen, C.; Zhou, Z.-Y.; Sun, S.-G. Pyrolyzed Fe-N-C Composite as an Efficient Non-Precious Metal Catalyst for Oxygen Reduction Reaction in Acidic Medium. ACS Catal. 2014, 4, 3928–3936. [Google Scholar] [CrossRef]
- Yu, L.; Shen, Y.; Huang, Y. Fe-N-C Catalyst Modified Graphene Sponge as a Cathode Material for Lithium-Oxygen Battery. J. Alloys Compd. 2014, 595, 185–191. [Google Scholar] [CrossRef]
- Videla, A.H.A.M.; Ban, S.; Specchia, S.; Zhang, L.; Zhang, J. Non-Noble Fe-N X Electrocatalysts Supported on the Reduced Graphene Oxide for Oxygen Reduction Reaction. Carbon 2014, 76, 386–400. [Google Scholar] [CrossRef]
- Huang, L.; Zhao, C.; Yao, Y.; You, Y.; Wang, Z.; Wu, C.; Sun, Y.; Tian, J.; Liu, J.; Zou, Z. Fe/N/C Catalyst with High Activity for Oxygen Reduction Reaction Derived from Surfactant Modified Porous Carbon-Supported Melamine-Formaldehyde Resin. Int. J. Hydrog. Energy 2016, 41, 11090–11098. [Google Scholar] [CrossRef]
- Parvez, K.; Yang, S.; Hernandez, Y.; Winter, A.; Turchanin, A.; Feng, X.; Müllen, K. Nitrogen-Doped Graphene and Its Iron-Based Composite as Efficient Electrocatalysts for Oxygen Reduction Reaction. ACS Nano 2012, 6, 9541–9550. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ding, F.; Deng, C.; Zhen, S.; Li, X.; Xue, Y.; Yan, Y.-M.; Sun, K. Crystal Plane-Dependent Electrocatalytic Activity of Co3O4 toward Oxygen Evolution Reaction. Catal. Commun. 2015, 67, 78–82. [Google Scholar] [CrossRef]
- Wan, W.; Wang, Q.; Zhang, L.; Liang, H.; Chen, P.; Yu, S.H. N-, P- and Fe- Tridoped Nanoporous Carbon Derived from Plant Biomass: An Excellent Oxygen Reduction Electrocatalyst for Zinc-Air Battery. J. Mater. Chem. A 2016, 4, 8602–8609. [Google Scholar] [CrossRef]
- Razmjooei, F.; Singh, K.P.; Yu, J.S. Superior Pore Network Retention of Carbon Derived from Naturally Dried Ginkgo Leaves and Its Enhanced Oxygen Reduction Performance. Catal. Today 2015, 260, 148–157. [Google Scholar] [CrossRef]
- Gao, S.; Fan, H.; Zhang, S. Nitrogen-Enriched Carbon from Bamboo Fungus with Superior Oxygen Reduction Reaction Activity. J. Mater. Chem. A 2014, 2, 18263–18270. [Google Scholar] [CrossRef]
- Guo, C.; Liao, W.; Li, Z.; Sun, L.; Chen, C. Easy Conversion of Protein-Rich Enoki Mushroom Biomass to a Nitrogen-Doped Carbon Nanomaterial as a Promising Metal-Free Catalyst for Oxygen Reduction Reaction. Nanoscale 2015, 7, 15990. [Google Scholar] [CrossRef] [PubMed]
Catalyst | Onset Potential (V) | Electron Transfer Number (n) | Electrolyte | Type of Biomass | Reference |
---|---|---|---|---|---|
Fe/Fe2O3@ Fe-N-C-1000 | 0.92 | 4.00 | 0.1M KOH | Shrimp Shells | [29] |
Egg-CMS | 0.84 | 3.11 | 0.1M KOH | Eggs | [31] |
HDPC-800 | 0.95 | 3.99 | 0.1M KOH | Tea Leaves | [46] |
N-P-Fe-C | 0.957 | 3.99 | 0.1M KOH | Corn Silk | [53] |
LY-1000 | 0.913 | 3.78 | 0.1M KOH | Ginkgo Leaves | [54] |
Fe/N/CNT@PCF | 0.862 | 3.90 | 0.1M KOH | Catkins | [25] |
HAZ-800 | 0.87 | 3.60 | 0.1M KOH | Bamboo Fungus | [55] |
N-C@CNT-900 | 0.94 | 3.90 | 0.1M KOH | Enoki Mushroom | [56] |
Fe2O3/N-PCs-850 | 0.93 | 3.90 | 0.1M KOH | Mulberry leaves | This work |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Guan, L.; Li, C.; Zhao, J.; Wang, M.; Peng, L.; Wang, J.; Lin, Y. Cost-Effective and Facile Preparation of Fe2O3 Nanoparticles Decorated N-Doped Mesoporous Carbon Materials: Transforming Mulberry Leaf into a Highly Active Electrocatalyst for Oxygen Reduction Reactions. Catalysts 2018, 8, 101. https://doi.org/10.3390/catal8030101
Zhang T, Guan L, Li C, Zhao J, Wang M, Peng L, Wang J, Lin Y. Cost-Effective and Facile Preparation of Fe2O3 Nanoparticles Decorated N-Doped Mesoporous Carbon Materials: Transforming Mulberry Leaf into a Highly Active Electrocatalyst for Oxygen Reduction Reactions. Catalysts. 2018; 8(3):101. https://doi.org/10.3390/catal8030101
Chicago/Turabian StyleZhang, Tingting, Lihao Guan, Changqing Li, Junfeng Zhao, Manchao Wang, Lin Peng, Jiahui Wang, and Yuqing Lin. 2018. "Cost-Effective and Facile Preparation of Fe2O3 Nanoparticles Decorated N-Doped Mesoporous Carbon Materials: Transforming Mulberry Leaf into a Highly Active Electrocatalyst for Oxygen Reduction Reactions" Catalysts 8, no. 3: 101. https://doi.org/10.3390/catal8030101
APA StyleZhang, T., Guan, L., Li, C., Zhao, J., Wang, M., Peng, L., Wang, J., & Lin, Y. (2018). Cost-Effective and Facile Preparation of Fe2O3 Nanoparticles Decorated N-Doped Mesoporous Carbon Materials: Transforming Mulberry Leaf into a Highly Active Electrocatalyst for Oxygen Reduction Reactions. Catalysts, 8(3), 101. https://doi.org/10.3390/catal8030101