Plasma-Assisted Selective Catalytic Reduction for Low-Temperature Removal of NOx and Soot Simulant
Abstract
:1. Introduction
2. Results
2.1. Effects of Plasma input Parameters on Discharge Power
- VDBD is the amplitude of the voltage applied to the reactor
- R is the equivalent resistance of the reactor system
- Ccg is the equivalent capacitance of the catalyst and gas gap
- Cd is the absolute capacitance of the dielectric layers.
2.2. Removal of NOx and Soot Simulant by SCR Coupled with Plasma
2.3. Removal of NOx and Soot Simulant during Operating Temperature Fluctuations
3. Materials and Methods
3.1. Preparation of Ag/α-Al2O3 Catalyst
3.2. Plasma Coupled with SCR for NOx and Soot Simulant Removal
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- More, P.M. Effect of active component addition and support modification on catalytic activity of Ag/Al2O3 for the selective catalytic reduction of NOx by hydrocarbon—A review. J. Environ. Manag. 2017, 188, 43–48. [Google Scholar] [CrossRef]
- Gao, F.; Tang, X.; Yi, H.; Zhao, S.; Li, C.; Li, J.; Shi, Y.; Meng, X. A review on selective catalytic reduction of NOx by NH3 over Mn–based catalysts at low temperatures: Catalysts, mechanisms, kinetics and DFT calculations. Catalysis 2017, 7, 199. [Google Scholar] [CrossRef]
- Xu, J.; Wang, H.; Guo, F.; Zhang, C.; Xie, J. Recent advances in supported molecular sieve catalysts with wide temperature range for selective catalytic reduction of NOX with C3H6. RSC Adv. 2019, 9, 824–838. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, H.; Haller, G.; Li, Y. Recent advances in the selective catalytic reduction of NOx with NH3 on Cu-Chabazite catalysts. Appl. Catal. B Environ. 2017, 202, 346–354. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, Q.; Meng, X.; Müller, U.; Feyen, M.; Dai, D.; Maurer, S.; McGuire, R.; Moini, A.; Parvulescu, A.N.; et al. Recent advances in the preparation of zeolites for the selective catalytic reduction of NOx in diesel engines. React. Chem. Eng. 2019, 4, 975–985. [Google Scholar] [CrossRef]
- Lambert, C.K. Perspective on SCR NOx control for diesel vehicles. React. Chem. Eng. 2019, 4, 969–974. [Google Scholar] [CrossRef]
- Johnson, T.; Joshi, A. Review of Vehicle Engine Efficiency and Emissions; SAE Tech. Paper 2018-01-0329; SAE International: Warrendale, PA, USA, 2018. [Google Scholar] [CrossRef]
- Jacobson, M.Z. Air Pollution and Global Warming: History, Science, and Solutions; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Emission Standards: European Union: Cars and Light Trucks. Available online: https://www.dieselnet.com/standards/eu/ld.php#stds (accessed on 15 April 2019).
- Tan, J.; Wei, Y.; Sun, Y.; Liu, J.; Zhao, Z.; Song, W.; Li, J.; Zhang, X. Simultaneous removal of NOx and soot particulates from diesel engine exhaust by 3DOM Fe–Mn oxide catalysts. J. Ind. Eng. Chem. 2018, 63, 84–94. [Google Scholar] [CrossRef]
- Matarrese, R.; Morandi, S.; Castoldi, L.; Villa, P.; Lietti, L. Removal of NOx and soot over Ce/Zr/K/Me (Me = Fe, Pt, Ru, Au) oxide catalysts. Appl. Catal. B: Environ. 2017, 201, 318–330. [Google Scholar] [CrossRef]
- Tauzia, X.; Maiboom, A.; Karaky, H. Semi-physical models to assess the influence of CI engine calibration parameters on NOx and soot emissions. Appl. Energy 2017, 208, 1505–1518. [Google Scholar] [CrossRef]
- Wang, L.; Fang, S.; Feng, N.; Wan, H.; Guan, G. Efficient catalytic removal of diesel soot over Mg substituted K/La0.8Ce0.2CoO3 perovskites with large surface areas. Chem. Eng. J. 2016, 293, 68–74. [Google Scholar] [CrossRef]
- Urán, L.; Gallego, J.; Li, W.Y.; Santamaría, A. Effect of catalyst preparation for the simultaneous removal of soot and NOx. Appl. Catal. A Gen. 2019, 569, 157–169. [Google Scholar] [CrossRef]
- Mao, L.; Yan, Y.; Zhao, X.; Fu, M.; Xiao, Y.; Dong, G. Comparative study on removal of NOx and soot with a-site substituted La2NiO4 perovskite-like by different valence cation. Catal. Lett. 2019, 149, 1087–1099. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, C.; Shu, X.; Yue, T.; Wang, S.; Deng, Z. The mechanism of Pd, K co-doping on Mg–Al hydrotalcite for simultaneous removal of diesel soot and NOx in SO2-containing atmosphere. Fuel 2019, 240, 244–251. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, F.; Liang, J.; Yu, H.; Liu, W.; Wang, X.; Peng, H.; Wu, P. Exploring the nanosize effect of mordenite zeolites on their performance in the removal of NOx. Ind. Eng. Chem. Res. 2019, 58, 8625–8635. [Google Scholar] [CrossRef]
- Shangguan, W.; Zou, G.; Jiang, Z. Introduction. In Simultaneous Catalytic Removal of Diesel Soot and NOx; Shangguan, W., Zou, G., Jiang, Z., Eds.; Springer: Singapore, 2019; pp. 1–8. [Google Scholar]
- Pereda-Ayo, B.; González-Velasco, J.R. NOx storage and reduction for diesel engine exhaust after treatment. In Diesel Engine-Combustion, Emissions and Condition Monitoring; Bari, S., Ed.; InTech: Rijeka, Croatia, 2013. [Google Scholar]
- Shangguan, W.; Zou, G.; Jiang, Z. Simultaneous Catalytic Removal of Diesel Soot and NOx; Springer Nature: Singapore, 2019. [Google Scholar]
- Shangguan, W.; Zou, G.; Jiang, Z. kinetics study for simultaneous removal of soot and NOx. In Simultaneous Catalytic Removal of Diesel Soot and NOx; Shangguan, W., Zou, G., Jiang, Z., Eds.; Springer: Singapore, 2019; pp. 71–100. [Google Scholar]
- Moliner, M.; Corma, A. From metal-supported oxides to well-defined metal site zeolites: The next generation of passive NOx adsorbers for low-temperature control of emissions from diesel engines. React. Chem. Eng. 2019, 4, 223–234. [Google Scholar] [CrossRef]
- Palma, V.; Ciambelli, P.; Meloni, E. Optimising the catalyst load for Microwave susceptible catalysed DPF. Chem. Eng. Trans. 2012, 29, 637–642. [Google Scholar]
- Palma, V.; Ciambelli, P.; Meloni, E.; Sin, A. Optimal CuFe2O4 load for MW susceptible catalysed DPF. Chem. Eng. Trans. 2013, 35, 727–732. [Google Scholar]
- Meloni, E.; Palma, V.; Vaiano, V. Optimized microwave susceptible catalytic diesel soot trap. Fuel 2017, 205, 142–152. [Google Scholar] [CrossRef]
- Xu, J.; Lu, G.; Guo, Y.; Guo, Y.; Gong, X.Q. A highly effective catalyst of Co-CeO2 for the oxidation of diesel soot: The excellent NO oxidation activity and NOx storage capacity. Appl. Catal. A Gen. 2017, 535, 1–8. [Google Scholar] [CrossRef]
- Tsukamoto, Y.; Utaki, S.; Zhang, W.; Fukuma, T.; Kusaka, J. Effects of Soot Deposition on NOx Purification Reaction and Mass TRANSFER in a SCR/DPF catalyst; SAE International: New York, NY, USA, 2018. [Google Scholar]
- Borfecchia, E.; Negri, C.; Lomachenko, K.A.; Lamberti, C.; Janssens, T.V.W.; Berlier, G. Temperature-dependent dynamics of NH3-derived Cu species in the Cu-CHA SCR catalyst. React. Chem. Eng. 2019, 4, 1067–1080. [Google Scholar] [CrossRef]
- Fahami, A.R.; Günter, T.; Doronkin, D.E.; Casapu, M.; Zengel, D.; Vuong, T.H.; Simon, M.; Breher, F.; Kucherov, A.V.; Brückner, A.; et al. The dynamic nature of Cu sites in Cu-SSZ-13 and the origin of the seagull NOx conversion profile during NH3-SCR. React. Chem. Eng. 2019, 4, 1000–1018. [Google Scholar] [CrossRef]
- Torregrosa-Rivero, V.; Albaladejo-Fuentes, V.; Sánchez-Adsuar, M.S.; Illán-Gómez, M.J. Copper doped BaMnO3 perovskite catalysts for NO oxidation and NO2-assisted diesel soot removal. RSC Adv. 2017, 7, 35228–35238. [Google Scholar] [CrossRef]
- Wang, Z.; Lu, P.; Zhang, X.; Wang, L.; Li, Q.; Zhang, Z. NOx storage and soot combustion over well-dispersed mesoporous mixed oxides via hydrotalcite-like precursors. RSC Adv. 2015, 5, 52743–52753. [Google Scholar] [CrossRef]
- Zhao, H.; Zhou, X.; Wang, M.; Xie, Z.; Chen, H.; Shi, J. Highly active MnOx–CeO2 catalyst for diesel soot combustion. RSC Adv. 2017, 7, 3233–3239. [Google Scholar] [CrossRef]
- Cheng, Y.; Song, W.; Liu, J.; Zhao, Z.; Wei, Y. Simultaneous removal of PM and NOx over highly efficient 3DOM W/Ce0.8Zr0.2O2 catalysts. RSC Adv. 2017, 7, 56509–56518. [Google Scholar] [CrossRef]
- Andreoli, S.; Deorsola, F.A.; Galletti, C.; Pirone, R. Nanostructured MnOx catalysts for low-temperature NOx SCR. Chem. Eng. J. 2015, 278, 174–182. [Google Scholar] [CrossRef]
- France, L.J.; Yang, Q.; Li, W.; Chen, Z.; Guang, J.; Guo, D.; Wang, L.; Li, X. Ceria modified FeMnOx—Enhanced performance and sulphur resistance for low-temperature SCR of NOx. Appl. Catal. B Environ. 2017, 206, 203–215. [Google Scholar] [CrossRef]
- Lu, X.; Song, C.; Jia, S.; Tong, Z.; Tang, X.; Teng, Y. Low-temperature selective catalytic reduction of NOX with NH3 over cerium and manganese oxides supported on TiO2–graphene. Chem. Eng. J. 2015, 260, 776–784. [Google Scholar] [CrossRef]
- Sitshebo, S.; Tsolakis, A.; Theinnoi, K.; Rodríguez-Fernández, J.; Leung, P. Improving the low temperature NOx reduction activity over a Ag-Al2O3 catalyst. Chem. Eng. J. 2010, 158, 402–410. [Google Scholar] [CrossRef]
- Chen, P.; Rizzotto, V.; Xie, K.; Simon, U. Tracking mobile active sites and intermediates in NH3-SCR over zeolite catalysts by impedance-based in situ spectroscopy. React. Chem. Eng. 2019, 4, 986–994. [Google Scholar] [CrossRef]
- Herreros, J.M.; George, P.; Umar, M.; Tsolakis, A. Enhancing selective catalytic reduction of NOx with alternative reactants/promoters. Chem. Eng. J. 2014, 252, 47–54. [Google Scholar] [CrossRef]
- Guilhaume, N.; Bassou, B.; Bergeret, G.; Bianchi, D.; Bosselet, F.; Desmartin-Chomel, A.; Jouguet, B.; Mirodatos, C. In situ investigation of diesel soot combustion over an AgMnOx catalyst. Appl. Catal. B Environ. 2012, 119–120, 287–296. [Google Scholar] [CrossRef]
- Portet-Koltalo, F.; Machour, N. Analytical methodologies for the control of particle-phase polycyclic aromatic compounds from diesel engine exhaust. In Diesel Engine-Combustion, Emissions and Condition Monitoring; IntechOpen: Rijeka, Croatia, 2013. [Google Scholar]
- Penetrante, B.M.; Brusasco, R.M.; Merritt, B.T.; Pitz, W.J.; Vogtlin, G.E.; Kung, M.C.; Kung, H.H.; Wan, C.Z.; Voss, K.E. Plasma-assisted catalytic reduction of NOx. SAE Trans. 1998, 107, 1222–1231. [Google Scholar]
- Hoard, J. Plasma-Catalysis for Diesel Exhaust Treatment: Current STATE of the Art; SAE International: New York, NY, USA, 2001. [Google Scholar]
- Wang, Z.; Kuang, H.; Zhang, J.; Chu, L.; Ji, Y. Nitrogen oxide removal by non-thermal plasma for marine diesel engines. RSC Adv. 2019, 9, 5402–5416. [Google Scholar] [CrossRef] [Green Version]
- Talebizadeh, P.; Babaie, M.; Brown, R.; Rahimzadeh, H.; Ristovski, Z.; Arai, M. The role of non-thermal plasma technique in NOx treatment: A review. Renew. Sustain. Energy Rev. 2014, 40, 886–901. [Google Scholar] [CrossRef]
- Zhang, L.; Sha, X.l.; Zhang, L.; He, H.b.; Ma, Z.h.; Wang, L.W.; Wang, Y.X.; She, L.X. Synergistic catalytic removal NOX and the mechanism of plasma and hydrocarbon gas. AIP Adv. 2016, 6, 075015. [Google Scholar] [CrossRef]
- Jo, J.-O.; Trinh, Q.H.; Kim, S.H.; Mok, Y.S. Plasma-catalytic decomposition of nitrous oxide over γ-alumina-supported metal oxides. Catal. Today 2018, 310, 42–48. [Google Scholar] [CrossRef]
- Lee, J.B.; Kang, H.C.; Jo, O.J.; Mok, S.Y. Consideration of the role of plasma in a plasma-coupled selective catalytic reduction of nitrogen oxides with a hydrocarbon reducing agent. Catalysis 2017, 7, 325. [Google Scholar] [CrossRef]
- Nguyen, D.B.; Heo, I.J.; Mok, Y.S. Enhanced performance at an early state of hydrocarbon selective catalyst reduction of NOx by atmospheric pressure plasma. J. Ind. Eng. Chem. 2018, 68, 372–379. [Google Scholar] [CrossRef]
- Nguyen, D.B.; Nguyen, V.T.; Heo, I.J.; Mok, Y.S. Removal of NOx by selective catalytic reduction coupled with plasma under temperature fluctuation condition. J. Ind. Eng. Chem. 2019, 72, 400–407. [Google Scholar] [CrossRef]
- Manley, T. The electric characteristics of the ozonator discharge. Trans. Electrochem. Soc. 1943, 84, 83–96. [Google Scholar] [CrossRef]
- Nguyen, D.B.; Lee, W.G. Implementation of alternative gas compositions and effects on discharge properties of atmospheric pressure plasma in decomposition of CHF3. J. Ind. Eng. Chem. 2017, 52, 7–11. [Google Scholar] [CrossRef]
- Nguyen, D.B.; Lee, W.G. Analysis of helium addition for enhancement of reactivity between CH4 and CO2 in atmospheric pressure plasma. J. Ind. Eng. Chem. 2015, 32, 187–194. [Google Scholar] [CrossRef]
- Nguyen, D.B.; Lee, W.G. Effects of self-heating in a dielectric barrier discharge reactor on CHF3 decomposition. Chem. Eng. J. 2016, 294, 58–64. [Google Scholar] [CrossRef]
- Nguyen, D.B.; Lee, W.G. Effects of ambient gas on cold atmospheric plasma discharge in the decomposition of trifluoromethane. RSC Adv. 2016, 6, 26505–26513. [Google Scholar] [CrossRef]
- Andana, T.; Piumetti, M.; Bensaid, S.; Russo, N.; Fino, D.; Pirone, R. Chapter 16—Advances in cleaning mobile emissions: NOx-assisted soot oxidation in light-duty diesel engine vehicle application. In Horizons in Sustainable Industrial Chemistry and Catalysis; Albonetti, S., Perathoner, S., Quadrelli, E.A., Eds.; Studies Surface Science Catalysis; Elsevier: Amsterdam, The Netherlands, 2019; pp. 329–352. [Google Scholar]
- Luo, Y.R. Comprehensive Handbook of Chemical Bond Energies; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Zhang, Z.S.; Crocker, M.; Chen, B.B.; Wang, X.K.; Bai, Z.F.; Shi, C. Non-thermal plasma-assisted NOx storage and reduction over cobalt-containing LNT catalysts. Catal. Today 2015, 258, 386–395. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, V.T.; Nguyen, D.B.; Heo, I.; Mok, Y.S. Plasma-Assisted Selective Catalytic Reduction for Low-Temperature Removal of NOx and Soot Simulant. Catalysts 2019, 9, 853. https://doi.org/10.3390/catal9100853
Nguyen VT, Nguyen DB, Heo I, Mok YS. Plasma-Assisted Selective Catalytic Reduction for Low-Temperature Removal of NOx and Soot Simulant. Catalysts. 2019; 9(10):853. https://doi.org/10.3390/catal9100853
Chicago/Turabian StyleNguyen, Van Toan, Duc Ba Nguyen, Iljeong Heo, and Young Sun Mok. 2019. "Plasma-Assisted Selective Catalytic Reduction for Low-Temperature Removal of NOx and Soot Simulant" Catalysts 9, no. 10: 853. https://doi.org/10.3390/catal9100853
APA StyleNguyen, V. T., Nguyen, D. B., Heo, I., & Mok, Y. S. (2019). Plasma-Assisted Selective Catalytic Reduction for Low-Temperature Removal of NOx and Soot Simulant. Catalysts, 9(10), 853. https://doi.org/10.3390/catal9100853