A Review on Ultrasonic Catalytic Microbubbles Ozonation Processes: Properties, Hydroxyl Radicals Generation Pathway and Potential in Application
Abstract
:1. Introduction
- direct oxidation based on O3 molecule through electrophilic, nucleophilic and dipolar addition, all of which are comparatively slow and selective; and,
- indirect oxidation based on OH·, which is capable of oxidizing refractory contaminants to CO2 and H2O in a fast and non-selective way.
2. Ozonation-Based Microbubble Technology
2.1. Properties of Microbubble
2.2. Generation of Hydroxyl Radicals
2.3. Properties of Ozone-Based Microbubbles Technology
- the shrinking and collapse of ozone microbubbles, which reactive oxygen species generated at interface of bubbles; and,
- the self-decomposition of ozone molecules, which occurs in bulk solution.
3. Ultrasonic Catalytic Ozonation
3.1. Ultrasonic Technology
- chemical effect: this extreme circumstance would provide a specific pathway for chemical reactions happen; the generated OH· by pyrolysis inside the cavity and near the interface of the cavity would oxidize organic matters non-selectively; and,
- physical effect: the severe turbulence in liquid that is caused by cavitation bubbles could benefit the mixing of target organics and oxidizing agents/catalysts.
3.2. Properties of Ozone-Based Microbubbles Technology
4. Ultrasonic Catalytic Microbubbles Ozonation Process
4.1. Properties of This Hybrid Technology and Generation Pathway of Hydroxyl Radicals
4.2. Typical Experimental Operating Parameters
4.2.1. Initial pH
4.2.2. Ozone Dosage
4.2.3. Intake Flow Rate
4.2.4. Operating Temperature
4.2.5. Bubbles Size Distribution
4.2.6. Ultrasonic Frequency
4.2.7. Ultrasonic Power Density
4.2.8. Natural Water Constituents
5. Conclusions
- the economic feasibility of ultrasonic-assisted microbubble ozonation process at industrial scale should be verified;
- enhancement mechanism of this technology is still unclear. Therefore, in-depth studies should be conducted. To accelerate degradation efficacy and improve ozone utilization in the field of ozone-based AOPs, parameters such as: ozone mass transfer efficiency, ozone utilization, ozone decay rate, amount of OH·, COD removal, TOC removal and BOD removal, et al., ought to be measured at certain given times;
- microelements/trace elements that exist in natural water can be chosen as target substances. A point must be emphasized here is that initial concentration of target substance in treatment of simulated wastewater should on basis of original concentration; and,
- real wastewater with complex components and high COD value (> 1000 mg/L) can be selected as the treatment object, as it is the fundamental aim of academic research. Initial properties of effluents should be characterized before studies undertaken.
Author Contributions
Funding
Conflicts of Interest
References
- Nawrocki, J.; Kasprzyk-Hordern, B. The efficiency and mechanisms of catalytic ozonation. Appl. Catal. B Environ. 2010, 99, 27–42. [Google Scholar] [CrossRef]
- Boczkaj, G.; Fernandes, A. Wastewater treatment by means of advanced oxidation processes at basic pH conditions: A review. Chem. Eng. J. 2017, 320, 608–633. [Google Scholar] [CrossRef]
- Yang, T.T.; Peng, J.M.; Zheng, Y.; He, X.; Hou, Y.D.; Wu, L.; Fu, X.Z. Enhanced photocatalytic ozonation degradation of organic pollutants by ZnO modified TiO2 nanocomposites. Appl. Catal. B Environ. 2018, 221, 223–234. [Google Scholar] [CrossRef]
- Merle, T.; Pronk, W.; Gunten, U.V. MEMBRO3X—A Novel combination of a Membrane Contactor with Advanced Oxidation (O3/H2O2) for Simultaneous Micropollutant Abatement and Bromate Minimization. Environ. Sci. Technol. Lett. 2017, 4, 180–185. [Google Scholar] [CrossRef]
- Lucas, M.S.; Reis, N.M.; Puma, G.L. Intensification of ozonation processes in a novel, compact, multi-orifice oscillatory baffled column. Chem. Eng. J. 2016, 296, 335–339. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.L.; Cheng, F.Q.; Wang, D.S. Interaction of ozone and organic matter in coagulation with inorganic polymer flocculant-PACl: Role of organic components. Desalination 2009, 249, 596–601. [Google Scholar] [CrossRef] [Green Version]
- Shangguan, Y.; Yu, S.; Gong, C.; Wang, Y.; Yang, W.; Hou, L. A Review of Microbubble and its Applications in Ozonation. IOP Conf. Ser. 2018, 128, 012149. [Google Scholar] [CrossRef] [Green Version]
- Stylianou, S.K.; Kostoglou, M.; Zouboulis, A.I. Ozone Mass Transfer Studies in a Hydrophobized Ceramic Membrane Contactor: Experiments and Analysis. Ind. Eng. Chem. Res. 2016, 55, 7587–7597. [Google Scholar] [CrossRef]
- Qi, Y. Ozonation of Water and Waste Water: A Practical Guide to Understanding Ozone and Its Applications. Int. J. Environ. Stud. 2010, 67, 795–796. [Google Scholar] [CrossRef]
- Khuntia, S.; Majumder, S.K.; Ghosh, P. Quantitative prediction of generation of hydroxyl radicals from ozone microbubbles. Chem. Eng. Res. Des. 2015, 98, 231–239. [Google Scholar] [CrossRef]
- Bamperng, S.; Suwannachart, T.; Atchariyawut, S.; Jiraratananon, R. Ozonation of dye wastewater by membrane contactor using PVDF and PTFE membranes. Sep. Purif. Technol. 2010, 72, 186–193. [Google Scholar] [CrossRef]
- Hollender, J.; Zimmermann, S.G.; Koepke, S.; Krauss, M.; McArdell, C.S.; Ort, C.; Singer, H.; von Gunten, U.; Siegrist, H. Elimination of Organic Micropollutants in a Municipal Wastewater Treatment Plant Upgraded with a Full-Scale Post-Ozonation Followed by Sand Filtration. Environ. Sci. Technol. 2009, 43, 7862–7869. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Li, Y.Y.; Yu, H.; Zhang, K.; Wang, X.W.; Chen, X.F.; Yue, J.; Huo, T.X.; Ge, H.W.; Alamry, K.A.; et al. A fluorescence probe for highly selective and sensitive detection of gaseous ozone based on excited-state intramolecular proton transfer mechanism. Sens. Actuator B Chem. 2018, 266, 717–723. [Google Scholar] [CrossRef]
- Kim, C.S.; Alexis, N.E.; Rappold, A.G.; Kehrl, H.; Hazucha, M.J.; Lay, J.C.; Schmitt, M.T.; Case, M.; Devlin, R.B.; Peden, D.B.; et al. Lung Function and Inflammatory Responses in Healthy Young Adults Exposed to 0.06 ppm Ozone for 6.6 Hours. Am. J. Respir. Crit. Care Med. 2011, 183, 1215–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, Y.; Krishnakumar, S.; Yu, H.; Ramishetti, S.; Deng, L.W.; Wang, S.H.; Huang, L.; Huang, D.J. Nickel(II) Dithiocarbamate Complexes Containing Sulforhodamine B as Fluorescent Probes for Selective Detection of Nitrogen Dioxide. J. Am. Chem. Soc. 2013, 135, 5312–5315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kukuzaki, M.; Fujimoto, K.; Kai, S.; Ohe, K.; Oshima, T.; Baba, Y. Ozone mass transfer in an ozone-water contacting process with Shirasu porous glass (SPG) membranes-A comparative study of hydrophilic and hydrophobic membranes. Sep. Purif. Technol. 2010, 72, 347–356. [Google Scholar] [CrossRef]
- Ikhlaq, A.; Brown, D.R.; Kasprzyk-Hordern, B. Mechanisms of catalytic ozonation on alumina and zeolites in water: Formation of hydroxyl radicals. Appl. Catal. B Environ. 2012, 123, 94–106. [Google Scholar] [CrossRef]
- Tehrani-Bagha, A.R.; Mahmoodi, N.M.; Menger, F.M. Degradation of a persistent organic dye from colored textile wastewater by ozonation. Desalination 2010, 260, 34–38. [Google Scholar] [CrossRef]
- Zhang, T.; Croue, J.P. Catalytic ozonation not relying on hydroxyl radical oxidation: A selective and competitive reaction process related to metal-carboxylate complexes. Appl. Catal. B Environ. 2014, 144, 831–839. [Google Scholar] [CrossRef]
- Faria, P.C.C.; Orfao, J.J.M.; Pereira, M.F.R. A novel ceria-activated carbon composite for the catalytic ozonation of carboxylic acids. Catal. Commun. 2008, 9, 2121–2126. [Google Scholar] [CrossRef]
- Kulkarni, A.A. Mass Transfer in Bubble Column Reactors: Effect of Bubble Size Distribution. Ind. Eng. Chem. Res. 2007, 46, 2205–2211. [Google Scholar] [CrossRef]
- Stylianou, S.K.; Sklari, S.D.; Zamboulis, D.; Zaspalis, V.T.; Zouboulis, A.I. Development of bubble-less ozonation and membrane filtration process for the treatment of contaminated water. J. Membr. Sci. 2015, 492, 40–47. [Google Scholar] [CrossRef]
- Shin, W.T.; Mirmiran, A.; Yiacoumi, S.; Tsouris, C. Ozonation using microbubbles formed by electric fields. Sep. Purif. Technol. 1999, 15, 271–282. [Google Scholar] [CrossRef]
- Yao, K.N.; Chi, Y.; Wang, F.; Yan, J.H.; Ni, M.J.; Cen, K.F. The effect of microbubbles on gas-liquid mass transfer coefficient and degradation rate of COD in wastewater treatment. Water Sci. Technol. 2016, 73, 1969–1977. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Ng, W.J.; Liu, Y. Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere 2011, 84, 1175–1180. [Google Scholar] [CrossRef] [PubMed]
- Muroyama, K.; Imai, K.; Oka, Y.; Hayashi, J. Mass transfer properties in a bubble column associated with micro-bubble dispersions. Chem. Eng. Sci. 2013, 100, 464–473. [Google Scholar] [CrossRef]
- Serizawa, A.; Inui, T.; Yahiro, T.; Kawara, Z. Pseudo-Laminarization of Micro-Bubble Containing Milky Bubbly Flow in A Pipe. Multiph. Sci. Technol. 2003, 17, 79–101. [Google Scholar] [CrossRef]
- Maeda, Y.; Hosokawa, S.; Baba, Y.; Tomiyama, A.; Ito, Y. Generation mechanism of micro-bubbles in a pressurized dissolution method. Exp. Therm. Fluid Sci. 2015, 60, 201–207. [Google Scholar] [CrossRef]
- Takahashi, M. ζ Potential of Microbubbles in Aqueous Solutions: Electrical Properties of the Gas−Water Interface. J. Phys. Chem. B 2005, 109, 21858–21864. [Google Scholar] [CrossRef]
- Masayoshi, T.; Taro, K.; Yoshitaka, Y.; Hirofumi, O.; Shouzou, H.; Hideaki, S. Effect of Shrinking Microbubble on Gas Hydrate Formation. J. Phys. Chem. B 2003, 107, 2171–2173. [Google Scholar]
- Nawrocki, J. Catalytic ozonation in water: Controversies and questions. Discussion paper. Appl. Catal. B Environ. 2013, 142, 465–471. [Google Scholar] [CrossRef]
- Kasprzyk-Hordern, B.; Ziółek, M.; Nawrocki, J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Appl. Catal. B Environ. 2003, 46, 639–669. [Google Scholar] [CrossRef]
- Wei, C.H.; Zhang, F.Z.; Hu, Y.; Feng, C.H.; Wu, H.Z. Ozonation in water treatment: THE generation, basic properties of ozone and its practical application. Rev. Chem. Eng. 2017, 33, 49–89. [Google Scholar] [CrossRef]
- Zhao, L.; Ma, W.C.; Ma, J.; Wen, G.; Liu, Q.L. Relationship between acceleration of hydroxyl radical initiation and increase of multiple-ultrasonic field amount in the process of ultrasound catalytic ozonation for degradation of nitrobenzene in aqueous solution. Ultrason. Sonochem. 2015, 22, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Mochida, K.; Naito, T.; Yasuda, K. Effects of Operational Conditions on 1,4-Dioxane Degradation by Combined Use of Ultrasound and Ozone Microbubbles. Jpn. J. Appl. Phys. 2012, 51, 07GD08. [Google Scholar] [CrossRef]
- Liu, C.; Tanaka, H.; Zhang, J.; Zhang, L.; Yang, J.L.; Huang, X.; Kubota, N. Successful application of Shirasu porous glass (SPG) membrane system for microbubble aeration in a biofilm reactor treating synthetic wastewater. Sep. Purif. Technol. 2013, 103, 53–59. [Google Scholar] [CrossRef]
- Kukizaki, M.; Wada, T. Effect of the membrane wettability on the size and size distribution of microbubbles formed from Shirasu-porous-glass (SPG) membranes. Colloid Surf. A 2008, 317, 146–154. [Google Scholar] [CrossRef]
- Wattendorf, U.; Merkle, H.P. PEGylation as a Tool for the Biomedical Engineering of Surface Modified Microparticles. J. Pharm. Sci. 2008, 97, 4655–4669. [Google Scholar] [CrossRef]
- Li, P.; Takahashi, M.; Chiba, K. Degradation of phenol by the collapse of microbubbles. Chemosphere 2009, 75, 1371–1375. [Google Scholar] [CrossRef]
- Zimmerman, W.B.; Kokoo, R. Esterification for biodiesel production with a phantom catalyst: Bubble mediated reactive distillation. Appl. Energy 2018, 221, 28–40. [Google Scholar] [CrossRef]
- Zheng, T.L.; Wang, Q.H.; Zhang, T.; Shi, Z.N.; Tian, Y.L.; Shi, S.S.; Smale, N.; Wang, J. Microbubble enhanced ozonation process for advanced treatment of wastewater produced in acrylic fiber manufacturing industry. J. Hazard. Mater. 2015, 287, 412–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sloan, E.D., Jr. Gas Hydrates: Review of Physical/Chemical Properties. Energy Fuels 1998, 12, 191–196. [Google Scholar] [CrossRef]
- Alain, G.; Patrice, C.; Jean, L.; Jean-Louis, S. ζ Potential at an Air–Water Surface Related to the Critical Micelle Concentration of Aqueous Mixed Surfactant Systems. Ind. Eng. Chem. Res. 2000, 39, 2677–2681. [Google Scholar]
- Masayoshi, T.; Kaneo, C.; Pan, L. Free-Radical Generation from Collapsing Microbubbles in the Absence of a Dynamic Stimulus. J. Phys. Chem. B 2007, 111, 1343–1347. [Google Scholar]
- Alexander, W.; Christopher, I.; Thomas, H.; Alex, S.; William, Z.; Felipe, I.; David, L.; Hemaka, B. Dielectric Barrier Discharge Plasma Microbubble Reactor for Pretreatment of Lignocellulosic Biomass. AIChE J. 2018, 64, 3803–3816. [Google Scholar]
- Wang, B.; Xiong, X.G.Y.; Shui, Y.Y.; Huang, Z.Y.; Tian, K. A systematic study of enhanced ozone mass transfer for ultrasonic-assisted PTFE hollow fiber membrane aeration process. Chem. Eng. J. 2019, 357, 678–688. [Google Scholar] [CrossRef]
- Ikeura, H.; Kobayashi, F.; Tamaki, M. Removal of residual pesticides in vegetables using ozone microbubbles. J. Hazard. Mater. 2011, 186, 956–959. [Google Scholar] [CrossRef] [Green Version]
- Chu, L.B.; Xing, X.H.; Yu, A.F.; Sun, X.L.; Jurcik, B. Enhanced treatment of practical textile wastewater by microbubble ozonation. Process Saf. Environ. Protect. 2008, 86, 389–393. [Google Scholar] [CrossRef]
- Jabesa, A.; Ghosh, P. Removal of dimethyl phthalate from water by ozone microbubbles. Environ. Technol. 2017, 38, 2093–2103. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, T.; Matsuura, K.; Sato, E.; Kometani, N.; Horibe, H. Degradation of Hydrophilic Polymers in Aqueous Solution by Using Ozone Microbubble. J. Photopolym. Sci. Technol. 2017, 30, 285–289. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Wu, C.; Yang, Y.X.; Wang, Y.; Yu, S.L.; Xia, S.J.; Chu, W.H. Effects of microbubble ozonation on the formation of disinfection by-products in bromide-containing water from Tai Lake. Sep. Purif. Technol. 2018, 193, 408–414. [Google Scholar] [CrossRef]
- Chu, L.B.; Xing, X.H.; Yu, A.F.; Zhou, Y.N.; Sun, X.L.; Jurcik, B. Enhanced ozonation of simulated dyestuff wastewater by microbubbles. Chemosphere 2007, 68, 1854–1860. [Google Scholar] [CrossRef] [PubMed]
- Pandhal, J.; Siswanto, A.; Kuvshinov, D.; Zimmerman, W.B.; Lawtom, L.; Edwards, C. Cell Lysis and Detoxification of Cyanotoxins Using a Novel Combination of Microbubble Generation and Plasma Microreactor Technology for Ozonation. Front. Microbiol. 2018, 9, 678. [Google Scholar] [CrossRef] [PubMed]
- Elovitz, M.S.; Gunten, U.V. Hydroxyl Radical/Ozone Ratios During Ozonation Processes. I. The Rct Concept. Ozone Sci. Eng. 1999, 21, 239–260. [Google Scholar] [CrossRef]
- Adewuyi, Y.G. Sonochemistry: Environmental Science and Engineering Applications. Ind. Eng. Chem. Res. 2001, 40, 4681–4715. [Google Scholar] [CrossRef]
- Mahamuni, N.N.; Adewuyi, Y.G. Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: A review with emphasis on cost estimation. Ultrason. Sonochem. 2010, 17, 990–1003. [Google Scholar] [CrossRef] [PubMed]
- Grcic, I.; Obradovic, M.; Vujevic, D.; Koprivanac, N. Sono-Fenton oxidation of formic acid/formate ions in an aqueous solution: From an experimental design to the mechanistic modeling. Chem. Eng. J. 2010, 164, 196–207. [Google Scholar] [CrossRef]
- Pradhan, A.A.; Gogate, P.R. Degradation of p-nitrophenol using acoustic cavitation and Fenton chemistry. J. Hazard. Mater. 2010, 173, 517–522. [Google Scholar] [CrossRef]
- Gagol, M.; Przyjazny, A.; Boczkaj, G. Highly effective degradation of selected groups of organic compounds by cavitation based AOPs under basic pH conditions. Ultrason. Sonochem. 2018, 45, 257–266. [Google Scholar] [CrossRef]
- Heisler, J.; Glibert, P.M.; Burkholder, J.M.; Anderson, D.M.; Cochlan, W.; Dennison, W.C.; Dortch, Q.; Gobler, C.J.; Heil, C.A.; Humphries, E.; et al. Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae 2008, 8, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Karami, N.; Mohammadi, P.; Zinadzadeh, A.; Falahi, F.; Aghamohammadi, N. High rate treatment of hospital wastewater using activated sludge process induced by high-frequency ultrasound. Ultrason. Sonochem. 2018, 46, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Jawale, R.H.; Gogate, P.R. Combined treatment approaches based on ultrasound for removal of triazophos from wastewater. Ultrason. Sonochem. 2018, 40, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Weiss, J. Radiochemistry of Aqueous Solutions. Nature 1944, 153, 748–750. [Google Scholar] [CrossRef]
- Makino, K.; Mossoba, M.M.; Riesz, P. Chemical effects of ultrasound on aqueous solutions. Evidence for hydroxyl and hydrogen free radicals (.cntdot.OH and .cntdot.H) by spin trapping. Chem. Informationsdienst 1982, 13, 3537–3539. [Google Scholar]
- Zuniga-Benitez, H.; Soltan, J.; Penuela, G.A. Application of ultrasound for degradation of benzophenone-3 in aqueous solutions. Int. J. Environ. Sci. Technol. 2016, 13, 77–86. [Google Scholar] [CrossRef]
- Fitzgerald, M.E.; Griffing, V.; Sullivan, J. Chemical Effects of Ultrasonics—"Hot Spot” Chemistry. J. Chem. Phys. 1956, 25, 926–933. [Google Scholar] [CrossRef]
- Zangeneh, H.; Zinatizadeh, A.A.L.; Feizy, M. A comparative study on the performance of different advanced oxidation processes (UV/O3/H2O2) treating linear alkyl benzene (LAB) production plant’s wastewater. J. Ind. Eng. Chem. 2014, 20, 1453–1461. [Google Scholar] [CrossRef]
- Ince, N.H. Ultrasound-assisted advanced oxidation processes for water decontamination. Ultrason. Sonochem. 2018, 40, 97–103. [Google Scholar] [CrossRef]
- Suslick, K.S.; Crum, L.A. Sonochemistry and Sonoluminescence. J. Acoust. Soc. Am. 2001, 109, 2346. [Google Scholar]
- Kidak, R.; Dogan, S. Medium-high frequency ultrasound and ozone based advanced oxidation for amoxicillin removal in water. Ultrason. Sonochem. 2018, 40, 131–139. [Google Scholar] [CrossRef]
- Hamdaoui, O.; Naffrechoux, E. Sonochemical and photosonochemical degradation of 4-chlorophenol in aqueous media. Ultrason. Sonochem. 2008, 15, 981–987. [Google Scholar] [CrossRef]
- Jyoti, K.K.; Pandit, A.B. Ozone and cavitation for water disinfection. Biochem. Eng. J. 2004, 18, 9–19. [Google Scholar] [CrossRef]
- Flint, E.B.; Suslick, K.S. The Temperature of Cavitation. Science 1991, 253, 1397–1399. [Google Scholar] [CrossRef]
- Ciawi, E.; Rae, J.; Ashokkumar, M.; Franz, G. Determination of temperatures within acoustically generated bubbles in aqueous solutions at different ultrasound frequencies. J. Phys. Chem B. 2006, 110, 13656–13660. [Google Scholar] [CrossRef] [PubMed]
- Avvaru, B.; Venkateswaran, N.; Uppara, P.; Iyengar, S.B.; Katti, S.S. Current knowledge and potential applications of cavitation technologies for the petroleum industry. Ultrason. Sonochem. 2018, 42, 493–507. [Google Scholar] [CrossRef] [PubMed]
- Suslick, K.S. The Site of Sonochemical Reactions. IEEE Trans. Ultrason. Ferroelectr. 1986, 33, 143–147. [Google Scholar] [CrossRef]
- Suslick, K.S.; Hammerton, D.A.; Cline, R.E. Sonochemical hot spot. J. Am. Chem. Soc. 1986, 108, 5641–5642. [Google Scholar] [CrossRef]
- Weavers, L.K.; Hoffmann, M.R. Sonolytic Decomposition of Ozone in Aqueous Solution: Mass Transfer Effects. Environ. Sci. Technol. 1998, 32, 3941–3947. [Google Scholar] [CrossRef]
- Mason, T.J.; Joyce, S.S.; Phull, S.S.; Lorimer, J.P. Potential uses of ultrasound in the biological decontamination of water. Ultrason. Sonochem. 2003, 10, 319–323. [Google Scholar] [CrossRef]
- Patil, P.N.; Gogate, P.R. Degradation of dichlorvos using hybrid advanced oxidation processes based on ultrasound. J. Water Process. Eng. 2015, 8, E58–E65. [Google Scholar] [CrossRef]
- Boczkaj, G.; Gagol, M.; Klein, M.; Przyjazny, A. Effective method of treatment of effluents from production of bitumens under basic pH conditions using hydrodynamic cavitation aided by external oxidants. Ultrason. Sonochem. 2018, 40, 969–979. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Duan, L.; Zhang, D. Absorption kinetics of ozone in water with ultrasonic radiation. Ultrason. Sonochem. 2007, 14, 552–556. [Google Scholar] [CrossRef] [PubMed]
- Gogate, P.R.; Mededovic-Thagard, S.; McGuire, D.; Chapas, G.; Blackmon, J.; Cathey, R. Hybrid reactor based on combined cavitation and ozonation: From concept to practical reality. Ultrason. Sonochem. 2014, 21, 590–598. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Song, S.; Zhou, H.; Ying, H.; Chen, J.C.I. Reactive Black 5 decolorization by combined sonolysis and ozonation. Ultrason. Sonochem. 2007, 14, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.J.; Xu, Q.H.; Wei, R.R.; Ma, J.L.; Wang, Y. Mechanism and dynamic study of reactive red X-3B dye degradation by ultrasonic-assisted ozone oxidation process. Ultrason. Sonochem. 2017, 38, 681–692. [Google Scholar] [CrossRef] [PubMed]
- Al-Hashimi, A.M.; Mason, T.J.; Joyce, E.M. Combined Effect of Ultrasound and Ozone on Bacteria in Water. Environ. Sci. Technol. 2015, 49, 11697–11702. [Google Scholar] [CrossRef] [PubMed]
- Ji, G.D.; Zhang, B.L.; Wu, Y.C. Combined ultrasound/ozone degradation of carbazole in APG(1214) surfactant solution. J. Hazard. Mater. 2012, 225, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.Q.; Yin, R.L.; Zhou, X.J.; Cao, H.O.; Chang, J.S.; Ren, N.Q. Ultrasonic-assisted ozone oxidation process for sulfamethoxazole removal: IMPACT factors and degradation process. Desalin. Water Treat. 2016, 57, 21015–21022. [Google Scholar] [CrossRef]
- Wang, B.; Zhu, C.P.; Gong, R.H.; Zhu, J.; Huang, B.; Xu, F.; Ren, Q.G.; Han, Q.B.; He, Z.B. Degradation of acephate using combined ultrasonic and ozonation method. Water Sci. Eng. 2015, 8, 233–238. [Google Scholar] [CrossRef]
- Afzal, S.; Quan, X.; Zhang, J.L. High surface area mesoporous nanocast LaMO3 (M = Mn, Fe) perovskites for efficient catalytic ozonation and an insight into probable catalytic mechanism. Appl. Catal. B Environ. 2017, 206, 692–703. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, W.; Yin, X.; Liu, Y. The role of Mn-doping for catalytic ozonation of phenol using Mn/γ-Al2O3 nanocatalyst: Performance and mechanism. J. Environ. Chem. Eng. 2016, 4, 3415–3425. [Google Scholar] [CrossRef]
- Zhao, L.; Sun, Z.Z.; Ma, J.; Liu, H.L. Enhancement Mechanism of Heterogeneous Catalytic Ozonation by Cordierite-Supported Copper for the Degradation of Nitrobenzene in Aqueous Solution. Environ. Sci. Technol. 2009, 43, 2047–2053. [Google Scholar] [CrossRef] [PubMed]
- Graham, N.; Jiang, C.C.; Li, X.Z.; Jiang, J.Q.; Jun, M. The influence of pH on the degradation of phenol and chlorophenols by potassium ferrate. Chemosphere 2004, 56, 949–956. [Google Scholar] [CrossRef] [PubMed]
- Asgari, G.; Mohammadi, A.S.; Mortazavi, S.B.; Ramavandi, B. Investigation on the pyrolysis of cow bone as a catalyst for ozone aqueous decomposition: Kinetic approach. J. Anal. Appl. Pyrolysis 2013, 99, 149–154. [Google Scholar] [CrossRef]
- Wang, J.L.; Bai, Z.Y. Fe-based catalysts for heterogeneous catalytic ozonation of emerging contaminants in water and wastewater. Chem. Eng. J. 2017, 312, 79–98. [Google Scholar] [CrossRef]
- Jawale, R.H.; Tandale, A.; Gogate, P.R. Novel approaches based on ultrasound for treatment of wastewater containing potassium ferrocyanide. Ultrason. Sonochem. 2017, 38, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Mehrjouei, M.; Muller, S.; Moller, D. A review on photocatalytic ozonation used for the treatment of water and wastewater. Chem. Eng. J. 2015, 263, 209–219. [Google Scholar] [CrossRef]
- Huang, R.H.; Yan, H.H.; Li, L.S.; Deng, D.Y.; Shu, Y.H.; Zhang, Q.Y. Catalytic activity of Fe/SBA-15 for ozonation of dimethyl phthalate in aqueous solution. Appl. Catal. B Environ. 2011, 106, 264–271. [Google Scholar] [CrossRef]
- Goel, M.; Hongqiang, H.; Mujumdar, A.S.; Ray, B.M. Sonochemical decomposition of volatile and non-volatile organic compounds—A comparative study. Water Res. 2004, 38, 4247–4261. [Google Scholar] [CrossRef]
- Golash, N.; Gogate, P.R. Degradation of dichlorvos containing wastewaters using sonochemical reactors. Ultrason. Sonochem. 2012, 19, 1051–1060. [Google Scholar] [CrossRef]
- Lan, B.Y.; Huang, R.H.; Li, L.S.; Yan, H.H.; Liao, G.Z.; Wang, X.; Zhang, Q.Y. Catalytic ozonation of p-chlorobenzoic acid in aqueous solution using Fe-MCM-41 as catalyst. Chem. Eng. J. 2013, 219, 346–354. [Google Scholar] [CrossRef]
- Yan, H.H.; Lu, P.; Pan, Z.Q.; Wang, X.; Zhang, Q.Y.; Li, L.S. Ce/SBA-15 as a heterogeneous ozonation catalyst for efficient mineralization of dimethyl phthalate. J. Mol. Catal. A Chem. 2013, 377, 57–64. [Google Scholar] [CrossRef]
- Panda, D.; Manickam, S. Recent advancements in the sonophotocatalysis (SPC) and doped-sonophotocatalysis (DSPC) for the treatment of recalcitrant hazardous organic water pollutants. Ultrason. Sonochem. 2017, 36, 481–496. [Google Scholar] [CrossRef] [PubMed]
- Mason, T.J.; Peters, D. Practical Sonochemistry. In Power Ultrasound Uses and Applications, 2nd ed.; Ellis Horwood Publishers: Chichester, UK, 2002. [Google Scholar]
- Merouani, S.; Hamdaoui, O.; Saoudi, F.; Chiha, M. Sonochemical degradation of Rhodamine B in aqueous phase: Effects of additives. Chem. Eng. J. 2010, 158, 550–557. [Google Scholar] [CrossRef]
- Zhou, X.Q.; Zhao, J.Y.; Li, Z.F.; Song, J.N.; Li, X.Y.; Yang, X.; Wang, D.L. Enhancement effects of ultrasound on secondary wastewater effluent disinfection by sodium hypochlorite and disinfection by-products analysis. Ultrason. Sonochem. 2016, 29, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Jagannathan, M.; Grieser, F.; Ashokkumar, M. Sonophotocatalytic degradation of paracetamol using TiO2 and Fe3+. Sep. Purif. Technol. 2013, 103, 114–118. [Google Scholar] [CrossRef]
- Madhavan, J.; Grieser, F.; Ashokkumar, M. Combined advanced oxidation processes for the synergistic degradation of ibuprofen in aqueous environments. J. Hazard. Mater. 2010, 178, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Madhavan, J.; Sathishkumar, P.; Anandan, S.; Grieser, F.; Ashokkumar, M. Degradation of acid red 88 by the combination of sonolysis and photocatalysis. Sep. Purif. Technol. 2010, 74, 336–341. [Google Scholar] [CrossRef]
- Lv, A.H.; Hu, C.; Nie, Y.L.; Qu, J.H. Catalytic ozonation of toxic pollutants over magnetic cobalt and manganese co-doped gamma-Fe2O3. Appl. Catal. B Environ. 2010, 100, 62–67. [Google Scholar] [CrossRef]
System | Wastewater/Organic/Simulated Wastewater | KLa | Treatment Efficiency in Optimal Condition | Conditions | Reference |
---|---|---|---|---|---|
Air-microbubbles, Air-macrobubbles/conventional bubbles | Tap water | Air-macrobubbles: 0.02191 s−1; Air-microbubble: 0.02905 s−1 | - | Gas flow rate: 0.67 L min−1 | [24] |
Air-microbubbles | Phenol | - | Phenol removal: 60% (2 h) | Initial temperature: 35 °C; Gas flow rate: 0.5 dm3 min−1; Initial pH: 2.3 | [38] |
Ozone-microbubbles, Ozone-macrobubbles | Acrylic fiber wastewater (e.g., alkanes, aromatic compounds, and other refractory/bio-refractory organic compounds, et al.) | Ozone-microbubbles: 0.3767 min−1; Ozone-macrobubbles: 0.1732 min−1 | Ozone-microbubbles: CODcr removal: 42%; NH3-N removal: 21%; UV254 removal: 42%; Ozone-macrobubbles: CODcr removal: 17%; NH3-N removal: 12%; UV254 removal: 7% | Initial temperature: 20 °C; ozone dosage: 5 g h−1 | [44] |
Ozone-microbubbles | Fenitrothion (FT) pesticide residues | - | FT removal: 35%; (cherry tomatoes were immersed into solution for 10 min) | Dissolve ozone concentration: 2.0 ppm | [47] |
Ozone-microbubbles | Practical textile wastewater | 0.1072-0.4859 min−1 | Color removal: 80% (140 min); COD removal: 70% (200 min) | Initial temperature: 19 °C; Gas flow rate: 0.5 dm3 min−1; Input ozone concentration: 132 mg dm−3; Initial pH: 8.7 | [48] |
Ozone-microbubbles | dimethyl phthalate (DMP) | - | DMP removal: 99% (300 s, initial SMP concentration: 0.052 mol m−3); 95% (1800 s, initial DMP concentration: 1.029 mol m−3) | Gas flow rate: 1.11 mg s−1; Initial pH: 9; | [49] |
System | Wastewater/Organic/Simulated Wastewater | KLa | Treatment Efficiency in Optimal Condition | Conditions | Reference |
---|---|---|---|---|---|
O3/Ultrasound | Nitrobenzene | O3/Ultrasound: 0.24-0.43 min−1; O3: 0.20 min−1 | Nitrobenzene removal: 60.9%; TOC removal: 88.8% (30 min, initial concentration: 50 μg L−1) | Initial temperature: 20 °C; Total applied ozone: 1.2 mg L−1; Initial pH: 6.85; Ultrasonic power density: 38.5 W L−1; Ultrasonic power frequency: 28 kHz; Ultrasonic fields: 4 | [34] |
O3/Ultrasound | Triazophos | - | Triazophos removal: 52.4% (90 min, initial concentration: 20 ppm) | Initial temperature: 37 °C; Ozone intake flow rate: 400 mg h−1; Initial pH: 3.2; Ultrasonic power: 1500 W; Ultrasonic power frequency: 40 kHz; | [62] |
O3/Ultrasound | Benzophenone-3 | - | - | Initial temperature: 25 °C; Ozone intake flow rate: 3500 mg h−1; Ultrasonic power: 50 W; Ultrasonic power frequency: 160 kHz | [65] |
O3/Ultrasound | C.I. Reactive Black 5 | - | Color removal: 100% (4 min, initial concentration: 100 mg L−1); 82% (4 min, 500 mg L−1) | Initial temperature: 35 °C; Ozone concentration: 1 mg L−1; Ultrasonic power density: 88 W L−1 | [84] |
O3/Ultrasound | Reactive red X-3B dye | 0.43 min−1 | Dye removal: 99.2% (6 min) | Initial concentration: 100 mg L−1; Ozone flux: 40 L h−1; Initial pH: 6.52; Ultrasonic power density: 200 W L−1 | [85] |
O3/Ultrasound | Bacteria | - | Reduction of live cells: 99% (4 min) | Initial temperature: 25 °C; Ozone dosage: g h−1; Ultrasonic power: 100 Watt each Ultrasonic power frequency: 612 kHz | [86] |
O3/Ultrasound | Sulfamethoxazole (SMX) | - | SMX removal: 100% | Ozone dosage: 3 g h−1; Initial pH: 9; Ultrasonic power density: 600 W L−1; | [88] |
O3/Ultrasound | Acephate | - | Acephate removal: 87.6% (60 min) | Initial temperature: 25 °C; Ozone intake flow rate: 3500 mg h−1; Ultrasonic power: 50 W; Ultrasonic power frequency: 160 kHz | [89] |
O3/Ultrasound | potassium ferrocyanide (KFC) | - | KFC removal: 82.41% (90 min, 200 ppm) | Initial temperature: 35 °C; Ozone dosage: 400 mg h−1; Ultrasonic power: 1 kW; Ultrasonic power frequency: 25 kHz | [96] |
System | Wastewater/Organic/Simulated Wastewater | KLa | Treatment Efficiency in Optimal Condition | Conditions | Reference |
---|---|---|---|---|---|
Ozone-microbubbles/Ultrasound | 1, 4-Dioxane | - | Reaction rate constant: ozone-microbubbles/Ultrasound process: 6.3 × 10−3 min−1; | Ozone dosage: 101.5 mg L−1; Ultrasonic power: 150 W; Ultrasonic power frequency: 490 kHz | [35] |
Ozone-microbubbles/Ultrasound | Sulfonated phenolic resin (SMP) | Ozone-microbubbles: 0.438 min−1 Ozone-microbubbles/Ultrasound: 0.632 min−1 | SMP removal: 50% (5 min) TOC removal: 75% (120 min) | Initial temperature: room temperature Ozone intake flow rate: 300 L h−1; Ultrasonic power: 1000 W; Ultrasonic power frequency: 20 kHz; | [46] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, X.; Wang, B.; Zhu, W.; Tian, K.; Zhang, H. A Review on Ultrasonic Catalytic Microbubbles Ozonation Processes: Properties, Hydroxyl Radicals Generation Pathway and Potential in Application. Catalysts 2019, 9, 10. https://doi.org/10.3390/catal9010010
Xiong X, Wang B, Zhu W, Tian K, Zhang H. A Review on Ultrasonic Catalytic Microbubbles Ozonation Processes: Properties, Hydroxyl Radicals Generation Pathway and Potential in Application. Catalysts. 2019; 9(1):10. https://doi.org/10.3390/catal9010010
Chicago/Turabian StyleXiong, Xingaoyuan, Bing Wang, Wei Zhu, Kun Tian, and Huan Zhang. 2019. "A Review on Ultrasonic Catalytic Microbubbles Ozonation Processes: Properties, Hydroxyl Radicals Generation Pathway and Potential in Application" Catalysts 9, no. 1: 10. https://doi.org/10.3390/catal9010010